
KSCE Journal of Civil Engineering (2018) 22(9):3233-3245

Copyright ⓒ2018 Korean Society of Civil Engineers

DOI 10.1007/s12205-018-1195-z

− 3233 −

pISSN 1226-7988, eISSN 1976-3808

www.springer.com/12205

Environmental Engineering

Comparison of ARIMA and NNAR Models for Forecasting Water

Treatment Plant's Influent Characteristics

Afshin Maleki*, Simin Nasseri**, Mehri Solaimany Aminabad***, and Mahdi Hadi****

Received August 20, 2017/Accepted November 15, 2017/Published Online April 10, 2018

··································································································································································································································  

Abstract

A reliable forecasting model for each Water Treatment Plant (WTP) influent characteristics is useful for controlling the plant's
operation. In this paper Auto-Regressive Integrated Moving Average (ARIMA) and Neural Network Auto-Regressive (NNAR)
modeling techniques were applied on a WTP's influent water characteristics time series to make some models for short-term period
(to seven days ahead) forecasting. The ARIMA and NNAR models both provided acceptable generalization capability with R2s
ranged from 0.44 to 0.91 and 0.45 to 0.92, respectively, for chloride and temperature. Although a more prediction performance was
observed for NNAR in comparison with ARIMA for all studied series, the forecasting performance of models was further examined
using Time Series Cross-Validation (TSCV) and Diebold-Mariano test. The results showed ARIMA is more accurate than NNAR for
forecasting the horizon-daily values for CO2, Cl and Ca time-series. Therefore, despite of the good predictive performance of NNAR,
ARIMA may still stands as better alternative for forecasting task of aforementioned series. Thus, as a general rule, not only the
predictive performance using R2 statistic but also the forecasting performance of a model using TSCV, are need to be examined and
compared for selecting an appropriate forecasting model for WTP's influent characteristics. 

Keywords: time series analysis, neural network auto-regressive model, auto-regressive integrated moving average model, water

treatment plant, forecasting
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1. Introduction

Water characteristics such as temperature, turbidity and pH are

important water quality parameters and there is a significant

relationship between these parameters and amounts of coagulants

and flocculants used in water treatment processes in a Water

Treatment Plant (WTP) (Wu and Lo, 2008; Wu and Lo, 2010).

Prediction of the influent water characteristics may be helpful in

the optimal scheduling of coagulation and flocculation process.

To maintain stable performance, it is desirable to know in

advance the influent water characteristics of a WTP. Operators'

experience and online sensors in practice can provide an estimation

of the influent water characteristics. But such estimations or

measurements however, may not be enough to manage a WTP,

especially for operators that want to manage the WTP performance

for one or some days later. The precipitation may cause a large

variability in the influent water characteristics like turbidity

(Hadi et al., 2016) and reduce the efficiency of the WTP. Making

some forecasting models for water quality characteristics

based on their historical data may be useful in which by time

series analysis can be done (Maest et al., 2005). The forecasting

of the future states of a time series is possible by analyzing the

series pattern using its available observations. 

For more than half a century, Box–Jenkins (Box et al., 2013)

or Auto-Regressive Integrated Moving Average (ARIMA) time

series models have dominated many areas of time series

forecasting. In an ARIMA model, the future values of a variable

are assumed to be a linear function of several past observations

and random errors. The ARIMA assumes that the series is

generated from a linear process (Khashei and Bijari, 2010).

Thus, it may be inappropriate if the underlying mechanism is

nonlinear. Indeed, real world systems are often nonlinear (Zhang

et al., 1998). In order to consider the non-linear behavior within

the variables, more sophisticated tools and methods may be

needed. The Artificial Neural Network (ANN) is a technique

allows modelling of complex nonlinear relationships among

TECHNICAL NOTE

*Professor, Dept. of Environmental Health Engineering, Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj,

Iran (E-mail: maleki43@yahoo.com)

**Professor, Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran;

Dept. of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran (E-mail: naserise@tums.ac.ir)

***M.Sc. Student, Dept. of Environmental Health Engineering, Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanan-

daj, Iran (E-mail: mehri.solaimany@yahoo.com)

****Assistant Professor, Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences,

Tehran, Iran (Corresponding Author, E-mail: hadi_rfm@yahoo.com; m-hadi@tums.ac.ir)



Afshin Maleki, Simin Nasseri, Mehri Solaimany Aminabad, and Mahdi Hadi

− 3234 − KSCE Journal of Civil Engineering

input regressors and response variable(s) (Thoplan, 2014). One

of the most dominant advantages of ANN models over other

nonlinear statistical models is that ANN is universal approximator

that is able to approximate a large class of functions with a high

degree of accuracy (Zhang and Qi, 2005). Feed-forward ANN

with backpropagation algorithm have been widely used in

different environmental applications such as wastewater treatment

plant performance prediction (Khodadadi et al., 2016), estimation of

pollutants removal efficiency (Jafari Mansoorian et al., 2017)

and prediction of air quality indices (Rostami Fasih et al.,

2015). Network Network Auto-Regressive (NNAR) model is

one type of ANNs in which the lagged values of time series are

used as input predictors to model and the output is predicted

values of the series. One of the main differences between

NNAR and ARIMA models is the NNAR does not impose any

restriction on its parameters to ensure stationarity (Thoplan,

2014).

In this study, we compare Box-Jenkins ARIMA and NNAR

models to predict daily influent water characteristic of Sanandaj's

WTP. This paper presents an approach to forecast the treatment

plant influent water characteristic for a short-term period (to

seven days ahead). In this study two prediction models were

developed for each influent water characteristics including alkalinity

(Alk), pH, calcium (Ca), carbon dioxide (CO2), temperature (T),

total hardness (TH), turbidity (Tur), Total Dissolved Solids

(TDS), Electrical Conductivity (EC) and chloride (Cl). Forecasting

performance of the selected best ARIMA and NNAR models to

forecast series future daily values was compared using several

statistics and cross-validation analysis.

2. Data Collection and Model Building 

2.1 Data Collection and Preparation

The pre-processed influent data of Sanandaj's - a western city in

Iran - water treatment plant as examined in our previous study

(Solaimany-Aminabad et al., 2013) was again re-analyzed in this

study with different approaches and different aims. A summarized

description of the variables, units of measure, range of the data,

together with the mean and standard deviation of the plant processed

data are summarized in Table 1. All statistical modeling and analyses

were performed using R software version 3.3.1 (R Core Team, 2016).

Several statistics including the correlation coefficient (r), Root

of Mean Square Error (RMSE), Mean Square Error (MSE) and

Mean Absolute Error (MAE) were calculated to examine the

performance of models. The underlying expressions of these

statistics are given as follows:

(1)

(2)

(3)

(4)

where n = Number of observations

 YO = Observed yt

= Mean of YO

YP = Predicted yt

= Mean of YP

2.2 Auto-Regressive Integrated Moving Average (ARIMA)

model 

The Box-Jenkins method (Box et al., 2013) is a classical

statistical modeling technique for time series forecasting. In this

study an ARIMA (p, d, q) model was used to forecast the future

value of each influent water characteristics The underlying

process that generates the time series, yt with the mean μ, can be

described by following equation:

(5)

where, yt and at are the actual value and random error at time

period t, respectively; , B is the backward shift operator,

 and  are the regular autoregressive and moving average

factors, respectively: 
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Table 1. Pre-processed Influent Water Characteristics Data 

Variable Description(unit) Min. Median Mean Max. SD λ

CO2 Carbon dioxide (mg/l) 0.1 2.3 2.6 8.2 1.5 0.41

TH Total Hardness (mg/l) 122 155.3 154.0 197.2 10.1 1.86

Cl Chloride (mg/l) 5.5 9.0 8.9 12.5 1.2 -0.2

Ca Calcium (mg/l) 32.4 48.0 47.2 59.8 4.0 2.43

TDS Total dissolved solids (mg/l) 157 214.0 211.0 252.0 12.6 5.05

Alk Total alkalinity (mg/li) 120.6 160.2 158.2 193.0 14.0 1.76

EC Electrical conductivity (μmohs/cm) 260 333.5 330.0 393.0 18.5 4.59

pH - 7.16 8.2 8.2 8.9 0.3 -0.02

Tur Turbidity (NTU) 0.5 2.0 3.3 24.0 3.5 -0.20

T Temperature (C°) 2 6.0 11.0 11.4 5.3 0.72

λ: Box-Cox transformation parameter
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(7)

where φi(i = 1, 2, ..., p) and qj(i = 1, 2, ..., q) are model parameters, p

and q are integers and often referred to as orders of the model.

The d in Eq. (5) is an integer and referred to the order of

differencing. Random errors, at, are often assumed to be

independently and identically distributed with a mean of zero

and a constant variance of σ2.

The Box and Jenkins methodology (Box et al., 2013) includes

three model building steps and a forecasting step as follows:

1. Identification: The Box–Jenkins model assumes that the

time series is stationary. A stationary time series is charac-

terized by its statistical characteristics such as the mean

which is being constant over time. In this study the transfor-

mation and differencing techniques were used for non-sta-

tionary series. The autocorrelation function (ACF) and Partial

Autocorrelation Function (PACF) charts for the stationary

series were examined to identify the orders of p and q. 

2. Estimation: To identify the optimal order of p and q in ARIMA

models, the residual sum of squares error (SSE) were compared

by F-test among the probational models from the lowest to

highest order of p and q. The best model was selected when the

residual SSE of the model was not statistically significant at

0.05 level of probability. The least-squares method was used to

estimate the parameters of the model.

3. Diagnostic checking: Several diagnostic techniques can be

used to examine the goodness of fit of a tentative model. If

the model is not adequate, a new model should be examined,

which will again be followed by the steps of parameter esti-

mation and model verification. In this study several diagnos-

tic statistics and plots were used to examine the models. The

Ljung–Box (LB) test (Ljung and Box, 1978) was used to

investigate white noise (zero mean, constant variance,

uncorrelated process and normally distributed) in residuals. 

The significance of model parameters was examined using

student t-test. The correlation between parameters of each

model was assessed as a measure of models adequacy. The

normal pattern of the models’ residuals was checked by his-

togram and normal distribution plot. Moreover, the lack of

correlation between the residuals, were assessed using ACF

and PACF plots of residuals. The presence of serial correla-

tion between the residuals was also evaluated using the

Durbin-Watson (DW) (Durbin and Watson, 1950) statistic. 

The above three-step model building process was repeated

several times until a satisfactory model selected finally. The

selected model was used for forecasting purposes.

4. Forecasting: the model with the least Mean Squared Error

(MSE) value was chosen for forecasting. The forecasting

performance of the best model was then compared with the

performance of its equivalent NNAR model using cross-val-

idation technique and MAE statistic. 

2.3 Neural Network Auto-Regressive (NNAR) model

Feed forward network is the most widely used neural network

model for time series modeling and forecasting (Zhang et al.,

1998). The NNAR model is a three layers feedforward neural

network which involves a linear combination function and an

activation function. The relationship between the model output

(yt) and the inputs (yt-1; ...; yt-p) has the following mathematical

representation:

(8)

where, wij (i = 0, 1, 2,…, n, j = 1, 2, …, h) and wj (j = 0, 1, 2, …,

h) are model parameters or connection weights; n is number of

input nodes; and h is number of hidden nodes. A sigmoid function

was used as the hidden layer transfer function that is shown in

Eq. (9). The most widely used activation function for output

layer is a linear function. 

(9)

In our previous paper (Solaimany-Aminabad et al., 2013) we

only examined NNAR models and the aim was only to find the

“prediction performance” of developed NNAR models using

training, validation and test data sets. But in this paper all NNAR

and ARIMA models were made in R software environment and

our aim was to compare “forecasting performance” of these two

modeling techniques. Moreover in this study cross-validation

technique was used to examine the performance instead of

splitting data set. In this paper, NNAR (p, P) networks were

considered with one hidden layer. The notation of NNAR (p, P)

indicates p non-seasonal and P seasonal lagged inputs into to the

models. A common procedure to find the optimal structure for an

NNAR model is to test numerous networks with varying

numbers of input and hidden units (p, P, h) and then estimate

generalization error for each to receive a structure with lowest

generalization error (Hosseini et al., 2006). This procedure was

examined in our previous work (Solaimany-Aminabad et al.,

2013). 

One of the important issues affecting the performance of an

ANN model is the size of the hidden layer (Hagan et al., 1996).

In practice, a simple ANN structure with a small number of

neurons in the hidden layer is goodly capable to predict out-of-

sample data (Pankratz, 2009). Thus, a minimum number for

neurons in the hidden layer may provide the highest performance

for the networks were selected. This is also confirmed in our

previous work where the performance of the NNAR network

decreased almost by increasing the hidden layer size. Our

findings in previous work (Solaimany-Aminabad et al., 2013)

didn't show a significant difference in the performance of a

model by changing the size for neurons in hidden layer up to 10.

Thus for simplicity we estimated the h based on the approach

recommended by Hyndman and Khandakar (2007): (p + P + 1)/2

(rounding to the nearest integer).

Another important task in NNAR modeling is to determine the

appropriate values for p and P lagged inputs. In this study the

θ B( ) 1
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data series were first examined for the need to normalization or

other transformations and then the number of non-seasonal lags

was determined by plotting PACF. The lags in PACF chart with

significant correlation coefficient and lowest generalization error

were considered as the appropriate number for p. No seasonal

lags were import to the models (P = 0) because of the low

frequency in seasonal pattern of data. 

2.4 Cross-validation Analysis

To compare the time series forecasting performance, a Time

Series Cross-Validation (TSCV) analysis was performed. In TSCV

analysis a comparison was performed between the forecasted

values by ARIMA and NNAR models using the Mean Absolute

Error (MAE). The TSCV analysis was performed according to

following steps:

1. Out of 700 observations (seven last observations of each

series were reserved for checking the forecasting perfor-

mance of the models) in each series the model was fitted to

50% of the data (350 observations) from , …,  and

then the next seven observation from  to  were

forecasted (  to ).

2. One further observation was added to the training dataset

( , …, ; 351 observations), then, the observed test

set shifted one step ahead (  to ) and they fore-

casted again (  to ). The observed test set and cor-

responding forecasted values were stored in [YO] and [YP]

matrices with a dimension of 357 × 7, respectively. 

3. Step two was repeated for 350 times and [YP] and [YO]

matrices were completely filled for each model. 

4. The Absolute Errors (AE) ( ) and errors (E) (YO − YP)

were then calculated for the forecasted values and stored in

[AE] and [E] matrixes, respectively. 

5. The Diebold-Mariano test (Diebold and Mariano, 1995) was

then applied on the AE matrices of models to compares the

forecast accuracy of ARIMA and NNAR as follows: In this

test the forecast absolute errors for models were defined by

. The loss associated with forecast i (i = 1, 2)

is assumed to be a function of the forecast absolute error,

AEit, and is denoted by g(AEit). The time-t loss differential

between the two forecasts 1 and 2 defined by dt = g(AE1t) −

g(AE2t).The two forecasts have equal accuracy if and only if

the loss differential has zero expectation for all t. Thus, the

null hypothesis (H0: E(dt) = ; two forecasts have the

same accuracy) was test versus the alternative hypothesis

(H1: E(dt) ≠ 0; two forecasts have different levels of accu-

racy).

The Diebold-Mariano test statistic (DM) is:

(10)

where  is the sample mean of the loss deferential series (dt;

t = 1, …, T) and  is consistent estimate of the asymp-

totic (long-run) variance of . Diebold and Mariano

(1995) show that under the null of equal predictive accuracy,

the test statistic DM is asymptotically N (0;1) distributed.

Thus the null hypothesis of no difference will be rejected at

5% if .

5. A graphical comparison was also performed by plotting the

actual and forecasted values for seven last observations of

each series.

3. Results and Discussion

3.1 Checking the Series Stationarity 

In this study, Box and Cox (Box and Cox, 1964) power

transformation was used to normalize and stationarize the series

variances. In a study conducted by Salas (1980) the Box-Cox

transformation was recommended to improve the results predicted

by time-series models. 

To differentiate a stationary from non-stationary time series,

the unit root test can be used (Rumelhart and McClelland, 1986).

In this study the Augmented Dicky-Fuller (ADF) test was used

to examine the stationarity of the time series processes. Using a

nonstationary time series in a regression model may lead to

misleading conclusions (Plazl et al., 1999). As shown Table 2, all

variable except chloride series are non-stationary series. Differencing

can help to stabilize the mean of a time series by removing the

changes in the level of series, and so eliminating the trend.

Moreover, the first order difference of each non-stationary series

appears to be a stationary series (p-value < 0.01). Thus for all

series the order of differencing (d) or the integrated term of the

model (I) in ARIMA model, was considered to be with one unit

root.

3.2 Models Structures and Learning 

Autocorrelation function is statistically a useful tool to get a

description of a time series (Zhang et al., 1998). Analysis of

ACF and PACF could be performed to estimate the number of

input auto-correlated vectors roughly to create an appropriate

model (Kusiak et al., 2012).

The AR or MA terms in ARIMA model were determined by

plotting the ACF and PACF plots of the differenced series (Fig. 1).
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Table 2. Analysis the Stationarity in Mean of Series using Unit

Root Test

Series
First order differenced series Non-differenced series

p-value ADF statistic p-value ADF statistic

CO2 < 0.01 -12.052 0.06226 -3.3489

TH < 0.01 -11.727 0.5681 -2.0241

Cl - - 0.04375 -3.485

Ca < 0.01 -12.9432 0.2598 -2.7525

TDS < 0.01 -13.6288 0.05626 -3.8547

Alk < 0.01 -9.792 0.4699 -2.2561

EC < 0.01 -13.7258 0.05998 -3.3621

pH < 0.01 -11.5507 0.1493 -3.0135

Tur < 0.01 -12.7716 0.1471 -3.0187

T < 0.01 -11.3249 0.715 -1.6771
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ACF is a bar chart of the coefficients of correlation between a

time series and its lags, while the PACF is a plot of the partial

correlation coefficients between the series and its lags. As a

rule the number of lags beyond which the PACF cuts off of

the differenced series can be considered as AR terms in

ARIMA or p term in NNAR models. In a same way, the lags

beyond which the ACF cut off of the differenced series can

suggest the number of MA terms. For example according to

Fig. 1, in the case of CO2, Cl, TDS, EC, Tur and T variables

the PACF plot suggest atleast one AR term to their models.

But selection of the best number of terms in each model

should be based on some criteria will be discussed in section

3.4. To test if the residuals of the proposed models are serially

uncorrelated, The LB test (Ljung and Box, 1978) could be

used to examine the lack of fit of a time series model. In the

case of Fig. 1(c) the LB test p-value for all the differenced

series lags is well less than 0.05, meaning all series are

dependent on their lags.

The feedforward network with one hidden layer is widely used

for the prediction aims in most studies on time series modeling

(Howard and Mark, 2000). It also has been proven that the neural

networks with one hidden layer when sufficient weight is

provided in the model, are able to provide a good approximation

for any function (Battiti, 1992). 

In this study the Multi-Layer Perceptron (MLP) algorithm with

one hidden layer was used in all NNAR models. Several different

ANN models were examined by Hill et al. (1994) to predict the

Biochemical Oxygen Demand (BOD) and Chemical Oxygen

Demand (COD) parameters in the effluent of a petrochemical

wastewater treatment system. They examined several regressor

inputs (including Total Suspended Solids (TSS), Total Dissolved

Solids (TDS), phenol, ammonia nitrogen, organic carbon and Total

Fig. 1. (a) ACF Plots, (b) PACF Plots, (c) L-B p-values for Several Lags of First-order Differenced Series

Table 3. Topology and Goodness of Fit Measures for NNAR Models

Variable Best model Topology RMSE MSE r R2

CO2 NNAR(6) 6-4-1 0.74 0.55 0.86 0.74

TH NNAR(4) 4-2-1 4.24 18.00 0.91 0.82

Cl NNAR(8) 8-4-1 0.81 0.65 0.67 0.45

Ca NNAR(6) 6-4-1 1.56 2.43 0.89 0.79

TDS NNAR(7) 7-4-1 5.38 28.91 0.88 0.77

Alk NNAR(5) 5-3-1 5.27 27.81 0.93 0.86

EC NNAR(11) 11-6-1 7.16 51.24 0.92 0.84

pH NNAR(5) 5-3-1 0.14 0.02 0.85 0.73

Tur NNAR(7) 7-4-1 1.64 2.70 0.86 0.73

T NNAR(6) 6-4-1 1.54 2.36 0.96 0.92
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Kjeldahl Nitrogen (TKN)) using MLP algorithm to predict the

COD and BOD as the outputs of the model.

In this study, the learning algorithm in all MLP networks was

Levenberg–Marquardt (LM) algorithm technique. The LM

technique was used because of its high speed, high precision and

accuracy for the parameters estimation in comparison with other

Fig. 2. (a) ACF, (b) PACF, (c) L-B Test p-values Plots of the Models Residuals
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techniques (Matalas, 1967).

3.3 NNAR Model Characterization

According to the Table 3 the NNAR models for all of the

studied variables have been adequately learned to predict the

variable within series. Among all, Total Hardness (TH) model

gets the lowest input components (4 lags) while the most number

of input lags was for EC model (11 lags). As shown in Table 3

and illustrated in Fig. 3(a) the correlation coefficient (r) between

the predicted and observed values for all variables except the

chloride, found to be higher than 0.8.

The r and coefficient of determination (R2) obtained for

chloride by NNAR model were 0.67 and 0.45, respectively. R2

implies that only 45% of the series variance is described by eight

input regressors and the remaining 55% of the variance could not

be attributed to these inputs. Chloride may get into surface water

from several manmade sources including wastewater from

industries and municipalities, leachate from municipal landfills

wastewater from water softening, road salting, animal waste and

agricultural runoff (Panno et al., 2002). Thus this variable may

be strongly influenced by current or past values of the other

driving exogenous series and to better predict the variable,

autoregressive exogenous (ARX) models may be more effective

if sufficient information be available on influencing exogenous

series.

Figure 2(c) confirms the independence of residuals for all

NNAR models based on LB test. The LB statistic (Q) is a function

of the accumulated autocorrelations up to any specified time lag.

A significant Q for residuals indicates a possible problem with

the model. As can be seen, the LB test p-value for all the lags

contributing to the models is well above 0.05, meaning the

residuals are independently distributed (from each other).

Moreover a model is ideal when the ACFs for the residuals are

zero. This means that Q should be statistically equal to zero for

any m lag. Fig. 2(a) and (b) show the ACF and PACF plots for

the residuals of the models fitted to studied variables, respectively.

The plots reveal that there isn’t any autocorrelation within the

residuals and no additional information are exist which not

accounted for in the models. The predicted values versus

standardized residuals for NNAR models are presented in Fig.

3(b). As presented, the homogeneous variance assumption is not

violated in the case of all models and the variance of residuals

appears to be independent of the size of fitted values. Accordingly

the residuals fall randomly within the horizontal band (between

-2 and +2). This is a pattern suggests that the variances of the

error terms are equal. Moreover, no one residual stands out from

the random pattern thus suggests that there are no outliers.

The DW test (Durbin and Watson, 1950) is used to test the

hypothesis that there is no lag one autocorrelation in the residuals

of the models. If there is no autocorrelation, the DW test statistic

(d) is symmetric around 2. Thus d = 2 indicates no autocorrelation.

Field (2009) suggests that d statistics less than unity (positive

autocorrelation) or greater than 3 (negative autocorrelation) are a

cause for alarm as the model is inadequate. In this study, the d

statistic for the residuals of NNAR models was calculated at

different time lags. As shown in Fig. 3(c) amount of d for all

models are close to 2 and in no cases it found larger than 3 or less

than unity. So in all proposed NNAR models, serial correlation

between the residuals could not be existed. 

The Q-Q plots for the residuals of NNAR models are shown in

Fig. 3(d). As can be seen, the residuals acceptably follow a normal

Fig. 3. Diagnostic Plots for NNAR Models: (a) Predicted Versus

Observed Plots, (b) Predicted Versus Standardized Resid-

ual, (c) DW Test Statistic Plots, (d) Normal Q-Q Plots
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distribution. In Fig. 4 predicted values plots for all observations

and the plots for forecasted values for seven horizons next days

by NNAR models are presented. As shown in Fig. 4(a) the bold

lines (green color) represent the values predicted by each model and

light lines (blue color) represent observed values. In overall, the

proposed NNAR models acceptably can be used for forecasting

of the raw water characteristics entering water treatment plant.

However, the comparison of forecasting performance of NNAR

and their equivalent ARIMA models using TSCV analysis will

be discussed in a separate section. 

3.4 ARIMA Models Parameters Estimation and Charac-

terization

As presented in Table 2 the non-stationarity in all variables

except Cl was confirmed by Dickey-Fuller test. Therefore, only

the series those exhibit a general linear trend, were differenced

by first-order differencing (d = 1) to achieve stationarity (Fig. 1).

As shown in Fig. 1 for CO2, Cl, TDS, EC, Tur and T variables

the partial autocorrelation PACF of the differenced series display

a gradual cutoff which suggest adding one AR(p) term to their

models. In the case of alkalinity a sharper cutoff can be seen in

PACF plot, thus a greater AR terms may be need in the model.

The ACF of the differenced series also displays a sharp cutoff

thus it was decided to add at least one MA(q) term to all models.

The lags beyond which the ACF and PACF cut off, are the

numbers indicate MA and AR terms, respectively. However, in

this study we examined different models with different number

of AR and MA terms to find the best descriptive one. The

judgment in choosing the best was based on providing following

conditions in the model.

• Parsimonious and simple model with a minimum number of

coefficients,

• Lowest Akaike Information Criteria (AIC) (Akaike, 1974),

• Statistically significant parameters,

• Low correlation between input parameters (not greater than

0.9) (Pankratz, 2009),

• Time-independency of residuals,

• Residual with normal distribution.

A parsimonious model is a model that provides a desired level

of prediction with as few predictor variables as possible (Salas et

al., 1982). In a time series model with N observation data and K

parameters, the ratio N/K is called parsimony index. Salas et al.

(1982) suggest at least a value of 15 for this index. Based on the

number of input regressors in suggested ARIMA models, the

parsimony index for all models was found higher than threshold

value. The AIC is another selection measure to compare different

models. Lowest AICs for the best selected models are summarized

in Table 4. 

The estimated correlation coefficients for ARIMA models are

presented in Table 4 (See Fig. 5(a)). Similar to NAR models, for

all ARIMA models except chloride, the value of R2 is greater

than 0.8. 

In this study the ARIMA models parameters were determined

by Maximum Likelihood (ML) method. In a study by Salas and

Fig. 4. (a) Predicted Values Response Plot for All Observations,

(b) Seven Horizon Daily Plots for Forecasted Values by

NNAR Models

Table 4. Goodness-of-fit Measures for Proposed ARIMA Models

Series Model RMSE MSE r R2 AIC N/K

CO2 ARIMA(1,1,1) 0.79 0.63 0.84 0.72 869.5263 350

TH ARIMA(0,1,3) 4.27 18.23 0.91 0.82 13105.56 233

Cl ARIMA(1,0,2) 0.82 0.67 0.67 0.44 -1985.22 233

Ca ARIMA(0,1,2) 1.61 2.60 0.89 0.79 6778.019 350

TDS ARIMA(1,1,1) 5.59 32.40 0.87 0.76 12005.38 350

Alk ARIMA(2,1,4) 5.44 29.60 0.92 0.85 10658.77 116

EC ARIMA(1,1,1) 8.71 75.95 0.87 0.76 65407.11 350

pH ARIMA(0,1,2) 0.14 0.02 0.85 0.73 -3955.28 350

Tur ARIMA(1,1,1) 1.94 3.77 0.80 0.65 1016.356 350

T ARIMA(1,1,1) 1.61 2.60 0.95 0.91 1998.03 350
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Obeysekera (1982) the ARIMA model parameters were also

estimated by ML method. They suggested ML method as an

alternative and best approach could be used to estimate the

model's parameters in future. The name and the estimated values

for different parameters in ARIMA models are given in Tables 5.

The ARIMA (2,1,4) found as the best descriptive model for

alkalinity with four MA terms and two AR terms. This is a

complex model in comparison with models obtained for other

water characteristic time series. The proposed models for total

hardness (TH), calcium (Ca) and pH was only characterized by

MA terms. For example in ARIMA (0,1,3) for TH, there are

three significant (p-value < 0.05) moving average terms (ma1,

ma2 and ma3) with estimated magnitude of -0.38, -0.15 and

-0.15, respectively. Out of all water quality time series, the

chloride as a stationary series has only one AR and two MA

terms with no differencing (I) term. Because of its stationarity, a

statistically significant intercept term (δ) was also entered to this

model. In the cases of CO2, TDS, EC, Tur and T an ARIMA

(1,1,1) model with one AR and one MA terms was described the

series as well. For all selected models there were low correlation

between input parameters less than Pankratz threshold (0.9)

(Pankratz, 2009). The significance of each model parameters

needs to be examined by hypothesis test. Hypothesis testing was

done using Student's t distribution. The coefficients related to

each of parameters of the models are summarized in Table 5.

Statistically non-significant parameters should be removed from

each model. As shown in Table 5 the input parameters of all

models were statistically significant (p-value < 0.05). However,

there is always a correlation between the estimated parameters of

a Box and Jenkins model. The correlation matrix of the estimated

values for the model parameters may show the degrees of

multicollinearity and high correlation between two parameters

however may reflect the lack of adequacy of the model. The

extremely correlation values above 0.9 (Pankratz, 2009) suggest

that some pairs of parameters are not providing independent

information and the model needs to be simplified, perhaps by

deleting one of parameters. As shown in Table 5 the absolute

value of the correlation coefficient less than 0.9 between the

parameters in all models also confirm the adequacy of the

proposed ARIMA models. The normal pattern of the residuals of

proposed ARIMA models were also assessed using Q-Q plots

which follow as shown in Fig. 5(d). The ACF and PACF plots of

residuals of ARIMA models are shown in Fig. 2(c). As this

figure shows there is no statistically significant correlation between

residual values for all ARIMA models and the correlation

coefficient for all time lags is not significant. Lack of correlation

Table 5. Characteristics of Proposed ARIMA Models for Studied Time Series

Series Parameters Value p-value
Correlation coefficient

ar1 ar2 ma1 ma2 ma3 ma4 δ

Alk
ARIMA(2,1,4)

ar1 0.22 0.00 1.00 0.36 -0.64 -0.03 -0.04 0.38 -

ar2 -0.96 0.00 0.36 1.00 -0.21 -0.61 0.08 0.29 -

ma1 -0.63 0.00 -0.64 -0.21 1.00 -0.37 0.75 -0.58 -

ma2 0.93 0.00 -0.03 -0.61 -0.37 1.00 -0.62 0.53 -

ma3 -0.40 0.00 -0.04 0.08 0.75 -0.62 1.00 -0.56 -

ma4 -0.12 0.00 0.38 0.29 -0.58 0.53 -0.56 1.00 -

Cl
ARIMA(1,0,2)

ar1 0.98 0.00 1.00 - -0.26 -0.22 - - -0.10

ma1 -0.61 0.00 -0.26 - 1.00 -0.69 - - 0.03

ma2 -0.22 0.00 -0.22 - -0.69 1.00 - - 0.02

δ 1.76 0.00 -0.10 - 0.03 0.02 - - 1.00

TH
ARIMA(0,1,3)

ma1 -0.38 0.00 - - 1.00 -0.36 -0.29 - -

ma2 -0.15 0.00 - - -0.36 1.00 -0.36 - -

ma3 -0.15 0.00 - - -0.29 -0.36 1.00 - -

Ca
ARIMA(0,1,2)

ma1 -0.53 0.00 - - 1.00 -0.72 - - -

ma2 -0.26 0.00 - - -0.72 1.00 - - -

pH
ARIMA(0,1,2)

ma1 -0.57 0.00 - - 1.00 -0.67 - - -

ma2 -0.15 0.00 - - -0.67 1.00 - - -

CO2

ARIMA(1,1,1)

ar1 0.44 0.00 1.00 - -0.80 - - - -

ma1 -0.85 0.00 -0.80 - 1.00 - - - -

TDS
ARIMA(1,1,1)

ar1 0.52 0.00 1.00 - -0.68 - - - -

ma1 -0.89 0.00 -0.68 - 1.00 - - - -

EC
ARIMA(1,1,1)

ar1 0.43 0.00 1.00 - -0.71 - - - -

ma1 -0.87 0.00 -0.71 - 1.00 - - - -

Tur
ARIMA(1,1,1)

ar1 0.25 0.00 1.00 - -0.59 - - - -

ma1 -0.86 0.00 -0.59 - 1.00 - - - -

T
ARIMA(1,1,1)

ar1 0.27 0.00 1.00 - -0.79 - - - -

ma1 -0.75 0.00 -0.79 - 1.00 - - - -
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between the residuals confirms the independence of them and

indicates models are acceptable. LB test on the residuals of

ARIMA models also confirms significantly the independence of

the residuals. Fig. 6(a) (se also Fig. 5(a)) show the response plots

for the developed various ARIMA models. The bold and light

lines represent predicted values by the ARIMA model (Predicted)

and observed values (Observed), respectively. The good agreement

between predicted and observed for all proposed ARIMA

models is noteworthy. The DW statistic for ARIMA models

residuals at different time lags are shown in Fig. 5(c). The DW

statistic was found to be just two and not greater than 3 or less

than unity for no cases of time lags. So in all ARIMA models the

existence of serial correlation between the residuals could not be

confirmed. Although a nonlinear forecasting pattern was evident

for NNAR forecasts in Fig. 4(b), ARIMA models horizon-daily

forecasted values for next seven days, Fig. 5(b), in most of cases

follow a straight line or constant pattern. The forecasting performance

of proposed ARIMA and NNAR models was compared and

discussed more in next section.

Fig. 5. Diagnostic Plots for ARIMA Models: (a) Predicted Versus

Observed Plots, (b) Predicted Versus Standardized Resid-

ual, (c) DW Test Statistic Plots, (d) Normal Q-Q Plots

Fig. 6. (a) Predicted Values Response Plot for All Observations,

(b) Seven Horizon Daily Plots for Forecasted Values by

ARIMA Models
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 3.5 Models Forecasting Performance Analysis 

To assess the forecasting performance of ARIMA and NNAR

models a Time Series Cross-Validation (TSCV) analysis was

performed because of its simplicity and its universality. The

Diebold-Mariano test (Diebold and Mariano, 1995) then was

applied to compare the forecast accuracy of two forecast methods

(ARIMA and NNAR). The null hypothesis was that the models

have same forecast accuracy. The alternative hypothesis was that

ARIMA model is more accurate than NNAR model. The results of

Diebold-Mariano test which applied on the matrix of Mean

Absolute Errors (MAEs) derived (Fig. 7(a)) from TSCV analysis are

summarized in Table 6. Fig. 7(b) also shows the actual and

forecasted values for seven last observations of each series. 

It should be noted that if the p-value for Diebold-Mariano test

is significant, with a confidence of 95%, ARIMA would be a

model with better accuracy in comparison with NNAR. Otherwise it

is not mean necessarily that NNAR is better than ARIMA. Thus

three forms of interpretations will be there if we compare DM

test with R2 statistic:

1)DM test (significantly) and R2 confirm ARIMA: As pre-

sented in Table 6 the ARIMA model R2 statistic for CO2, Cl

and Ca series was obtained 0.75, 0.81 and 0.30, respectively,

which were greater than corresponding values for NNAR

model, consistently with DM statistic. 

2)DM test is not significant and R2 confirms NNAR: In the

case of TH, Alk, pH and T, the DM test p-value is not signif-

icant (p-value > 0.05) which mean there is no difference

between two models. But R2 statistic for these variables con-

firms the better forecasting performance of NNAR.

3)DM test is not significant and R2 confirms ARIMA: On the

other hand, in the case of Tur, EC and TDS, the DM test sta-

tistic is not significant while R2 confirms the better perfor-

mance of ARIMA model.

Thus to receive a better judgment, the Mean Absolute Error

(MAE) as an accuracy measure of model forecasts has been

proposed by Hyndman and Koehler (2006). The MAE has

favorable properties when compared to other statistics, such as

RMSE and R2, and is therefore recommended for determining

comparative accuracy of forecasts (Franses, 2016). Thus any

judgment should be based on results of DM test statistic and

graphical comparison alone may lead to incorrect interpretations.

As shown in Fig. 7(a), the MAEs estimated for forecasted values

follow an increasing trend from the first to the seventh days of

forecast for both ARIMA and NNAR models. The significance

of this difference was confirmed for Cl, Ca, CO2 time series by

Diebold-Mariano test, statistically. These differences confirm the

superiority performance of ARIMA at least for Cl, Ca and CO2

over NNAR. In Fig. 7(b), the forecasted values by ARIMA are

following a straight line while for NNAR because of its nonlinearity

nature, a deviated pattern in the forecasted values is evident. 

Table 6. Forecasting Performance Results

Series DM statistic p-value
R2

ARIMA NNAR

CO2 2.1345 0.0167 0.75 0.66

TH 1.5172 0.0650 0.51 0.91

Cl 1.866 0.0314 0.81 0.14

Ca 2.5698 0.0052 0.30 0.10

TDS 1.1037 0.1352 0.77 0.10

Alk 1.104 0.1352 0.27 0.95

EC 1.448 0.0742 0.62 0.56

pH -0.22469 0.5888 0.41 0.92

Tur 1.1797 0.1195 0.54 0.35

T -0.13903 0.5552 0.56 0.99

Fig. 7. (a) Estimated MAEs, (b) Forecasted Values versus Horizon

Days of Forecasting using TSCV Analysis
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Although most of recent research studies suggest that ANNs

can be a promising alternative to the traditional linear methods

such as ARIMA, based on our findings, these suggestions could

not be a general rule and it mainly depends on the nature of the

studied variables. For example, in a study conducted by Valipour

et al. (2013), an artificial neural network model was compared

with an ARIMA model and the former was chosen as the best

model for forecasting the inflow of Dez Dam’s (a dam in Iran)

reservoir. In another study on a repairable system failure (Ho et

al., 2002), an ANN model was found to give satisfactory

performance compared to the ARIMA model. Prybotuk et al.

(2000) developed an ANN model for forecasting daily maximum

ozone level and compared this with conventional regression and

Box–Jenkins ARIMA models. They confirmed ANN model

superiority over other models. In contrary some other studies

claimed that applying ANNs on phenomena with linear behaviors

may produce misleading results, and hence; it is not wise to

apply ANNs blindly to any type of data (Zhang, 2003; Khashei

and Bijari, 2011).

In overall, in the case of linear problems, ARIMA models may

be one of the most popular models in time series forecasting and

could be widely applied in order to construct more accurate

models.

4. Conclusions

Auto-Regressive Integrated Moving Average (ARIMA) and

Neural Network Auto-Regressive (NNAR) modeling approaches

were used to predict the influent water characteristics of a water

treatment plant. The NNAR models show better prediction in

terms of R2 statistic than the ARIMA models to explain the

observed values of a time series. However comparison of the

forecasting performance of the studies techniques using Time

Series Cross-Validation (TSCV) shows ARIMA models could

provide better forecast for future values of some series including

Cl, CO2 and Ca. For other series no significant difference was

observed between the forecasting performances of the models,

statistically. So to choose an appropriate model in cases where

the aim is to forecast the future observations of some series, the

forecasting performance of the models is recommend to be

examined and compared using TSCV approach.
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