
KSCE Journal of Civil Engineering (2017) 21(1):1-10

Copyright ⓒ2017 Korean Society of Civil Engineers

DOI 10.1007/s12205-016-0770-4

− 1 −

pISSN 1226-7988, eISSN 1976-3808

www.springer.com/12205

Coastal and Harbor Engineering

Significant Wave Height Modelling using a Hybrid Wavelet-Genetic 

Programming Approach

Sajad Shahabi*, Mohammad-Javad Khanjani**, and Masoud-Reza Hessami Kermani***

Received September 17, 2015/Revised February 21, 2016/Accepted March 4, 2016/Published Online April 29, 2016

··································································································································································································································  

Abstract

In this paper, Genetic Programming (GP) based wavelet transform (WGP) was developed to forecast Significant Wave Height
(SWH) in different lead times. The hourly SWH values for two buoy stations located in the North Atlantic Ocean were applied to
train and validate the WGP model. For this purpose, the SWH main time series was decomposed into some subseries using wavelet
transform and then decomposed time series were imported to GP model to forecast the SWH. Furthermore, GP approach was
independently used to the same data set for comparison purposes. Performance of the WGP model was evaluated using correlation
coefficient (R), Root Mean Square Error (RMSE), index of agreement (I

a
) and Mean Absolute Error (MAE). The analysis proved

that the model accuracy is highly depended on the decomposition levels. The obtained results showed that WGP model is able to
forecast the SWH with a high reliability.
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1. Introduction

Knowledge of Significant Wave Height (SWH) is vital for

most of maritime activities consisting of planning, operation and

maintenance. In this study, SWH is shown by Hs. It is traditionally

performed by converting wind-related information to waves

(Nitsure et al., 2012). In 1960s and 1970s empirical models were

tried for modelling of wave height (US Army, 1984). After that,

modelling of SWH based on historical data was considered.

Forecasting of SWH using a time history is fed with an input

including a sequence of previous observations, so that it

distinguishes a hidden pattern in such a sequence and accordingly

forecasts the future values in continuation (Gaur and Deo, 2008).

Therefore, many SWH time series based models like Auto

Regressive (AR), Auto Regressive Moving Average (ARMA),

Auto Regressive Integrated Moving Average (ARIMA) and

Kalman filter have been developed (Soares and Ferreira, 1996;

Soares et al., 1996; Soares and Cunha, 2000; Scotto and Soares,

2000; Ozger, 2010; Altunkaynak, 2013). 

Over the last decades, the different sorts of soft computing

approaches have been widely used in time series forecasting.

One of the most popular of these approaches is artificial neural

network (ANN). Presumably, Deo and Naidu (1998) have

initiated investigations on the application of ANN into wave

forecasting. They employed ANN to forecast wave height in east

coast of India. Deo et al. (2001) applied a simple 3-layer feed

forward type of network to obtain the output of SWH and the

mean wave periods from the input of generating wind speeds.

The model provided satisfactory results in open wider areas in

deep water. Later Asma et al. (2012) compared the ANN results

with those derived from Multiple Linear Regressions (MLR) and

found that non-linear models at the same time step produced to

better significant wave height models. In addition, a good many

investigations on the SWH forecasting can be found in literature

Markarynskyy et al. (2005), Jain and Deo (2007), Günaydýn

(2008), Kamranzad et al. (2011) and Nitsure et al. (2014).

In the recent years, some other artificial intelligence techniques

such as Genetic Algorithm (GA), Genetic Programming (GP)

and Fuzzy Logic (FL) made of use to forecast SWH parameter

(Ozger and Sen, 2007; Canellas et al., 2010; Nitsure et al., 2012;

Altunkaynak, 2013). Gaur and Deo (2008) explored dependency

between input and output data sets using GP in the Gulf of

Mexico. The forecasted SWH over lead times of 3, 6, 12 and

24h. The performance of GP indicated more precise prediction

for small-interval forecasts (3 and 6h) than those obtained for

large-interval (12 and 24h). Conspicuously, they concluded that

GP can be taken into account as a promising tool for its future

applications into coastal and ocean problems

The above-mentioned approaches suffer from restricted capability

in forecasting the non-stationary time series. Ergo, some

improved Artificial Intelligence (AI) models were employed to

forecast SWH and gave accurate outperformances (Ozger 2010,
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Deka and Prahlda, 2012, Shahabi and Khanjani, 2015).

Furthermore, Nourani et al. (2014) presented an extensive review

on the application of hybrid wavelet-AI approaches. Recently,

Prahlada and Deka (2015) developed a hybrid model of wavelet

and artificial neural network (WLNN) to forecast time series

significant wave height for lead times up to 48h in two stations

located in Indian Ocean and North Pacific Ocean. The three

hourly significant wave height data for a period of one year was

decomposed through discrete wavelet and used as inputs into

Levenberg Marquardt artificial neural network models to

forecast time series SWH at multistep lead time. To recap, results

of proposed model indicated good predictions for two stations at

lower lead times but slight deviation observed at higher lead

times.

There is an extensive literature available on the application of

wavelet technique to forecast time series, few are them are

Cheng et al. (2006), Dixit et al. (2015), Seo et al. (2015).

Some application of models such as fuzzy interface system,

Bayesian inference, modified Weibull distribution, regressive

support vector machine and hybrid Wavelet Group Method Of

Data Handling (WGMDH) were described by Kazeminezhad et

al. (2005), Scotto and Soares(2007), Muraleedharan (2007),

Mahjoobi and Mosabeb (2009), Shahabi and Khanjani (2015)

and Shahbi et al. (2016) for forecasting of SWH.

In the present research, the possibility of forecast SWH in two

different locations in North Atlantic Ocean using a hybrid

Wavelet Genetic Programming (WGP) approach are investigated.

For this purpose, WGP algorithm has been introduced and

employed to develop an SWH forecasting model when has an

ability to make forecast up to 48 h lead time using hourly wave

height observed data. Therefore, current research is initiated with

a data preprocessing, i.e. de-noising of predictor time series

using discrete wavelet transform technique, and followed by a

GP-based mode. The decomposed time series can be presented

as input parameter to Genetic Programming (GP) which can

handle non-linearity capability and higher forecasting accuracy

can be achieved. Forecasts are more accurate compared to those

yield by original signals due to the fact that the features of the

subseries are vivid. This is why the hybrid method of wavelet

transform and GP have better performances than single GP or

similar models. Finally, the proposed wavelet GP (WGP) model

are evaluated to assess the model efficiency in the higher lead

times along with different decompositions level using three

different efficiency indices. The results were compared with the

GP model ones for the same SWH data set.

2. Wavelet Transform

Here, a summary of wavelet main concepts are presented. For

more information some excellent supplementary text such as

Mallat (1998) and Bogges and Narcowich (2005) are recommended.

A wavelet transform presents a powerful tool for non-stationary

data analysis. It is especially beneficial in selecting characteristic

variations at different resolution or scales and it is similar to

Fourier transform. In other word, it is the derivative from of

Fourier transform. The wavelet transform decomposes a signal

into its subseries in time and frequency domains. It has been used

for studying non-stationary time series unlike Fourier transform.

This point is the most important benefit of wavelet transform. In

traditional transformation methods such as Fourier transform,

production of both time and frequency information with a higher

resolution is not possible, but wavelet transform resolved this

shortage. There are two types of Wavelet Transforms (WT):

Continuous Wavelet Transform (CWT) and Discrete Wavelet

Transform (DWT). (Mallat, 1998; Missiti et al., 2000; Boggess

and Narcowich, 2009; Ozger, 2010; Nourani et al., 2012;

Danandeh Mehr et al., 2014)

The continuous wavelet transform of a time series, f(t), is

defined as:

(1)

where , s, b and t are the mother wavelet function, dilation

factor (or contraction coefficient), scale parameter and time,

respectively. As well as * which corresponds to the complex

conjugate. 

The mother wavelet function is described by:

(2)

The mother wavelet function is used for both wavelet

decomposition and composition transforms.

In empirical applications, discretization of Eq. (1) was used.

This transform produces N2 coefficients from a data set of length

N. DWT computes the wavelet coefficients at discrete intervals

of time and scale. The signal is passed through a series of high

pass filters and low pass filters to analyze the high frequencies

and low frequencies, respectively. The low-frequency value is

the most important part for many signals. Frequently is

addressed of approximations and details. The approximation is

the high-scale and low-frequency component of the signal. The

detail is the low-scale and high-frequency component. The detail

coefficients (cD) are small and consist mainly of a high frequency

noise, while, the approximation coefficients (cA) consist much

less noise than the original signal (mallat, 1998; Missiti et al.,

2000; Deka and Prahlada, 2012). 

The pick out of mother wavelet is an important part of wavelet

analysis and depends on both the properties of the signal under

investigation and what the researchers are looking for. In this

study, Haar and Daubechies wavelet functions were used to

analyze their similarity to nature of data.

Decomposition of signal process can be iterated, with successive

approximations being decomposed in turn, so that one signal is

broken down into many lower resolution components. This

process is called the wavelet decomposition tree. Looking at a

signal's wavelet decomposition tree can provide valuable

information. Despite the analysis process can theoretically be

continued indefinitely, in practice, it can be proceed only until
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the individual details consist of a single sample or pixel. The

researcher can select an appropriate number of levels based on

the nature of the signal, or on an appropriate criterion (Missiti et

al., 2000).

3. Genetic Programming

Here, a brief overview of the Genetic Programming (GP) is

presented for motivation. GP is an evolutionary computing

technique and proposed by Koza (1992). The GP nature

authorizes to gain additional information on how the system

performs, i.e., gives insight into the relationship between input

and output time series of data set (Nourani et al., 2012). The tree

based GP was used in this study.

In GP a random population of individuals is created, the fitness

of individuals is evaluated and then parents are designated out of

these individuals. The parents are then made to achieve

offspring’s by following the process of reproduction, crossover

and mutation. The production of offspring’s continues till a

determined number of offspring’s in a generation are produced

and further till another determined number of generations are

created. The resulting offspring’s at the end of all this process

(equation or computer program) is the solution of the problem. In

other words, the GP transforms one population of individuals

into another one in an iterative manner by employing some

operators. In GP computations, it can distinguish between three

different types of operators which are called mutation, reproduction

and crossover (Gaur and Deo, 2008; Nourani et al., 2012).

4. Wavelet-Genetic Programming

The discrete wavelet transform combine to genetic programming

to obtain a powerful nonlinear ability that call Wavelet-genetic

Programming (WGP) model in this paper. In other word, the

WGP is a hybrid model that combines the DWT with GP to

improve the performance and ability of the GP. In the WGP

model, the original series of SWH decompose to some subseries

by DWT and then these time series are imposed as inputs to the

GP model to forecast SWH in different lead times. The

schematic diagram of the proposed WGP model is illustrated in

Fig. 1.

The proposed model comprises two main stages. In the first

stage (pre-processing stage), the main SWH time series are

decomposed into some sub-series using DWT. For this purpose,

Haar and db3 were selected as a mother wavelet. In the second

stage (simulation stage), the decomposed time series analyze

with the GP to obtain a nonlinear approximation formulation.

Thus, the SWH signal decomposes into some sub signals with

different level of decomposition. The decomposed signal at level

n consisted of n + 1 sub signals are included those of an

approximation and n details. After that, the decomposed signals

were considered as input parameters for GP model. Finally, the

WGP model obtained to GP formulations to predict the SWH. 

In the proposed approach, approximation and details play key

role in the performance of model. Here, (n + 1) variables (an

approximation and n details) were taken into account as input

parameters for GP model so as to yield the SWH at the time (t + m),

where m is lead time. 

5. Study Area and Data

In this study, a buoy station (41013, Latitude 33o26'11'' and

longitude 77o44'35'') located in coastal areas and another one

(41048, Latitude 31o57'00'' and longitude 69o269'48'') located in

deep waters in North Atlantic Ocean were employed. The water

depths of these two stations are 23.5 m and 5261 m, respectively.

The data used in this study are Hs time series and can be

downloading from website of National Data Buoy Center

(NDBC) (http://www.ndbc.noaa.gov). These two stations were

selected based on continuity in the reported values in recent

years. Fig. 2 shows the location map for two current stations. 

Table 1 presents the statistical properties of wave height time

series. 75% of the wave height data was devoted to perform

training and remaining 25%, for testing. Also, the statistical

characteristics of training and testing dataset were separately

given in Table 2.

Fig. 1. The Schematic Diagram of WGP Model

Table 1. Statistical Properties of All Data

Station
ID

Water
depth (m)

Period
Significant wave height

Min. (m) Max. (m) Mean (m) Standard deviation (m)

41013 23.5 2013-1-1 to 2013-12-31 0.33 5.12 1.35 0.637

41048 5261 2013-1-1 to 2013-12-31 0.50 9.00 1.81 1.006

Fig. 2. Location Map for the Study Area
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6. Analysis and Results 

Data sets from two different stations located in the North

Atlantic Ocean were used to develop the proposed models. In

this section, the results of proposed WGP model were compared

with GP model results. These models were employed to make

forecast for various lead times. The lead times were fixed as 3, 6,

12, 24 and 48h. Different combinations of data sets were imposed

as input variable to forecast SWH. In addition, three various

scenarios which have various predictor configurations were

employed. These scenarios are: (a) hs(t), (b) hs(t − 1), hs(t) and (c)

hs(t − 2), hs(t − 1), hs(t). While hs(t), hs(t − 1) and hs(t −2) are

current SWH, one time step and two time step past wave height,

respectively. The results of the scenarios demonstrated that

enhancement in the number of lagged values have the ability to

improve the model performance any more. In this way, three

lagged values were sufficiently determined to make trustworthy

predictions. The predicted value is shown by hs(t + m) where m

is the lead time. 

In this study, four different performance indices were employed

to evaluate the model performances. These indices are: correlation

coefficient (CC or R), index of agreement (Ia), Root Mean Square

Error (RMSE) and Mean Absolute Error (MAE) according to

Eq. (3) to (6).

(3)

(4)

(5)

(6)

where xi, yi, ,  and n are observed wave height, predicted

wave height, mean of observed wave height, mean of predicted

wave height and number of observations, respectively.

R and Ia range from 0 to 1, closer values to 1 demonstrate

outperform agreement between the observed and predicted

SWH. The GP model for each scenario without SWH time series

preprocessing was employed to forecast SWH time series. This

approach was carried out for modelling of SWH time series at

stations. Table 3 presents the best GP model testing results of

analysis in terms of R, RMSE and MAE for predicted SWH.

According to Table 3, R values vary with respect to lead times.

The correlation coefficient values for 3 and 48h lead times were

declined from 0.941 to 0.007 in station 41013 for scenario 2. It

seems to be satisfactory for 3 and 6h lead times but for higher

lead times, predictions with an acceptable accuracy was not met.

The GP capability in SWH modelling decreases drastically as

lead times progresses. The root mean square error was increased

from 0.237 for 3h to 0.706 for 48h lead times in station 41013.

On the other hand, while the R values decreases from 0.951 to

0.247, the RMSE values range between 0.230 and 0.761 m at

48h lead time (Table 3). 

Data pre-processing is the first stage of the proposed WGP

model. In this stage, the main time series were decomposed into

an approximation and some details. Next, these decomposed

subseries were determined as input parameters for GP model to

enhance the level accuracy of model. Here, discrete wavelet

transform (DWT) was employed for processing of SWH time

series in the form of approximation and details at different

decomposition levels. These subseries were used as input

variable for GP model which is applied in the proposed hybrid

model to forecast SWH time series. The mother wavelet type

selection is one of the most significant parameters in WGP

modelling. On the basis of two time series formation and

structure of the Haar (db1) and db3 wavelet, these mother

wavelets were selected to decompose and analyze the SWH time

series.

This approach was performed with different decomposition

levels from 3 to 8. No significant improvement in the model

CC R 1
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xi x–( )2

i∑
-------------------------–= =

Ia 1
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Table 2. Statistical Properties of Training and Testing Data

Station ID Data Period
Min.
(m)

Mean
 (m)

Max.
(m)

Standard 
deviation (m)

41013
Training dataset 2013-1-1 to 2013-9-30 0.33 1.32 5.12 0.61

Testing dataset 2013-10-1 to 2013-12-31 0.37 1.43 4.63 0.697

41048
Training dataset 2013-1-1 to 2013-9-30 0.51 1.81 9.00 1.079

Testing dataset 2013-10-1 to 2013-12-31 0.50 1.81 5.83 0.742

Table 3. Evaluation Results of the GP Model Performances for

Station 41048

Station
 ID

Lead
time

R RMSE (m) MAE (m)

Train Test Train Test Train Test

41013

3h 0.941 0.941 0.208 0.237 0.141 0.154

6h 0.846 0.825 0.534 0.395 0.225 0.263

12h 0.657 0.658 0.463 0.528 0.329 0.368

24h 0.351 0.195 0.576 0.696 0.426 0.526

48h 0.089 0.007 0.614 0.706 0.470 0.539

41048

3h 0.973 0.951 0.247 0.230 0.220 0.230

6h 0.941 0.885 0.366 0.348 0.220 0.230

12h 0.861 0.730 0.551 0.523 0.339 0.352

24h 0.713 0.481 0.756 0.673 0.489 0.490

48h 0.535 0.247 0.913 0.761 0.613 0.566
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performance was found when the number of decomposition

levels was increased from a threshold, which is similar to the

experience reported by Deka and Prahlda (2012).

The output subseries from the DWT in the form of approximation

and details at station 41048 are shown in Fig. 3. The decomposed

subseries were considered as input parameter to forecast the

SWH in different lead times. Then, the trained model was tested

by testing data. The data obtained from both stations in different

Fig. 3. Approximation and Detail Subseries of Significant Wave Height Time Series for Station 41048

Table 4. Parameter Setting for the GP Model

Parameter Value

Initial populations (programs) 500

Mutation frequency 50%

Crossover frequency 50%

Generation without improvement 300

Generation since start 1500

Table 5. Evaluation Results of the WGP Model Performances

Station ID
Mother
Wavelet

D.L* Lead 
time

Training data Testing data

R
RMSE
(m)

Ia
MAE
(m)

R
RMSE
(m)

Ia
MAE
(m)

41013

Haar 4 3 0.953 0.189 0.976 0.123 0.949 0.231 0.973 0.146

Haar 5 6 0.883 0.290 0.937 0.189 0.867 0.350 0.927 0.223

Haar 5 12 0.746 0.410 0.848 0.289 0.716 0.491 0.827 0.350

Haar 7 24 0.586 0.498 0.717 0.363 0.559 0.584 0.714 0.435

Haar 8 48 0.454 0.550 0.612 0.406 0.471 0.617 0.620 0.466

db3 6 3 0.957 0.179 0.977 0.122 0.952 0.213 0.975 0.142

db3 5 6 0.899 0.269 0.944 0.228 0.874 0.339 0.930 0.186

db3 7 12 0.813 0.357 0.891 0.254 0.787 0.432 0.874 0.312

db3 7 24 0.685 0.448 0.802 0.338 0.638 0.541 0.773 0.411

db3 8 48 0.587 0.498 0.691 0.372 0.462 0.620 0.620 0.473

41048

Haar 4 3 0.981 0.214 0.990 0.128 0.964 0.200 0.982 0.130

Haar 5 6 0.953 0.328 0.976 0.191 0.903 0.320 0.949 0.204

Haar 6 12 0.911 0.449 0.953 0.287 0.777 0.470 0.869 0.316

Haar 7 24 0.847 0.575 0.915 0.373 0.574 0.616 0.726 0.420

Haar 7 48 0.778 0.636 0.872 0.468 0.520 0.682 0.672 0.434

Db3 5 3 0.963 0.291 0.981 0.183 0.909 0.309 0.952 0.207

Db3 5 6 0.957 0.315 0.978 0.206 0.901 0.324 0.947 0.224

Db3 7 12 0.932 0.390 0.964 0.253 0.875 0.361 0.933 0.264

Db3 8 24 0.851 0.567 0.917 0.376 0.730 0.509 0.835 0.364

Db3 8 48 0.809 0.634 0.889 0.433 0.641 0.568 0.755 0.435

*Decomposition Level
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lead times are summarized in Table 5. The best results in terms

of CC, Ia, RMSE and MAE are highlighted for both stations.

When these subseries are used as input, as the number of

decomposition level increases accordingly number of input layer

also increases. The results of proposed model for various

decomposition levels evidently illustrated the performance of the

WGP model for both low and high lead times compared to the

GP (Table 5). For both stations, the WGP model demonstrated

better prediction than GP model for all cases with an exception in

3h lead time that indicated satisfactorily results. The CC (R)

value is about zero resulted in GP modelling was increased up to

0.471 by WGP at 48h lead time in station 41013. This considerable

increment showed the capability of the WGP model. This

noticeable improvement can be explained by deletion of noisy

data from original time series. 

Next, the WGP model formulations were explored for both

stations. Nourani et al. (2012) reported that it is inevitable to

acquire more input variables in evolutionary computing methods

lead to more complex formulations. The best ranked WGP

formulations were expressed for 3h lead time for the stations

4013 Eq. (7) and 41048 Eq. (8) as, 

(7)

(8)

Furthermore, Eqs. (9) and (10) at 48h lead time for the stations

41013 and 41048 were respectively presented as follows: 

(9)

(10)

where , ,  and

 are the forecasted SWH at 3 and 48h lead times

in stations 41013 and 41048, respectively. Also d1(t) to d9(t) are

the approximation and the details time series that obtained by

DWT at time t.

As shown in Eqs. (7) to (10), only four operations including

addition, subtraction, multiplication and division and seven

functions consisting of square root, cube root, sin, cosine,

arctangent and power (2 and 3) were set in constructing the

formulations. The GP provided these equations via an

evolutionary process. The GP characteristics that used in this

study are presented in Table 4.

The model efficiency criterion showed the high performance

of model for the small lead times. For low lead time, performances

of both models have approximately same performances whereas

accuracy of the GP model was dramatically on the decline for the

higher lead times. Evidently, shorter lead times performance is

better than higher lead times. The observed and forecasted SWH

time series for 3h lead time were shown Fig. 4 to Fig. 7. From

figures, it is crystal clear that WGP model forecasts the general

behavior of the observed data. The period related to the testing

period results indicated which proposed WGP provided slightly

higher accuracy than GP model. As lead time increases, the GP

model performance decreases dramatically. But the WGP model

SWH41013

db3
t 3+( ) d1 t( ) 2 d3 t( ) d4 t( ) d5 t( ) d7 t( )++ + +×+=

d3 t( ) d2 t( ) d3 t( )+( ) 0.23999 d4 t( )×( ) Sin d6 t( )( )+( )–×

SWH41048

Haar
t 3+( ) d1 t( ) d2 t( ) d3 t( ) d4 t( ) d5 t( )++ + + +=

d2 t( ) Sin 7.436249 d2 t( )+( )×

d1 t( )
1

3
---

----------------------------------------------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞2

SWH41013

Haar
t 48+( ) d1 t( ) Sin Cos d1 d7 t( )+( )( )(+=

       Sin 4.576904( ) d7 t( )×( )) d3 t( ) d3 t( ) d8 t( )××( )  ×(+

       8.465607 d5 t( )× 8.465607 d1 t( )×–( ))

SWH41048

db3
t 48+( ) d3 t( ) Sin Arc S( in d4 t( ) 4.639923+( )2

 –tan(+=

d9 t( ) Arc d9 t( ) d1 d2 t( ) d7 t( )+ + +( )tan×

SWH41013

db3
t 3+( ) SWH41013

Haar
t 48+( ) SWH41048

Haar
t 3+( )

SWH41048

db3
t 48+( )

Fig. 4. Observed and Predicted SWH by WGP and db3 Mother

Wavelet at 3h Lead Time for Station 41048 (testing data)

Fig. 5. Observed and Predicted SWH by WGP Model and db3

Mother Wavelet at 3h Lead Time for Station 41013 (testing

data)

Fig. 6. Observed and Predicted SWH by WGP Model and Haar

Mother Wavelet at 3h Lead Time for Station 41048 (testing

data)
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performance decreases gradually as shown in Fig. 10 to 11 in the

scatter diagram. For instance, the Ia decreases from 0.975 to

0.620 in station 41013 for 3h and 48h lead times, respectively.

The R varies between 0.952 and 0.462 for 3 to 48h lead times.

The RMSE increases from 0.213 for 3h to 0.620 m for 48h lead

times. 

Figure 11 illustrate good accuracy of forecasting by the WGP

model at station 41048 for which 0.64 < R < 0.91 and 0.75 < Ia <

0.96 are yielded. The scatter plots indicate that the proposed

model capability in deep waters is remarkably better than

shallow waters. In this way, the proposed model cannot predict

SWH satisfactorily in shallow waters (station 41013) in comparison

with deep waters (41048). This one is an special property of

single parameter models. Some other parameters such as wind

speed are necessary to improve the model capability in shallow

waters.

Throughout the WGP model, the results obtained for 5 different

lead times had undergone various decomposition levels starting

from 3 to 8 using two different mother wavelets at two stations.

For higher lead times (≥ 12h), the optimum accuracy was

obtained in higher decomposition levels (7-8). In shorter lead

times (≤ 6h), a low decomposition level (5-6) produces satisfactorily

accuracy. The optimum decomposition level can be obtained by

trial and error process (Table 5).

A possible reason for WGP model performance improvement

is that WGP extract the characteristics of SWH variation process

through decomposing the non-stationary SWH time series into

several stationary SWH time series.

For better comparison purposes the error indices are plotted

versus lead time in Fig. 12 and Fig. 13 for station 41013 and

41048, respectively. These plots evidently demonstrates that

shorter lead times (3 and 6h) are more accurate than larger lead

times (24 and 48h). These results are in agreement with other

studies (Gaur and Deo, 2008; Ozger, 2010; Karmanzad et al.,

2011; Deka and Phralda, 2012). Fig. 14 illustrated SWH values

forecasted by WGP at various lead times in comparison with

Fig. 7. Observed and Predicted SWH by WGP Model and Haar

Mother Wavelet at 3h Lead Time for Station 41013 (testing

data)

Fig. 8. Scatter Plot of Observed and Predicted SWH by WGP

Model and (a)Haar and (b)db3 Mother Wavelet at 6h Lead

Time (testing data)

Fig. 9. Scatter Plot of Observed and Predicted SWH by WGP

Model and  (a) Haar and (b) db3 at  6h Lead Time (testing

data)
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observed values. According to Fig. 14, it is obviously clear that

the time series preprocessing by the wavelet can heighten the

accuracy of model particularly in higher lead times. At station

41013, the model efficiency criterions showed the higher error of

forecasting in comparison with results obtained for station

41048. It is presumably due to the significant fluctuation of time

series data around the mean value, so that the regression between

data is reduced (Table 1). In contrast, the performance of model for

training and testing data sets is closed to each other in station 41013

compare to the results extracted from station 41048. A possible

reason is the statistical properties of both stations as shown in Table

2. From Table 2, the statistical properties of training and testing data

are closed to each other for station 41013.

As a whole, by comparing the performance of WGP with other

model that proposed and examined by some researchers (Soares

et al., 1996; Gaur and Deo, 2008; Ozger, 2010; Karmanzad et al.,

2011; Deka and Phralda, 2012), it can be controlled that model

has comparable accuracy.

7. Conclusions

The oceanic phenomena generally and the significant wave

height time series in particular are characterized by high non-

stationary and non-linearity. A wavelet was introduced to present

useful decomposition of the original time series, so that the data

preprocessing enhance the forecasting model ability. The

wavelet decomposition of non-stationary time series leads to

produce bunches of stationary time series that can be applied in

analyzing by obtaining useful information on various time

resolution levels. Here, the wavelet transform was linked with

the Genetic Programming (GP) in order to provide the Wavelet

Genetic Programming (WGP) model for SWH forecasting of

two stations located in North Atlantic Ocean. Furthermore, the

impact of decomposition level on the model efficiency was

investigated by considering various decomposition levels. The

outperformance of proposed model represented the high merit of

both Haar and db3 mother wavelet. Moreover, the db3 mother

wavelet yielded better performance than Haar in most cases. The

Fig. 10. Scatter Plot of Observed and Predicted SWH by WGP

Model and (a) Haar at 12h, (b) Haar at 24h, (c) Haar at 48h,

(d) db3 at 12h, (e) db3 at 24h., (f) db3 at 48h (testing data)

Fig. 11. Scatter Plot of Observed and Predicted SWH by WGP

Model and (a) Haar at 12h, (b) Haar at 24h, (c) Haar at 48h,

(d)db3 at 12h, (e) db3 at 24h., (f) db3 at 48 h (testing data)



Significant Wave Height Modelling using a Hybrid Wavelet-Genetic Programming Approach

Vol. 21, No. 1 / January 2017 − 9 −

WGP demonstrated prediction with the high level of validation

compared to the classic GP especially in higher lead times. The

reason for this high efficiency is the utilizing of a wavelet as a

preprocessing in the WGP. The enhancement of model

performance provided by WGP over GP model was seen,

particularly in 48h lead time. The superiority of WGP to GP model

can be evidently observed particularly for 48h lead time. From the

results, the correlation coefficient values were increased from 0.007

to 0.471 and 0.247 to 0.641 by the WGP model for stations 41013

and 41048, respectively. As a whole, WGP model can be

distinguished as a promising tool in the SWH forecasting.
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