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Abstract

Accurate forecasting of floods is vital for developing a flood warning systems, flood prevention, flood damage mitigation, soil
erosion reduction and soil conservation. The objective of this study is to apply two hybrid models for flood forecasting and
investigate their accuracy for different lead times. These two models are the Wavelet-based Artificial Neural Network (WANN) and
the Wavelet-based Adaptive Neuro-Fuzzy Inference System (WANFIS). Wavelet decomposition is employed to decompose the
flood time series into approximation and detail components. These decomposed time series are then used as inputs of Artificial
Neural Network (ANN) and adaptive Neuro-Fuzzy Inference System (ANFIS) modules in the WANN and WANFIS models,
respectively. The WANN and WANFIS models yielded better results than the ANN and ANFIS models for different lead times. The
WANN and WANFIS models performed almost similarly. However, in terms of model efficiency, the WANFIS model was superior
to other models for lead times of 1 to 6 hours, and the WANN model was superior to other models for lead time of 8 to 10 hours. The
results obtained from this study indicate that the combination of wavelet decomposition and data-driven models, including ANN and
ANFIS, can improve the efficiency of data-driven models. Results also indicate that the combination of wavelet decomposition and
data-driven models can be a potential tool for forecasting flood stage more accurately.

Keywords: flood stage forecasting, discrete wavelet decomposition, data-driven methods, artificial neural network, adaptive neuro-

fuzzy inference system, Wavelet-based ANN, Wavelet-based ANFIS
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1. Introduction

Climate change has been alleged to increase extreme hydrological

events, including heavy rainfalls and floods. In South Korea,

weather conditions due to mountainous terrain further exacerbate

these extreme events. Heavy rainfall, especially during a typhoon

event, causes severe flood damages in the downstream region. In

addition to the geographical and hydrological characteristics,

overpopulation, urbanization and industrialization further complicate

flood control and management in South Korea. 

Due to the spatial and temporal variation of the rainfall

distribution and the inordinately complex and highly nonlinear

nature of rainfall-runoff relationship, flood forecasting remains

one of the most challenging and important tasks of operational

hydrology (Chang et al., 2007). Accurate forecasting of the flood

time series is vital for developing flood warning systems, flood

prevention, flood damage mitigation, soil erosion reduction and

soil conservation. Flood forecasting represents a complex

nonlinear problem and hence it is difficult to model. 

For decades, many studies have been carried out for flood

forecasting based on conceptual and stochastic models (Salas et

al., 1985; Brath and Rosso, 1993; Chang and Hwang, 1999; Toth

et al., 1999; Mishra et al., 2004; Calvo and Savi, 2009). Although

conceptual models are reliable in forecasting the important

hydrograph features, implementation and calibration of such

models can have several difficulties, including development of

sophisticated mathematical tools, estimation of many parameters

for modeling and some degree of modeling experience (Duan et

al., 1992; Grayson et al., 1992). Stochastic approaches to flood

forecasting have been undertaken using linear models, including

autoregressive (AR), Autoregressive Moving Average (ARMA),

autoregressive moving average with exogenous inputs (ARMAX),

and nonlinear regression models (Salas et al., 1985; Chang and

Hwang, 1999; Mishra et al., 2004). Applicability of these models

can however be limited to basins with streamflow data measured

for long periods and no significant change in watershed

conditions (Baratti et al., 2003).

Over the past years, data-driven methods have been successfully

developed for modeling non-linear hydrologic systems. Especially,

Artificial Neural Network (ANN) and Adaptive Neuro-fuzzy
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Inference System (ANFIS) have been accepted as effective tools

for flood forecasting (Campolo et al., 2003; Nayak et al., 2005;

Piotrowski et al., 2006; Chang et al., 2007; Chiang et al., 2007;

Kashani et al., 2007; Kim and Kim, 2008; Mukerji et al., 2009;

Deshmukh and Ghatol, 2010; Tiwari and Chatterjee, 2010a;

Nguyen and Chua, 2012; Seo et al., 2013a, 2013b; Patel and

Parekh, 2014; Rezaeianzadeh et al., 2014). The ANN is parallel

computational models that resemble biological neural network

and have better generalization capabilities. The ANFIS, on the

other hand, combines the advantages of both the ANN and fuzzy

inference system (Okkan, 2012). Although ANN and ANFIS

have been used extensively for forecasting hydrological variables,

including streamflow, groundwater, and evaporation, they have

some problems when it comes to deal with non-stationary and

extreme value data. Since a hydrological time series includes

several frequency components and has nonlinear relationships,

hybrid model approaches, which include different data-preprocessing

and combine techniques, have been found to improve the

performance of forecasting models (Okkan, 2012). 

Recently, the combination of wavelet transform and data-driven

models have been successfully applied for flood forecasting

(Adamowski, 2008; Tiwari and Chatterjee, 2010b; Dadu and

Deka, 2013; Sehgal et al., 2014). The wavelet transform is a

data-preprocessing technique that can analyze a signal in both

time and frequency so that it can overcome the drawbacks of the

conventional Fourier transform. The wavelet transform provides

effective decomposition of time series so that decomposed data

can increase the performance of hydrological prediction models

by capturing useful information on different resolution levels

(Nourani et al., 2009; 2011). 

Adamowski (2008) developed a method of stand-alone short-

term spring snowmelt river flood forecasting based on wavelet

and cross-wavelet analysis. The wavelet forecasting method was

compared to Multiple Linear Regression (MLR), Autoregressive

Integrated Moving Average (ARIMA), and Artificial Neural

Network (ANN) analysis for forecasting daily stream flow with

lead times equal to 1, 2, and 6 days. The author found that the

best model for lead times of 1 and 2 days was the wavelet

forecasting model and the best model for lead time of 6 days was

the ANN model. The author also found that the wavelet

forecasting model was not particularly accurate for longer lead

time forecasting such as 6 days.

Tiwari and Chatterjee (2010b) developed a hybrid Wavelet-

Bootstrap-ANN (WBANN) model to explore the potential of

wavelet and bootstrapping techniques for developing an accurate

and reliable ANN model for hourly flood forecasting. The

performance of WBANN model was compared with three

different ANN models, including traditional ANN, wavelet-

based ANN (WANN), and bootstrap-based ANN (BANN). They

found that the overall performance of WBANN model was

accurate and reliable as compared to the other three models.

They revealed that wavelet decomposition improved the

performance of ANN models and the bootstrap resampling

technique produced more consistent and stable solutions.

Dadu and Deka (2013) developed a river flow forecasting

model based on Wavelet And Artificial Neural Network

(WANN) methods. They found that the WANN model gave

better and more consistent results than the ANN model for

almost all lead times. They also found that the WANN model

with db5 mother wavelet gave slightly better results for all lead

times than the WANN model with db4 mother wavelet.

Sehgal et al. (2014) developed two types of Wavelet-Based

Adaptive Neuro-Fuzzy Inference System (WANFIS), including

WANFIS-split data model (WANFIS-SD) and WANFIS-

modified time series model (WANFIS-MS) for forecasting river

water levels with a 1-day lead time. They found that the

proposed models forecasted river water levels accurately and the

WANFIS-SD performed better than the WANFIS-MS for high

flood levels.

This study applies two hybrid models for flood forecasting and

investigates their accuracy for different lead times. These two

hybrid models are the Wavelet-based Artificial Neural Network

(WANN) and the Wavelet-based Adaptive Neuro-Fuzzy Inference

System (WANFIS). The model performance is evaluated for

flood forecasting in Bocheong stream catchment, South Korea,

using standard goodness-of-fit measures. The performance of the

WANN and WANFIS models is compared with that of the

traditional ANN and ANFIS models for different lead times.

2. Methodology

2.1 Wavelet Decomposition

Wavelet analysis is a multi-resolution analysis in time and

frequency domain. The wavelet transform decomposes the time

series signal into different resolutions by controlling scaling and

shifting. It provides good localization properties obtained in both

time and frequency domains (Nejad and Nourani, 2012). 

The Continuous Wavelet Transform (CWT) of a signal  is

defined as (Adamowski and Sun, 2010):

(1)

where s is the scale parameter, τ is the translation parameter, ‘*’

denotes the complex conjugate, and  is the mother wavelet.

The CWT necessitates a large amount of computation time and

resources, while Discrete Wavelet Transform (DWT) requires

less computation time and is simpler to implement than the

CWT. The DWT involves choosing scales and positions, which

are called dyadic scales and positions, based on the power of

two. This is achieved by modifying the wavelet representation as

follows (Adamowski and Sun, 2010):

(2)

where j and k are integers that control the wavelet dilation and
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x t( )

CWTx

Ψ
τ s,( ) 1

s
-------- x t( )Ψ* t τ–

s
---------⎝ ⎠
⎛ ⎞ td

∞–

+∞

∫=

Ψ t( )

Ψj k, t( ) 1

s0
j

----------Ψ
t kτ0s0

j
–

s0
j

------------------⎝ ⎠
⎛ ⎞=

s0 1>



Multistep-Ahead Flood Forecasting Using Wavelet and Data-Driven Methods

Vol. 19, No. 2 / February 2015 − 403 −

for the parameters are:  and  (Nourani et al., 2009).

By the wavelet discretization, the time-scale space can now be

sampled at discrete levels. 

A fast DWT algorithm developed by Mallat (1989) is based on

four filters, including decomposition low-pass, decomposition

high-pass, reconstruction low-pass and reconstruction high-pass

filters. The multi-resolution analysis by Mallat’s algorithm is a

procedure to obtain ‘approximations’ and ‘details’ from a given

signal. An approximation holds the general trend of the original

signal, whereas a detail depicts high-frequency components of it.

By decomposing the approximations successively as shown in

Fig. 1, a multi-level decomposition process can be achieved,

where the original signal is broken down into lower resolution

components (Catalão et al., 2011). Detailed information for

Mallat’s algorithm can be found in Nason (2010).

2.2 Artificial Neural Network

ANN is parallel computing systems that were developed

originally based on the structure and functional aspects of

biological neural networks. Feed-forward ANN comprises a

system of units, analogous to neurons that are arranged in layers

(Imrie et al., 2000). Multilayer Perceptron (MLP) is the most

popular neural network architecture. MLP is typically composed

of several layers of nodes (neurons). An input layer, which is the

first layer, receives external information. The problem solution is

obtained in an output layer which is the last layer. One or more

intermediate layers, which are called hidden layers, separate the

input and output layers. The nodes in adjacent layers are usually

fully connected by acyclic arcs, which are called synapses, from

the input layer to the output layer (Zhang et al., 1998). Fig. 2

shows a general ANN architecture.

To each of the synapses, a weight is attached indicating the

effect of corresponding neurons, and all data pass the neural

network as signals. The signals are processed first by the so-

called integration function combining all incoming signals and

second by the so-called activation function transforming the

output of the neuron (Günther and Fritsch, 2010).

The simplest MLP consists of an input layer with n covariates

and an output layer with one output neuron. It calculates the

following function (Günther and Fritsch, 2010):

(3)

where w0 is the intercept,  is the vector

consisting of all synaptic weights without the intercept, and

 is the vector of all covariates.

Hidden layers can be included to increase the flexibility of the

model. Hornik et al. (1989) showed that one hidden layer is

sufficient to model any piecewise continuous function. The MLP

with a hidden layer and J hidden neurons calculates the

following function (Günther and Fritsch, 2010):

 (4)

where w0j is the intercept of the jth hidden neuron, wj is the

synaptic weight corresponding to the synapse starting at the jth

hidden neuron and leading to the output neuron, 

is the vector of all synaptic weights corresponding to the

synapses leading to the jth hidden neuron, and  is

the vector of all covariants. 

All hidden neurons and output neurons calculate an output of

=  from the outputs of all preceding

neurons, , where g is the integration function, f is the

activation function, and the neuron  is the intercept. The

integration function is often defined as =

= . The activation function is usually a bounded non-

decreasing nonlinear and differentiable function, including the

logistic function or the hyperbolic tangent (Günther and Fritsch,

2010). 
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Fig. 1. Mallat’s Algorithm Demonstration for Four-Level Decompo-

sition of a Signal

Fig. 2. General Architecture of ANN
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2.3 Adaptive Neuro-Fuzzy Inference System

ANFIS is a combination of an adaptive neural network and a

Fuzzy Inference System (FIS). Since this system is based on the

FIS reflecting vague knowledge, an important aspect is that the

system should always be interpretable in terms of fuzzy IF-THEN

rules. The ANFIS can approximate any real continuous function on

a compact set to any degree of accuracy (Jang et al., 1997). There

are two approaches for FIS, namely the approaches of Mamdani

(Mamdani and Assilian, 1975) and Sugeno (Takagi and Sugeno,

1985). The differences between the two approaches arise from the

consequent part. Mamdani’s approach uses fuzzy Membership

Functions (MFs), whereas Sugeno’s approach uses linear or

constant functions. In this study, Sugeno’s approach was used for

flood forecasting. Fig. 3 shows the general ANFIS structure.

The procedure described by Jang et al. (1997) was adopted for

flood forecasting in this study. As a simple example of the

procedure adopted, a FIS with two inputs and one output is

considered. The ANFIS has five layers comprising different

node functions, as shown in Fig. 3. The output of the ith node in

layer 1 is denoted as O1,j. Every node i in layer 1 is an adaptive

node, with  for i = 1, 2 or  for i=3, 4,

where x (or y) is the input to node i, and  (or ) is a

linguistic label (e.g., LOW or HIGH) associated with this node.

The Gaussian MFs for A and B can be written as follows: 

(5)

where  is the parameter set. Parameters in layer 1 are called

premise parameters. Any continuous and piecewise differential

functions, such as triangular-shaped or bell-shaped MFs, are also

qualified candidates for the node function in layer 1 (Jang, 1993).

Layer 2 consists of the nodes labeled by Π, which multiplies
the incoming signals and sends the product out. The output of

layer 2 comprises the membership values of the premise part and

can be written as follows:

(6)

The nodes labeled by N calculate the ratio of the ith rule’s

firing strength to the sum of all rules’ firing strengths in layer 3.

Each node output represents the firing strength of a rule and can

be written as follows:

(7)

where  is the output of layer 3. The outputs of layer 3 are

called normalized firing strengths. The nodes of layer 4 are

adaptive with node functions and can be written as follows:

(8)

where  is the parameter set. The parameters of layer 4

are referred to as consequent parameters. The single fixed node

of layer 5 labeled by Σ computes the final output as the
summation of all incoming signals which can be written as

follows:

(9)

The ANFIS is trained using a hybrid learning algorithm,

combining the least-squares method and the backpropagation

gradient descent method, to adjust the premise and consequent

parameters. In forward pass, the least-squares method is used to

identify consequent parameters. In backward pass, the gradient

descent method is used to propagate the errors backward and

adjust the premise parameters. Detailed information for ANFIS

can be found in Jang (1993). 

2.4 WANN and WANFIS

The WANN and WANFIS models are hybrid models

combining wavelet decomposition and data-driven models.

The WANN model is the conjunction model of wavelet

decomposition and ANN model, whereas The WANFIS model

is the conjunction model of wavelet decomposition and ANFIS

model. The WANN and WANFIS models consist of a two-step

algorithm as follows: 

1. The first step is multi-level wavelet decomposition. The

original time series are decomposed using wavelet transform

after determining the decomposition level. 

2. The second step is training and testing phases using ANN

and ANFIS models. The details and approximation, which

are obtained by the wavelet transform in the first step, are

used as input of the ANN and ANFIS models. 

In this study, DWT was used for decomposing the flood time

series. Fig. 4 shows a flowchart for flood forecasting using the

WANN and WANFIS models.

2.5 Performance Evaluation

The performance of flood forecasting models, including ANN,

ANFIS, WANN and WANFIS models, was evaluated using

seven performance indexes, including the Coefficient of Efficiency

(CE), the index of agreement (d), the coefficient of determination

(r2), the Root-Mean-Square Error (RMSE), the Mean Absolute

Error (MAE), the Mean Squared Error (MSE) and the Mean

Squared Relative Error (MSRE). Performance indexes, CE, d, r2,

RMSE, MAE, MSE and MSRE, can be written as follows

(Dawson and Wilby, 2001):
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Fig. 3. General Architecture of ANFIS
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(10)

(11)

(12)

(13)

(14)

(15)

(16)

where  is the forecasted values,  is the observed values, 

is the mean of the observed values,  is the mean of the

forecasted values, and N is the number of observed values.

3. Case Study

The Bocheong stream catchment in South Korea was chosen

for applying flood forecasting models in this study. As shown in

Fig. 5, the catchment is located in the Geum River basin which is

in the western region of South Korea. The Bocheong stream has

a catchment area of 553.34 km2 and a stream length of 68.04 km.

The catchment has an average elevation of 263.9 m and an

average slope of 32.09%.

Hourly stage data from a streamflow gauging station,

Cheongseong, were obtained from the observation archive of

Water Management Information System (WAMIS), which is

operated by the Ministry of Land, Infrastructure and Transport

(MOLIT), South Korea. Fig. 5 shows the locations of streamflow

gauging stations in the catchment. The collected hourly stage

data were prepared from 1 June to 30 September for a period

between 2006 and 2010. The data were divided into two

parts, data of the first four years for model training and the

remaining data for model testing. 

4. Application and Results

4.1 Analysis

For applying ANN, ANFIS, WANN and WANFIS models for

flood forecasting, appropriate input variables must be selected in

advance. This study used a statistical approach suggested by

Sudheer et al. (2002) to identify the appropriate input variables.

The method is based on the heuristic that the potential variables

corresponding to different lag times can be identified using

statistical analysis, including Cross Correlation Function (CCF),

Autocorrelation Function (ACF) and Partial Autocorrelation
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Fig. 4 Flowchart for WANN and WANFIS

Fig. 5. Study Region and Locations of Stage Gauging Stations
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Function (PACF). Fig. 6 shows ACF and PACF for flood stage

time series used in this study. The ACF, PACF and 95%

confidence band were estimated from 1 to 20 hour lags. The

PACF showed a significant correlation up to 9 hour lags and,

thereafter, fell within the confidence band. The analysis

suggested incorporating the flood stage values up to 9 hour lags

in the input variables. The structure for the ANN and ANFIS

models can be written as follows:

(17)

where  are input variables lagged by j hour ( )

and  are output variables for lead time i hour ( ). 

This study used DWT for decomposing the flood stage time

series into wavelet components. The optimal decomposition

level must be selected beforehand to determine the performance

of the model in the wavelet domain. Many researchers have used

an empirical equation to determine the decomposition level

(Nourani et al., 2009; Tiwari and Chatterjee, 2010b; Adamowski

and Chan, 2011; Belayneh and Adamowski, 2012; Nejad and

Nourani, 2012). In this study, the decomposition level was

determined using the following empirical equation (Nourani et

al., 2009):

(18)

where L is the decomposition level, N is the number of time

series data, and int[·] is the integer-part function. In this study,

four decomposition levels (L = 4) were determined using Eq.

(18). The flood stage times series were decomposed using

Daubechies-10 mother wavelet (db10) and DWT, and sub-time

series of 2-hour mode (D1), 4-hour mode (D2), 8-hour mode

(D3), 16-hour mode (D4); and the approximation modes (A4)

were obtained for the training and testing periods. Fig. 7 shows

flood stage time series and sub-time series. Since the flood stage

time series,  ( ), was decomposed into five sub-

time series components, D1, D2, D3, D4 and A4, a total of 45

sub-time series were used as inputs for WANN and WANFIS

models. The structure for the WANN and WANFIS models can

Qt i+ f Qt 8– Qt 7– Qt 6– Qt 5– Qt 4– Qt 3– Qt 2– Qt 1– Qt, , , , , , , ,( )=

Qt j– j 0 1 … 8, , ,=

Qt i+ i 1 2 … 10, , ,=

L int log N( )[ ]=

Qt j– j 0 1 … 8, , ,=

Fig. 7. Original and Decomposed Time Series (D1, D2, D3 and A3) using db10 Mother Wavelet: (a) Original time series, (b) D1, (c) D2,

(d) D3, (e) D4, (f) A4

Fig. 6. ACF and PACF for Input Structure Identification
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be written as follows:

(19)

where , , , ,  are input variables

( ) and  are output variables for lead time i hour

( ).

For forecasting flood stage values using ANN and WANN

models, the MLP neural network model was used. The number

of nodes in the hidden layer was determined using a trial-and-

error approach from the previous studies of MLP (Kisi, 2007;

Kim et al., 2012; Kim et al., 2013). The optimal size of hidden

nodes was determined by investigating the RMSE values for

different number of hidden nodes from 1 to 20. Fig. 8 shows the

RMSE values for different numbers of hidden nodes. Three

hidden nodes were selected as the optimal size of hidden nodes

with minimum RMSE value. In this study, the ANN and WANN

models were trained using the vanilla backpropagation algorithm

(Bergmeir and Benítez, 2012). The logistic sigmoid activation

function was selected for computing the output of each neuron.

According to the algorithm chosen, the data of input and output

nodes were scaled to the range of [0, 1].

For applying the ANFIS and WANFIS models, the FIS of

Sugeno type was used in this study. The ANFIS model has the

drawback that the number of control rules increases rapidly and

running time also increases exponentially as the number of input

variables and MFs increases. To overcome the drawback, the FIS

structure was generated using the subtractive clustering algorithm

(MathWorks, 2014). The generated FIS was trained using a

hybrid learning algorithm combining the least-squares and

backpropagation gradient descent methods. The ability of the

ANFIS model to achieve the performance goal depends on

predefined internal parameters, including the number and shape

of MFs and the step size (El-Shafie et al., 2007). In this study, we

selected three Gaussian MFs for each input node and a linear

function as output MFs using a trial-and-error approach. Since

the different values of step size did not largely affect the

performance of models, we used default values, initial step size

of 0.01, step size decrease rate of 0.9 and step size increase rate

of 1.1, suggested by MathWorks (2014). 

4.2 Performance Evaluation

In this study, the performance of models applied for flood

forecasting was evaluated using seven performance indexes, CE,

d, r2, RMSE, MAE, MSE and MSRE. Larger values of CE, d

and r2 and smaller values of RMSE, MAE, MSE and MSRE

indicate that the efficiency of a model is higher than that of other

models. 

Figure 9 shows the performance of ANN, ANFIS, WANN and

WANFIS models for different lead times from 1 to 10 hours.

Tables 1-4 summarize the values of performance indexes for the

models. The ANN and ANFIS models yield almost similar results

in terms of performance indexes except for MAE. The values of

MAE of the ANFIS model were slightly lower than those of the

ANN model for all lead times. These indicate that the

performances of the ANN and ANFIS models were similar in

terms of performance indexes.

The values of CE, r2 and d of the WANN and WANFIS models

were higher than those of the ANN and ANFIS models. The

values of RMSE, MAE, MSE and MSRE of the WANN and

WANFIS models were lower than those of the ANN and ANFIS

models. These indicated that the WANN and WANFIS models

were superior to the ANN and ANFIS models in terms of model

efficiency. The WANN and WANFIS models used sub-time

series, decomposed by DWT, as input data of the models, while

the ANN and ANFIS models used original flood time series as

input data of the models without decomposition. These indicated

that the WANN and WANFIS models using sub-time series

decomposed by DWT can yield higher model efficiency than the

ANN and ANFIS models using original flood input data without

wavelet decomposition. These also indicated that using sub-time

series decomposed by DWT as input data of the ANN and

ANFIS models can improve the performance of the models.

The performance of ANN, ANFIS, WANN and WANFIS

models was evaluated for different lead times of 1 to 10 hours.

From Fig. 9, the slopes of curves for CE, d and r2 increased

negatively, while the slopes of curves for RMSE, MAE, MSE

and MSRE increased positively, as the lead time increased. For

CE, d and r2, the slopes of curves for the WANN and WANFIS

models gradually increased negatively, while the slopes of

curves for the ANN and ANFIS models drastically increased

negatively, as the lead time increased. For RMSE and MAE, the

slopes of curves for the ANN and ANFIS models were greater

D1t j– D2t j– D3t j– D4t j– A4t j–

j 0 1 … 8, , ,= Qt i+

i 1 2 … 10, , ,=

Fig. 8. RMSE Estimates for Different Numbers of Hidden Neurons
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than those for the WANN and WANFIS models. For MSE and

MSRE, the slopes of curves for the ANN and ANFIS models

drastically increased positively, while the slopes of curves for the

WANN and WANFIS models gradually increased positively, as

the lead time increased. The differences between the values of

performance indexes for the WANN and WANFIS models and

those for the ANN and ANFIS models significantly increased as

the lead time increased. These indicate that using sub-time series

decomposed by DWT as input data of the ANN and ANFIS

models can improve the performance of the models for different

lead times, and especially for higher lead times. 

For lead times of 1 to 6 hours, the values of CE, d and r2 for the

WANFIS model were slightly greater than those for the WANN

model, and the values of RMSE, MSE and MSRE for the

WANFIS model were slightly lower than those for the WANN

model. For lead time of 7 hours, the values of performance

indexes for the WANN and WANFIS models were similar. For

lead times of 8 to 10 hours, the values of CE, d and r2 for the

WANFIS model were slightly lower than those for the WANN

model and the values of RMSE, MSE and MSRE for the

Fig. 9. Comparison of Model Performance for Different Lead Times: (a) CE, (b) d, (c) r2, (d) RMSE, (e) MAE, (f) MSE, (g) MSRE
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WANFIS model were slightly greater than those for the WANN

model. These indicate that the WANFIS model yielded slightly

better prediction compared with the WANN model for lead times

of 1 to 6 hours, while the WANN model yielded slightly better

predictions compared with the WANFIS model for lead times of

8 to 10 hours.

Figures 10-12 show scatter plots of the ANN, ANFIS, WANN

and WANFIS models for lead times, 1, 3 and 5 hours. Figures

13-15 show stage hydrographs of the models. Standard

deviations around  line (blue line) for the WANN model

were lower than those for the ANN model, and standard

deviations around  line (blue line) for the WANFIS model

y x=

y x=

Table 1. Performance of the ANN Model for Different Lead Times

Lead Time
(hr)

CE d r
2 RMSE

(10−2 m)
MAE
(10−2 m)

MSE
(10−3 m2)

MSRE
(10−6)

Training

1 0.996 0.999 0.996 3.162 1.585 1.000 0.111

2 0.989 0.997 0.989 5.333 1.994 2.844 0.315

3 0.976 0.994 0.977 7.921 2.901 6.274 0.692

4 0.960 0.989 0.960 10.259 3.673 10.524 1.160

5 0.937 0.984 0.938 12.853 4.524 16.521 1.826

6 0.915 0.978 0.917 14.885 4.884 22.155 2.455

7 0.871 0.965 0.872 18.397 6.442 33.845 3.744

8 0.844 0.955 0.846 20.239 7.920 40.963 4.515

9 0.850 0.956 0.852 19.835 7.870 39.341 4.326

10 0.829 0.951 0.829 21.189 8.297 44.896 4.964

Testing

1 0.995 0.999 0.995 3.087 1.579 0.953 0.107

2 0.987 0.997 0.988 5.100 2.203 2.601 0.293

3 0.977 0.994 0.977 6.854 2.871 4.698 0.527

4 0.959 0.990 0.960 9.004 3.738 8.107 0.910

5 0.936 0.984 0.944 11.284 4.708 12.734 1.431

6 0.903 0.977 0.918 13.950 5.420 19.459 2.183

7 0.892 0.974 0.907 14.684 6.225 21.563 2.423

8 0.881 0.969 0.884 15.415 7.505 23.762 2.665

9 0.859 0.964 0.865 16.795 7.889 28.209 3.166

10 0.819 0.956 0.841 19.050 8.587 36.289 4.077

Table 2. Performance of the ANFIS Model for Different Lead Times

Lead Time
(hr)

CE d r
2 RMSE

(10−2 m)
MAE
(10−2 m)

MSE
(10−3 m2)

MSRE
(10−6)

Training

1 0.998 0.999 0.998 2.560 0.730 0.654 0.072

2 0.988 0.997 0.988 5.680 1.560 3.200 0.356

3 0.970 0.992 0.970 8.840 2.470 7.800 0.863

4 0.947 0.986 0.947 11.770 3.380 13.900 1.528

5 0.922 0.979 0.922 14.310 4.270 20.500 2.259

6 0.896 0.972 0.896 16.510 5.100 27.300 3.002

7 0.871 0.964 0.871 18.400 5.890 33.800 3.727

8 0.847 0.957 0.847 20.030 6.630 40.100 4.414

9 0.825 0.950 0.825 21.410 7.330 45.900 5.045

10 0.805 0.943 0.805 22.600 7.990 51.100 5.622

Testing

1 0.997 0.999 0.997 2.460 0.820 0.605 0.068

2 0.988 0.997 0.989 4.840 1.620 2.300 0.263

3 0.974 0.994 0.976 7.200 2.490 5.200 0.582

4 0.956 0.989 0.960 9.380 3.370 8.800 0.987

5 0.936 0.985 0.942 11.310 4.210 12.800 1.438

6 0.915 0.980 0.924 13.040 5.010 17.000 1.911

7 0.894 0.974 0.906 14.580 5.790 21.300 2.390

8 0.873 0.969 0.888 15.930 6.510 25.400 2.853

9 0.853 0.965 0.871 17.130 7.210 29.400 3.301

10 0.834 0.960 0.855 18.230 7.840 33.200 3.738
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were lower than those for the ANFIS model, for different lead

times. When  lines (red lines) fitted to the scatter

graphs were examined for the models, ‘a’ for the WANFIS

model get closer to the value 1, and ‘b’ for the WANFIS

model get closer the value 0, for different lead times. These

indicated that the WANFIS and WANN models yielded better

prediction compared with the ANN and ANFIS models for

different lead times. These also indicated that wavelet

decomposition can improve the efficiency of the ANN and

ANFIS models. 

y ax b+=

Table 3. Performance of the WANN Model for Different Lead Times

Lead Time
(hr)

CE d r
2 RMSE

(10−2 m)
MAE
(10−2 m)

MSE
(10−3 m2)

MSRE
(10−6)

Training

1 0.998 0.999 0.998 2.187 1.152 0.478 0.053

2 0.996 0.999 0.996 3.083 1.606 0.950 0.106

3 0.994 0.998 0.994 3.977 2.205 1.582 0.175

4 0.990 0.997 0.991 5.160 2.684 2.663 0.296

5 0.987 0.997 0.987 5.897 2.942 3.478 0.387

6 0.980 0.995 0.981 7.201 4.107 5.185 0.576

7 0.976 0.994 0.976 7.890 4.014 6.225 0.694

8 0.964 0.991 0.967 9.745 4.891 9.497 1.060

9 0.960 0.990 0.960 10.276 5.051 10.560 1.175

10 0.948 0.986 0.950 11.708 6.781 13.708 1.525

Testing

1 0.997 0.999 0.998 2.263 1.216 0.512 0.058

2 0.995 0.999 0.995 3.189 1.641 1.017 0.115

3 0.992 0.998 0.992 4.093 2.217 1.675 0.188

4 0.985 0.996 0.986 5.512 2.897 3.038 0.342

5 0.979 0.995 0.980 6.532 3.165 4.267 0.479

6 0.973 0.993 0.974 7.326 4.170 5.367 0.601

7 0.965 0.991 0.965 8.385 4.243 7.031 0.789

8 0.952 0.988 0.961 9.842 5.324 9.686 1.090

9 0.945 0.986 0.948 10.521 5.314 11.070 1.243

10 0.929 0.982 0.932 11.905 7.205 14.173 1.592

Table 4. Performance of the WANFIS Model for Different Lead Times

Lead Time
(hr)

CE d r
2 RMSE

(10−2 m)
MAE
(10−2 m)

MSE
(10−3 m2)

MSRE
(10−6)

Training

1 0.999 0.999 0.999 0.680 0.240 0.046 0.005

2 0.999 0.999 0.999 1.510 0.540 0.227 0.025

3 0.998 0.999 0.998 2.450 0.880 0.602 0.067

4 0.996 0.999 0.996 3.410 1.270 1.200 0.128

5 0.993 0.998 0.993 4.300 1.650 1.800 0.205

6 0.989 0.997 0.989 5.300 2.080 2.800 0.312

7 0.984 0.996 0.984 6.510 2.610 4.200 0.471

8 0.977 0.994 0.977 7.790 3.130 6.100 0.674

9 0.969 0.992 0.969 9.060 3.700 8.200 0.913

10 0.959 0.989 0.959 10.410 4.290 10.800 1.205

Testing

1 0.999 0.999 0.999 0.960 0.330 0.093 0.010

2 0.998 0.999 0.998 2.000 0.720 0.399 0.045

3 0.995 0.999 0.995 3.030 1.110 0.917 0.103

4 0.992 0.998 0.992 4.110 1.530 1.700 0.191

5 0.986 0.997 0.987 5.240 1.990 2.700 0.309

6 0.981 0.995 0.981 6.200 2.470 3.800 0.432

7 0.965 0.991 0.966 8.380 3.150 7.000 0.789

8 0.949 0.987 0.951 10.090 3.750 10.200 1.141

9 0.934 0.984 0.937 11.520 4.390 13.300 1.488

10 0.916 0.979 0.922 13.000 5.040 16.900 1.896
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Fig. 10. Scatter Plots (lead time = 1 hr): (a) ANN, (b) ANFIS, (C) WANN, (d) WANFIS

Fig. 11. Scatter Plots (lead time = 3 hr): (a) ANN, (b) ANFIS, (c) WANN, (d) WANFIS
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Fig. 12. Scatter Plots (lead time = 5 hr): (a) ANN, (b) ANFIS, (c) WANN, (d) WANFIS

Fig. 13. Stage Hydrographs (lead time = 1 hr): (a) ANN, (b) ANFIS
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Fig. 13. continued: (c) WANN, (d) WANFIS

Fig. 14. Stage Hydrographs (lead time = 3 hr): (a) ANN, (b) ANFIS
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Fig. 14. continued: (a) WANN, (d) WANFIS

Fig. 15. Stage Hydrographs (lead time = 5 hr): (a) ANN, (b) ANFIS



Multistep-Ahead Flood Forecasting Using Wavelet and Data-Driven Methods

Vol. 19, No. 2 / February 2015 − 415 −

5. Conclusions

This study applies two hybrid models, the Wavelet-based

Artificial Neural Network (WANN) and the Wavelet-Based

Adaptive Neuro-Fuzzy Inference System (WANFIS), the flood

forecasting in the Bocheong stream catchment, South Korea. It

then evaluates the forecast accuracy of these models for different

lead times, based on seven performance indexes, including the

Coefficient of Efficiency (CE), the index of agreement (d), the

coefficient of determination (r2), the Root-Mean-Square Error

(RMSE), the Mean Absolute Error (MAE), the Mean Squared

Error (MSE) and the Mean Squared Relative Error (MSRE). 

The WANN and WANFIS models yield better results than do

the ANN and ANFIS models for different lead times. In terms of

model efficiency, the WANFIS model is found to be superior to

other models for lead times of 1 to 6 hours, and the WANN

model is found to be superior to other models for lead times of 8

to 10 hours. The WANN and WANFIS models yield similar

results and are superior to other models for lead time of 7 hours.

Results show that the combination of wavelet decomposition and

data-driven models, including the ANN and ANFIS, can improve

the efficiency of data-driven models. Results also indicate that

the combination of wavelet decomposition and data-driven

models can be a potential tool for accurate forecasting flood

stage.

For further studies, the WANN and WANFIS models can be

applied to forecasting hydrological variables of other watersheds

under different climate, geographical and hydrological conditions.

It is suggested to develop hybrid models combining wavelet

decomposition with other data-driven models and evolutionary

algorithms for forecasting hydrological variables with non-

stationary and non-linear relationships. 
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