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Abstract

The traffic flow prediction plays a key role in modern Intelligent Transportation Systems (ITS). Although great achievements have
been made in traffic flow prediction, it is still a challenge to improve the prediction accuracy and reduce the operation time
simultaneously. In this paper, we proposed a hybrid prediction methodology combined with improved seasonal autoregressive
integrated moving average (ISARIMA) model and multi-input autoregressive (AR) model by genetic algorithm (GA) optimization.
Since traffic flow data has strong spatio-temporal correlation with neighboring stations, GA is used to select those stations which are
highly correlated with the prediction station. The ISARIMA model is used to predict the traffic flow in test station at first. A multi-
input AR model with traffic flow data in optimal selected stations is built to predict the traffic flow in test station as well. The final
prediction result can be gained by combining with the results of ISARIMA and multi-input AR model. The test results from traffic
data provided by TDRL at UMD Data Center demonstrate that proposed algorithm has almost the same prediction accuracy with
artificial neural networks (ANNS). However, its operation time is almost the same with SARIMA model. It is proved to be an
effective method to perform traffic flow prediction.
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1. Introduction

With the vigorous growth of economy and the improvement of

living standards, numbers of vehicles are increasing continuously

and sharply. Vehicles have made people’s lives more comfortable

and convenience, but meanwhile traffic congestion has also

become a very serious problem. To alleviate traffic congestion

and improve transportation operation efficiency, accurate and

timely traffic flow information is strongly needed for individual

drivers and Traffic Management Departments. 

The importance of Intelligent Transportation Systems (ITS)

has led to a rapid development of various methods in order to

predict traffic condition accurately, including traffic flow distribution,

average travel velocity and time. The top task of ITS is traffic

flow prediction, because the accurate traffic flow prediction is

the precondition of traffic guidance, planning and control. Traffic

flow prediction is a complex issue, and a large number of

algorithms have been proposed in the past few years. These

methods can be classified roughly into three categories: parametric

approach, non-parametric approach and hybrid approach. 

In earlier times, a number of scholars proposed many developed

parametric methods in traffic flow prediction, such as Historical

Average (HA) method, Autoregressive Integrated Moving Average

method (ARIMA) (Voort et al., 1996), Seasonal Autoregressive

Integrated Moving Average method (SARIMA) (Williams and

Hoel, 2003), and Kalman filter (Okutani and Stephanedes, 1984;

Xie et al., 2007; Wang and Papageorgiou, 2005; Ji et al., 2010;

Gong and Zhang, 2013). The parametric methods were widely

used in traffic flow prediction, which were the basis of the

presented algorithms. Due to the strong stochastic characteristics

of the traffic flow, the prediction accuracy of simple parametric

algorithms could not meet the requirement of current engineering

application. Many non-parametric algorithms were proposed as

well. 

Zhang and Ye (2008) proposed a fuzzy logic system to improve

traffic flow prediction accuracy. Sun et al. (2012) proposed a

model for traffic flow prediction with graphic lasso and neural

networks. Huang and Sun (2013) applied kernel regression with

sparse metric learning to predict short-term traffic flow.

Habtemichael and Cetin (2016) proposed a non-parametric and

data driven methodology for short-term traffic prediction based

on identifying similar traffic patterns with an enhanced K-nearest

neighbor (KNN) algorithm. Hou and Sun (2015) developed a

multilayer feedback neural network for traffic flow prediction.

Wei et al. (2013) proposed a KNN based neuro-fuzzy system for

time series prediction, and Cheng et al. (2016) provided a
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distance weighted fuzzy KNN Support Vector Machine (SVM)

for traffic flow prediction. But the prediction accuracy of non-

parametric models is greatly influenced by the training samples,

and the fuzziness of model parameters makes them difficult to

apply in practical engineering.

In purpose of improving the prediction accuracy, many hybrid

algorithms combined with parametric methods and non-parametric

methods were proposed. Hu et al. (2016) proposed a model

combined with Particle Swarm Optimization (PSO) and Genetic

Algorithm (GA) for traffic flow prediction. PSO was used to

search optimal Support Vector Regression (SVR) parameters.

The negative effect that caused by noises of original data set was

decreased. Moretti et al. (2015) proposed a statistical and neural

network bagging ensemble hybrid model for short-term traffic

flow prediction. Cong et al. (2016) proposed a traffic flow

prediction model combined with SVM and fruit fly optimization.

Yang and Hu (2016) used a parameters optimized wavelet neural

network for traffic flow prediction. Szeto et al. (2009), Smith et

al. (2002), Lin et al. (2013), and Lippi et al. (2013) provided a

comparative analysis of parametric and nonparametric models.

Although the prediction accuracy of nonparametric methods and

hybrid methods are superior to parametric methods, the operation

time is longer and training sample sizes are more.

Because traffic flow data has high spatio-temporal correlation

characteristics, many scholars considered to improve prediction

accuracy with the spatio-temporal correlations. Sun et al. (2006),

Sun and Xu (2011) proposed Bayesian network approaches to

forecast traffic flow on a link with spatial traffic flow data from

adjacent road links. Min and Wynter (2011) developed an

extended time-sequence-based method that incorporated temporal

and spatial interactions. Bernaś et al. (2015) developed an

improved KNN model combined pre-segmentation of detector

locations area based on traffic flow patterns. Pan et al. (2013)

used a stochastic cell transmission framework to predict short-

term traffic flow by considering the spatio-temporal correlation

in the network. Li et al. (2015) proposed a robust causal

dependence data mining algorithm in big data network and its

application to traffic flow predictions. They provided Granger

causality strategy into processing the raw large size of traffic data

to produce a highly dependent traffic flow data. However, all

these methods only considered the data closed to the prediction

station, which could not fully reveal the spatio-temporal

characteristics of traffic flow data.

In this paper, aiming at the characteristics of the SARIMA

model with shorter operation time and less satisfied prediction

performance, and the nonparametric model with better prediction

performance and longer operation time, a hybrid prediction

methodology is proposed combined with improved SARIMA

(ISARIMA) model and Genetic Algorithm (GA) according to

the high spatio-temporal correlation characteristics of traffic flow

data. Based on the issue that SARIMA model parameters have

the great influence on prediction accuracy, a sliding-window

function is introduced into SARIMA model to optimize model

parameters. Consisting of high spatio-temporal correlation

characteristics of traffic flow data, Genetic Algorithm (GA) is

used to select mostly related neighboring stations with the

testing station. A multi-input autoregressive (AR) model is

used with traffic flow data in optimal selected stations.

Finally, the result of ISARIMA is combined with multi-input

AR model, and the final prediction results are gained. The

tested results from traffic data provided by the Transportation

Research Data Lab (TDRL) at the University of Minnesota

Duluth (UMD) Data Center present that proposed algorithm

has almost the same prediction accuracy with artificial neural

networks (ANNS), but its operation time is almost the same

with SARIMA model.

The rest of this paper is organized as follows. Section 2 gives

details on a hybrid traffic prediction method based on ISARIMA

and GA. In section 3, the dataset used is introduced for the

numerical experiments. The results and performance evaluation

are presented in section 4. Finally, the conclusions and the future

research are stated in section 5.

2. Method 

2.1 ISARIMA

A brief presentation of the SARIMA model form is given

below. A time series {Yt} can be defined by the Eq. (1) and (2). 

(1)

(2)

Where B is backshift operator defined by . The

parameters p and P represent the non-periodic and periodic

autoregressive polynomial order. is non-periodic

autoregressive model parameters, and  is the

periodic autoregressive mode parameters. The parameters q and

Q represent the non-periodic and periodic moving average

polynomial order. is non-periodic moving average

model parameters, and  is periodic moving average

model parameters. The parameter d and D represent the order of

normal differencing and periodic differencing. S is the period of

the time series. et is generally regarded as the Gaussian white

noise with variance σ2.

For a time series, if the time dependencies in the expected

values and covariance are small relative to the nominal level, the

series may be close to stationary, and it can be modeled as an

SARIMA. Therefore, in order to yield the nearly stationary

transformation of the raw series, SARIMA model begins with

selecting the normal and periodic differencing scheme. The best

model orders are selected by ACFs (Auto-Correlation Function),

PACFs (Partial Auto-Correlation Function) and Akaike’s information

criteria (AIC). After the model order is determined in traditional

SARIMA model, the delay factor of the difference equation is

increasing item by item, which cannot fully reveal the temporal
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correlation characteristics of traffic flow data. In this paper, the

positions where the values of ACFs and PACFs were more than

a threshold as delay factors were selected. A sliding-window

function was introduced to update training set in order to

synchronize with the prediction station. 

In this paper, through experiment, when differencing order d

and D were set 1, that was d = D = 1, the traffic flow series can

meet the conditions for stationary. According to Williams

(2003), when the P and Q were also set to 1, P = Q = 1,

SARIMA model emerged as the preferred model. Then the Eq.

(1) also can be described as 

(3)

In Eq. (3), Φ1 is the periodic AR parameter. We introduced a

sliding-window function SΔ, and the ISARIMA model can be

expressed in Eq. (4)

(4)

Where  and  can be calculated by Eq. (5).

(5)

Where Θ1 is periodic moving average model parameter, and ϕi

and θj are non-periodic autoregressive and moving average

model parameters. t(i) and t( j) respectively are the corresponding

time delay that PACFs and ACFs are larger than the threshold.

The sliding-window SΔ can be generated as 

(6)

L is the length of training set and also the size of the sliding-

window function SΔ. Δ is the time duration of SΔ, which ranges

from 1 to L, and ε(t) is the unit step function. 

2.2 GA Optimization

GA is a stochastic search algorithm based on the theory of the

biological evolution, including selection, crossover and mutation

operations, and it is a widely used method for parameters

optimization. In GA, a set of possible solutions as population are

generated, and each possible solution is treated as chromosome

or an individual in population. Randomly selected individuals in

the population are used as the initial solution, the fitness values

are calculated after crossover and mutation operation, and

individuals will be kept or eliminated according to the values of

the fitness function in the population. After several times

iterations, the optimal solution can be finally obtained.

In this paper, GA is used to select those stations which were

highly correlated with the test station. The flowchart of the

optimization method is shown in Fig. 1, and the detailed calculation

process is shown in algorithm 1.

(7)

 represents the cross-correlation factor of station Nm

and testing station. It could prove the similarity of traffic flow

data between testing station and neighboring stations. It ranges

from 0 to 1. In this paper, threshold ε ranges from 0.90 to 0.99

according to experiments. 

2.3 Prediction Method

A hybrid prediction methodology is proposed combined with

ISARIMA model and GA. ISARIMA model is used to predict
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Algorithm 1: Iteration Steps of GA optimization

Step 1: generate a M × N chromosome code matrix CM×N, M is the num-
ber of chromosome. N is the number of code element in per chro-
mosome, and is the station numbers in this experiment. 

Step 2: Initialization:
i. Initialize the matrix CM×N with 0 and 1 stochastically, 0 rep-

resents that the station is not selected, and 1 represents that the
station is selected;

ii. Set crossover rate pc, mutation rate pm and iterative threshold ε;
iii.Generate a population and get an average traffic flow series

.  is the initial ID;
iv.  Calculate initial fitness value by cross-correlation ,

Y is the historical data in the prediction station;
Step 3: GA optimizing: 

While (m < M), do
i. Do crossover operation and mutation operation between two

individuals of population, and get a new average traffic flow
series  ( ).

ii. Evaluate fitness value by ;
iii.Update population according to iterative threshold ε;
iv. m++; 

Note:  expressed in Eq. (7), is cross-correlation, and it is fit-
ness function of GA optimization. Where T is the length of traffic flow
time series,  is the mean value of , and  is the mean value of Y. 
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the traffic flow in test station at first. GA is used to select highly

correlated detecting stations with the test station. Then a multi-

input AR model is built to predict the traffic flow in test station.

The final result can be calculated by Eq. (8). 

(8)

Where YISARIMA is the prediction result of ISARIMA with

sliding-window function, YGA-AR is the prediction result of multi-

input AR with neighboring detecting stations optimized by GA,

c represents the constant term. λ, γ, and c represents the

parameters of linear regression. YISRIMA and YGA-AR can be calculated

as Eq. (9) and (10). 

(9)

(10)

In Eq. (9), the training set is the historical data of the testing

station. In Eq. (10), Nopt means the optimal number of stations by

GA, which reflect the spatial correlation. 

represents traffic flow data in the ith related station at the (t-1)

time step to the (t-L) time step.  is a weight

vector to reflect the temporal correlation. L is the time lag.

The data is obtained immediately in the previous step is essential

in traffic flow prediction. In our experiment, it is found that the

performance improvement was minor when adding the time lag L.

Thus, L = 1 is set and the Eq. (10) is simplified as Eq. (11).

(11)

YGA-AR is the prediction traffic flow in the test station. The historical

traffic flow is taken in optimized stations by GA into Eq. (11). The

estimation value of model parameters  is

obtained.

The flowchart of the proposed method is described in Fig. 2.

3. Data Description

The data used to evaluate the performance of the proposed

model was collected in mainline detectors provided by TDRL at

UMD Data Center from June 22nd, 2015 to June 26th, 2015. The

sampling period of the testing dataset was 5-min. To alleviate the

impact of outliers in 5-min traffic flow data, these data were

aggregated into 15-min time intervals according to the

recommendations of Highway Capacity Manual (USA) in this

paper. There were totally 480 data points in the dataset. The data

were divided into two data sets, the first 384 data points were

used as the training sample, while the remaining 96 data points

were served as the testing sample for measuring forecasting

performance of the proposed model. Fig. 3 shows the station

locations that are used. There were 26 main stations in mainline.

The station S407 was located near a transportation hub in road

networks in the experiments. Therefore, it was selected as the

test station for the traffic flow prediction. 

Typical weekly traffic flows in the station S407 and three

neighboring stations are shown in Fig. 4. From Fig. 4, it can be

observed that the traffic flow distribution from Monday to Friday

is almost the same mode in S407, and is obviously different from

weekends. But the data distribution in neighboring stations is
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Fig. 2. The Flowchart of the Proposed Method

Fig. 3. The Station Locations that are Used in Experiment
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similar with the station S407 during the whole week. There are

some differences in the characteristics of traffic data between

weekends and workdays. In order to ensure the stability of the

experiment, we only used the data in workdays as the test data.

4. Results and Performance Evaluation

4.1 Model Parameter Estimation of ISARIMA

The 1st order difference series and periodic-removed 1st order

difference of traffic flow data in station S407 is presented

respectively in Fig. 5(a) and (b). It is observed that the 1st order

difference series show a strong periodic pattern. As discussed

above, traffic flow can be predicted as a typical time series only

if it is stationary stochastic series with respect to mean and

variance, so the periodic effects of the traffic flow data must be

removed. As is shown in Fig. 5(a), the time interval between

each adjacent 2 extreme points is 96, which means the period is

96, namely the periodic lag for backshift operator Ba in Eq. (1).

The periodic difference can be calculated by Eq. (12).

(12)

Where y407t is original data, and  is periodic-removed data

set. 

From Fig. 5(b), it can be found that the periodic effects were

removed completely by 1st order periodic difference, and the

processed periodic-removed 1st order difference series can be

a

96

407 407 1,...,
' ( ) |

t t t a N
y y B

= +
=

y′407t

Fig. 4. Typical Weekly Patterns in the Station 407 and Other Three Neighboring Stations from June 22nd to June 28th, 2015: (a) S407, (b)

S388, (c) S408, (d) S320

Fig. 5. Difference Residual Series in the Station S407: (a) 1st Order Difference Series from June 22nd, 2015 to June 26th, 2015,  (b) Peri-

odic-removed 1st Order Difference Series from June 22nd, 2015 to June 26th, 2015
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analyzed as a stationary random sequence. In order to estimate

the model order, we respectively calculated the ACFs and

PACFs for original residual series and periodic-removed 1st order

difference residual series. The results were shown in Fig. 6(a)

and 6(b). From Fig. 6, it is shown that the PACF and ACF of

periodic-removed residual series did not show the pronounced

scattering phenomenon compared to the original residual series.

The threshold value was set as twice times of the standard

deviation for periodic-removed residual series, and then the

parameters of p and q can be identified. In this paper, these

parameters are updated with the updating of the training set by

sliding-window function. 

4.2 Optimization Selection of Correlated Detecting Stations

In order to select those stations highly correlated with the test

station, GA is used as optimization method. After several times of

experiments, crossover rate pc is set as 0.95 and motion rate pm as 0.05.

The maximum generation number M ranged from 30 to 80 in this

study. 

The locations and ID of optimized stations are shown

respectively in Fig. 7 and Table 1. From Fig. 7 and Table 1, it can

be seen that the locations of optimized stations are a little

different from classical understanding, that is, closer stations

from the prediction station have more correlation than those

further stations. In fact, many further stations have great correlation

with the prediction station. The numbers of upstream stations are

more than downstream stations, while there are some downstream

stations are related with the station, which means that the effect

of the upstream flow is more important in traffic flow prediction.

4.3 Prediction Results

The final prediction results are shown as follows. 

 (13)

It consists of two parts of prediction results, where  and

 can be represented as Eq. (14), and the second part is

described in Eq. (15).

(14)
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 Fig. 7. Locations of Optimized Stations
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0.7316, which means the historical data of S407 plays a key role

in prediction. The parameter γ is 0.2379, which reflects the

impact of optimal stations on the prediction results. The constant

term in Eq. (13) can be seen as a fixing value to alleviate the

extreme candidate values, and the parameter Nopt means the

number of neighboring stations optimized by GA, in the

experiment Nopt = 14. The constant term C is 19.233.

The selected station ID and corresponding weight coefficient

αi are shown in Table 1. The weight coefficient αi can be

estimated by regression of historical data. It can be seen that αi is

almost inversely proportional to the distance from the prediction

station. To verity the feasibility and efficiency of proposed

algorithm, the prediction results are compared with SARIMA,

SVR and ANNS. In SARIMA model, p is set as 5, q as 4, and d

as 2. In ANNS model, a three-layer Back Propagation (BP)

network is used with 10 hidden neurons and one output with

sigmoid as activation function for all neurons. The learning rate

is set as 0.05, the number of iteration as 400, and target error as

0.001. In SVR model, kernel function is set as Radial Basis

Function (RBF), the penalty parameter of the error term as 300. 

Figure 8 shows the 15-min traffic flow prediction results from

0:00 to 24:00 June, 26 in 2015 in station 407 with different

methods and measured traffic flow data. It can be found that the

proposed algorithm has better performance than others, especially in

morning and evening peak hours, and the prediction value is

almost coincided with the measured data.

4.4 Performance Evaluation

In order to evaluate the prediction performance, Root Mean

Square Error (RMSE), which was the most frequently used

metrics of prediction performance in previous work, and

predicting accuracy (ACC) was chosen to evaluate the difference

between the actual values with predicted values.

(16)

 (17)

Where N is the length of prediction data, yi and  are the

measured value and predicted for ith validation sample respectively. 

The performance is shown in Table 2 based on different

correlated stations selected by different threshold ε. The larger ε

we set, the less number of correlated stations are selected by GA.

It can be seen that, if ε gets too large or too small, either ACC or

RMSE is not well. Based on Table 2, threshold is set as 0.95. 

It is shown in Table 3 that the prediction performance with

different training series. The forecasting accuracy with proposed

model gets 5.83% improvement over with one station data and

12.26% improvement over with neighboring stations without

GA optimization. The traffic flow data has strong spatio-temporal
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Measured Traffic Flow Data

Table 1. The Value of Parameter α and the Station ID we Selected

Station ID α Station ID α

S280 0.9147 S395 0.5845

S281 0.7334 S398 0.8162

S318 0.171 S402 0.4881

S319 0.1832 S408 0.5702

S320 0.5993 S413 0.2555

S391 0.6538 S930 0.6425

S394 0.8263 S1016 0.6614

Table 2. RMSE and ACC of Different Threshold in GA 

Threshold 
ε

Num. of correlated 
stations

RMSE 
(15-min) 

ACC
(15-min)

0.90 19 21.24 79.89

0.91 19 21.24 79.89

0.92 17 21.24 79.89

0.93 14 16.14 87.00

0.94 14 16.13 87.05

0.95 14 16.01 87.21

0.96 13 17.45 85.88

0.97 10 17.88 84.31

0.98 9 18.02 83.01

0.99 7 19.78 81.09

Table 3. RMSE and ACC of Different Training Set

Models
RMSE 

(15-min) 
ACC

(15-min)

ISARIMA based on one station 19.54 81.12

ISARIMA based on GA optimized stations 16.18 86.95

ISARIMA based on neighboring stations
without GA

32.45 74.29

Table 4. Prediction Performance and Average Operation Time in

Different Models

Models
RMSE 

(15-min) 
 ACC

(15-min)
Average

 operation time 

SVR 20.56 80.29 14.05 min

SARIMA 34.18 72.29 11.06 min

ANNs 18.77 89.05 35.5 min

ISARIMA-GA 16.18 86.95 12.4 min
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correlation with neighboring detecting stations, but if all neighboring

detector data are directly used to predict without optimization

selection, the prediction accuracy cannot be improved, and even

becomes worse.

The performance of several methods used in this paper is

shown in Table 4. The 15-min ahead forecasting accuracy of

SARIMA is the lowest, and ANNS method has the best prediction

accuracy. The ACC of the proposed method respectively improved

14.7% and 6.7% compared with SARIMA, SVR, and was

slightly less than the ANNS method. The prediction accuracy of

the proposed method was close to the ANNS method, and they

are superior to other methods. However, for the average

operation time, ANNs method is 3 times longer than SARIMA,

and is over 2 times longer than proposed method. The proposed

method has almost the same prediction accuracy with ANNS,

but its operation time is almost the same with SARIMA model.

Therefore, the proposed method is an effective method to traffic

flow prediction.

5. Conclusions

In this paper, the spatio-temporal characteristics of traffic flow

data is considered, and a hybrid prediction methodology combined

ISARIMA model and GA is proposed. An improved method to

optimize the SARIMA model parameters is elaborated. GA is

used to select highly correlated stations with the test station. A

hybrid prediction model was proposed with ISARIMA multi-

input AR optimized by GA. Test results with real traffic data

provided by TDRL show that proposed method has good

prediction performance compared with other methods. Since the

traffic flow data is affected by weather, incident and other factors,

the impact of these factors on traffic flow data will be further

studied so as to improve the prediction accuracy. We will also

further optimize the algorithm and reduce the operation time to

meet the requirement of real-time prediction. 
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