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Abstract

Due to the presence of solid matter in the flow passing through sewer pipes, determining the minimum velocity that prevents
sediment deposition is essential. In this study, the Multilayer Perceptron (MLP) network optimized with three different training
algorithms, including variable learning rate (MLP-GDX), resilient back-propagation (MLP-RP) and Levenberg-Marquardt (MLP-
LM) is studied in terms of ability to estimate sediment transport in a clean pipe. The results indicate that for all algorithms, model
ANN(d) that uses volumetric sediment concentration (CV), median relative size of particles (d/D), ratio of median diameter particle
size to hydraulic radius (d/R) and overall sediment friction factor (λs) as input parameters, is more accurate than the other models. In
predicting Fr, the results of MLP-LM (R2 = 0.98, RMSE = 0.02 and MAPE = 5.13) are better than MLP-GDX (R2 = 0.96, RMSE =
0.03 and MAPE = 5.9) and MLP-RP (R2 = 0.95, RMSE = 0.26 and MAPE = 5.74). A comparison of the model selected in this study
with existing equations of sediment transport in sewer pipes also indicates that ANN(d)-LM (RMSE = 0.025 & MAPE = 5.78)
perform better than existing equations.
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1. Introduction

Among the essential topics regarding sediment transport in

sewer pipes is the deposition of suspended sediment in the inlet

to the pipe. The pipe diameter must be determined such that it

results in the capability to simultaneously transfer maximum

discharge and minimum discharge without deposition. Solid

deposition on the channel bed increases the bed’s roughness and

decreases the cross sectional area of the flow. A decrease in the

flow cross sectional area leads to local flooding or surcharge,

thus creating a septic condition that causes problems such as odor

(Bonakdari and Larrate, 2006). One of the simplest methods of

designing sewer pipes is to use minimum velocity and shear

stress. However, in view of the fact that this method does not

consider the factors affecting flow transfer (e.g., flow and

sediment characteristics), it may lead to over or under design

(Ebtehaj et al., 2014). Therefore, different researchers have

considered the parameters influencing flow transfer and presented

various equations for determining the minimum velocity needed

to transfer flow without deposition (Macke, 1982; Nalluri, 1985,

Mayerle et al., 1991; May, 1993; Ota and Nalluri, 2003). In new

design criteria, known as self-cleansing design, the minimum

velocity required to prevent sediment deposition is considered

such that it minimizes the construction, performance, and

maintenance costs simultaneously so as to make the design

economical (Butler et al., 2003). At limit of deposition, the aim is

to determine the minimum velocity required to prevent sediment

deposition. This concept is sometimes referred to as “no-

deposition.” However, for bed deposition, the essential minimum

velocity is determined for conditions in which a maximum of 2%

deposition is permissible (Butler et al., 2003).

Numerous researchers have attempted to study sediment

transport in pipe channels by conducting different theoretical

analyses and experimental works on non-cohesive sediment

transport in channels. Ackers et al. (1996) assumed different

hydraulic conditions to control the problems caused by sedimentation

and presented a method of designing sewers. Ota and Nalluri

(2003) used physical concepts and proposed a new model for

economically designing large-diameter sewer pipes (D > 500

mm). Based on experimental results for partial and non-cohesive

sediment deposits in pipes, Banasiak (2008) examined deposited

sediment behavior in sewers and its effects on hydraulic

performance. It was found that an increase in sediment depth

from 2 to 10% results in significant transport capacity reduction

(10-20%) relative to the clean pipe. For designing sewers with

allowable sediment depth proposed in the new concept of self-

cleansing, Butler et al. (2003) suggested that the appearance of

bed forms must be avoided. Almedeij and Almohsen (2010)

made a number of remarks on Camp’s criterion in order to

present a more flexible equation with respect to the required
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minimum velocity used in Kuwait. Vongvisessomjai et al. (2010)

conducted a number of experiments under partially full flow

conditions and presented a new criterion for the non-deposition

state. Almedeij (2012) presented a new designing criterion for

rectangular sewers under equal sediment mobility conditions.

Ota and Perrusquia (2013) used the limit of deposition concept

and offered an equation for calculating dimensionless bed shear

stress in pipe channels. Bong et al. (2013) examined existing

incipient motion equations by conducting a series of experiments

and understood that as the bed roughness increases, the existing

equations become less accurate. They presented an equation for

incipient motion by considering the effects of bed thickness.

Using dimensionless parameters and the smoothing function,

Bonakdari and Ebtehaj (2014) proposed a different relation to

estimate Fr in sewers using a smoother function. It was found

that the smoother function leads to more accurate Fr estimation.

Using a wide range of data and regression analysis, Ebtehaj et al.

(2014) modified Vongvisessomjai’s (2010) equation. Based on

critical velocity and regression models, Bong et al. (2014)

expanded the incipient motion equation and designed a chart to

determine the minimum velocity for a self-cleansing design of

rectangular storm water.

Artificial Intelligence (AI) and especially Artificial Neural

Network (ANN) perform efficiently in complex engineering

problems, which has led to these methods being widely used in

hydrology and water engineering (Schulz et al., 2005; Nour et

al., 2006; Alp and Cigizoglu, 2007; Nourouzi et al., 2011;

Azamathulla and Zakaria, 2011; Bonakdari et al., 2011; Baghalian

et al., 2012; Ebtehaj and Bonakdari, 2013; Ebtehaj and Bonakdari,

2014). Nagy et al. (2002) used ANN and the back propagation

training algorithm, and presented a model capable of predicting

sediment load concentration in a river. They also evaluated the

proposed model using data on different rivers. Sarangi and

Bhattachayra (2005) compared two geomorphology-based (GANN)

and non-geomorphology based (NGANN) types of neural

networks in predicting the sediment load from the Banha

Watershed in India. They observed that GANN presents better

results than NGANN. Alp and Cigizoglu (2007) used Radial

Basis Functions (RBF) and Feed-Forward Back-propagation (FFBP)

algorithms to train ANN in order to estimate the load of

suspended sediment. They showed that both algorithms present

better results than multiple linear regression. Partal (2009) used

Wavelet to train ANN to predict river flow. Partal compared the

prediction results of this algorithm with those of the feed-

forward back-propagation, Radial Basis Function (RBF), and

Generalized Neural Network (GNN) and found that the presented

model is superior to the rest. Melesse et al. (2011) compared

different methods including ANN, Autoregressive Integrated

Moving Average (ARIMA) and multi-linear and non-linear

regression (MLR and LNLR) in predicting time series and came

to the conclusion that ANN benefits from greater capability of

predicting suspended sediment load compared with MLR, MNLR,

and ARIMA.

Three different algorithms, namely Multi-Layer Perceptron

(MLP) including variable learning rate (MLP-GDX), resilient

back-propagation (MLP-RP) and Levenberg–Marquardt (MLP-

LM) are used for training to predict the densimetric Froude

number (Fr) in this study. The factors influencing sediment

transport in sewer pipes are first examined, determined, and

eventually placed in five different groups. Subsequently, the

dimensionless parameters presented in these groups will be used

and the Fr parameter is predicted using the dimensionless

parameters presented in other dimensionless groups. The results

of the model presented in this study will also be compared with

existing sediment transport equations.

2. Existing Sediment Transport Equations

Equations of non-cohesive sediment transport in sewer pipes

can be divided into two general groups: semi-experimental equations

and dimensional analysis. The equations obtained from dimensional

analysis can further be divided into three different groups depending

on the use of different affective parameters. Novak and Nalluri

(1975) presented the equations below by simultaneously using

transport parameter ϕ, flow parameter ψ and the Darcy-Weisbach

resistance equation (S0 = λsV
2/8gR). 

(1)

(2)

(3)

where CV is volumetric sediment concentration, R is hydraulic

radius, V is flow velocity, λs is overall sediment friction factor, s

is the specific gravity of sediment, d is the median diameter of

particles and S0 is the channel slope.

The second group contains equations similar to the equations

presented by Novak and Nalluri (1975), except they use the

dimensionless particle number Dgr (=d(g(s-1)/ν
2)1/3) parameter in

addition to the parameters used in the previous group. Azamathulla

et al.’s (2012) equation is as follows:

(4)

where λs is calculated as shown below using the equation

presented by Nalluri and Kithsiri (1992): 

(5)

where λc is the clear water friction factor of the channel.

The third group considers dimensionless parameters affecting

Fr prediction through the following equation, as presented by

Ebtehaj et al. (2014):

(6)
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May et al. (1996) used 7 different sets of data (Macke, 1982;

May et al., 1989; Mayerle et al., 1991; May, 1993; Ab Ghani,

1993; Nalluri et al., 1994) and presented the following equations

as the best known sediment transport equations at limit of

deposition (Ackers et al., 1996). Vongvisessomjai et al. (2010)

have also used them to verify their own equations.

(7)

(8)

where CV is volumetric sediment concentration, A is cross-

sectional area of the flow, D is the pipe diameter, V is the flow

velocity, d is the median diameter of particle size, Vt is the

velocity required for incipient motion of the sediment, and y is

the depth of flow.

3. Data Used

The experimental data relating to sediment transport in non-

deposition mode employed in this article include Ab Ghani’s

(1993) data, which were used for training the model and

Vongvisessomjai et al.’s (2010) data, which served to verify the

model. Ab Ghani employed three different pipes with 154, 305, and

450 mm diameter and constant length of 20.5 m to conduct

experiments. The hydraulic parameter ranges examined by Ab

Ghani (1993) are as follows: 0.24 < V (m/s) < 1.216; 1 < CV (ppm)

< 145; 0.072 < d (mm) < 8.3; 0.033 < R (m) < 0.136, 0.153 < y/D <

0.8 and 0.0007 < S0 < 0.0056. Vongvisessomjai et al. (2010)

conducted experiments with two pipes that were different from

those of Ab Ghani (1993). The pipes were 16 meters long and had

diameters of 100 and 150 mm. The ranges of parameters measured

were: 0.237 < V (m/s) < 0.626; 4 < CV (ppm) < 90; 0.2 < d (mm) <

0.43; 0.032 < R (m) < 0.012, 0.2 < y/D < 0.4 and 0.002 < S0 < 0.006.

4. Neural Network Training Algorithms

Variable learning rate, resilient back-propagation, and Levenberg-

Marquardt are the three algorithms used in this study to train the

neural network. The major objective of training the neural network is

to minimize the global error (E), which is defined as follows:

(9)

where p is the total number of training patterns and Ep is the

training pattern (p) error defined as:

(10)

where tk and ok are the target and network output for the k
th output

node (respectively) and n is the total number of output nodes.

The main goal of all algorithms presented next is to reduce the

global error value using different weights and biases (Kisi, 2007).

4.1 Variable Learning Rate Algorithm

The training rate remains constant during the neural network

training process by employing standard steepest descent. Gradient

descent is expressed as follows: 

(11)

where xk is a vector of current biases and weights, αk is the

learning rate and gk is the current gradient.

This algorithm’s performance is especially sensitive to training

rate selection, such that an excessively low training rate leads to

algorithm convergence that takes a long time. Meanwhile,

selecting an excessively large value leads to instability. It is

impractical to determine optimal specifications for the learning

rate before the training process begins. In fact, the optimal

learning rate changes during the training process with respect to

the algorithm’s performance level. Using an adaptive learning

rate can yield the maximum learning rate, which in turn leads to

stable learning. By using an adaptive learning rate, we attempt to

use the largest possible value of the learning step size until

learning becomes stable.

4.2 Resilient Back-propagation Algorithm

Sigmoid activation function is commonly used within the

hidden layers in multi-layer networks. Since these sorts of

functions compress the infinite input range into a finite output

range, they are commonly called squatting functions. Sigmoid

functions are described such that their slope must get close to

zero as the input gets larger.

The small magnitude of the gradient causes changes in the

magnitude of biases and weights when the steepest descent is

used to train a multi-layered network along with the sigmoid

function. The probability of achieving optimal values of

weights and biases will therefore decrease (Riedmiller and

Braun, 1993). The resilient back-propagation algorithm is

presented for the purpose of eliminating the effects of

magnitudes of partial derivatives which prevent attaining the

optimal global error. Only the sign of the derivative affects the

direction of the updated weight in this algorithm and the

magnitude of the derivative has no effect on it. The weight

change size is determined using separately updated values. To

do so, a wij with a ∆ij(p) individual updated value is defined for

each weight that determines the size of the updated weight

only. Therefore, a secondary training rate which determines the

evaluation of the updated value ∆ij(p) is presented. This secondary

rate is presented below based on the partial derivatives’

behavior in two consecutive weight steps:

(12)

(13)
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where ∆ij(p) is an individual update value for each weight wij, wij

is the weight from neuron j to neuron I and E is the global error

function.

4.3 Levenberg–Marquardt Algorithm

The Levenberg-Marquardt algorithm is used to train the

network with a second-order algorithm without the need to

calculate the Hessian matrix (More, 1977). The Hessian matrix

and gradient can be approximated as shown below in case the

performance function is in the form of the sum of squares, as it is

often found in training feed-forward networks:

(14)

(15)

where J is the Jacobian matrix, which includes the first derivatives

of network error with regard to biases and weights, and e is the

error vector of the network. The Jacobian matrix can be

calculated through standard back-propagation method, which

entails fewer calculations compared with calculating the Hessian

matrix. From the approximation presented for the Hessian

matrix, the Levenberg-Marquardt algorithm uses the Newton-

like equation as follows:

(16)

If the numerical value of µ is equal to zero in the above-

mentioned equation, this equation will turn into a Newton

equation obtained through Hessian matrix approximation. If µ is

a greater number, it decreases to gradient descent with step size.

The Newton method is close to the least amount of error and it is

therefore faster and more accurate. So the aim is to move as fast

as possible toward the Newton method. Therefore, µ decreases

after each successful step (performance function decrease) and it

increases only when the tentative test stage increases the

performance function. Thus, the performance function decreases

per interaction.

5. Application and Results

5.1 Development of Densimetric Froude Number Models

In order to determine the minimum velocity to prevent sediment

deposition in sewer pipes, the hydraulic parameters affecting it

must normally be examined. Research works conducted indicate

that the most important hydraulic parameters for sediment

transport in a pipe are flow velocity (V), volumetric sediment

concentration (CV), pipe diameter (D), dimensionless particle

number (Dgr), median diameter of particle size (d), hydraulic

radius (R), depth of flow (y), overall sediment friction factor (λs),

cross sectional area of the flow (A) and the specific gravity of

sediment (s) (Ab Ghani, 1993; May et al., 1996; Ebtehaj et al.,

2014). Consequently, the dimensionless parameters can be

classified in different groups including motion, transport, transport

mode, sediment and flow resistance as illustrated in Table 1. The

“motion”, “transport”, and “flow resistance” groups consider only

one parameter each, Fr, CV and λs respectively. The median

relative size of particles (d/D), dimensionless particle number

(Dgr) and specific gravity of the sediment (s) parameters are

related to the “sediment” group, while the square of the pipe

diameter to the cross sectional area of the flow (D2/A), the ratios

of hydraulic radius to the median diameter particle of size (R/d)

and the ratio of relative depth of flow (y/d), which is usually

replaced by the R/d ratio, are related to the “transport” group.

The six groups are presented below for the purpose of examining

the effect of different dimensionless parameters on predicting the

Fr. 

ANN (a): Fr = f(CV, Dgr, d/R, λs)

ANN (b): Fr = f(CV, Dgr, D
2/A, λs)

ANN (c): Fr = f(CV, Dgr, R/D, λs)

ANN (d): Fr = f(CV, d/D, d/R, λs)

ANN (e): Fr = f(CV, d/D, D
2/A, λs)

ANN (f): Fr = f(CV, d/D, R/D, λs)

In order to apply a neural network, MATLAB software is used

for coding. One of the most important issues with ANNs is

selecting proper architecture. It is essential to use a particular

type of architecture for each specific problem in ANN. Considering

the complexities of a problem, this architecture must directly

affect the computational complexity and must be capable of

generalizing that network (Jain et al., 2008). The number of

input and output parameters depends on the type of problem. In

this case there is no specific method to determine the number of

hidden layers and the number of nodes in them. Therefore, the

network architecture is determined through trial and error

(Sudheer and Jain, 2004; Shahin et al., 2008; Ebtehaj and

Bonakdari, 2013). The input layer used in this study to estimate

Fr contains 4 input parameters that are presented in models

ANN(a) to ANN(f). Considering that the topology of the

network employed is of special importance in the calculations,

determining an adequate architecture for the intended problem

can significantly affect the prediction results. In view of the fact a

multilayer neural network can have more than one hidden layer,

but using one hidden layer often presents desirable results in

complex nonlinear problems (Hornik et al., 1989; Jalili-Ghazi

Zade and Noori 2008; Noori et al., 2010), one hidden layer was

used in this study.

Taking into account that using actual and non-normalized data

may lead to obtaining undesirable results when predicting the

intended parameter, the utilized data (test and train) are normalized

before modeling. The data will ultimately be anti-normalized

H J
T
J=

g J
T
e=

xk 1+ xk J
T
J µI+[ ]

1–

J
T
e–=

Table 1. Dimensionless Sediment Transport Parameters in Clean

Pipes

Parameter type Dimensionless groups

Movement Fr

Transport CV

Sediment Dgr, d/D, s

Transport mode d/R, D2/A, d/y, R/D

Flow resistance λs
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after modeling ends. The following equation is used to normalize

the data in this study:

(17)

where xmax and xmin are the maximum and minimum values of the

data respectively; xi is the data intended to normalize; and the a

and b parameters are fixed values that may differ depending

between which numbers the normalization range rests. Because

there is no standard method for normalizing data (Dawson and

Wilby, 1998), the normalization range of parameters in this study

considered is [0.2 0.8] as suggested by Cigizoglu’s (2003).

Therefore, the values of a and b are 0.6 and 0.2 respectively.

Eighty percent (109 data) of Ab Ghani’s (1993) data, which

were randomly selected from among 137 data, served to train the

ANN using the three algorithms presented in this article, and the

remaining 20% of data (28data) were used to test the model.

Then Vongvisessomjai et al.’s (2010) experimental data set was

used to validate the presented models in order to examine the Fr

prediction accuracy of the different models.

There are 4 neurons in the input layer of each model presented

in this study (ANN(a) to ANN(f)). First, the number of hidden

layer neurons was assumed to be 1, after which this number was

increased up to 20. It is clear that compared with other states, 10

hidden layer neurons is optimum for all models. Since the sigmoid

activation function is highly accurate in predicting sediment

transport at limit of deposition (Ebtehaj and Bonakdari, 2013),

the MLP neural network structure is constructed with this

activation function. The results indicate the superior performance

of tangent sigmoid function over the logistic sigmoid. This has

been approved in recent research conducted by Rezaeian Zadeh

et al. (2010) and Yonaba et al. (2010).

5.2 Discussion

Coefficient of determination (R2), root mean absolute error

(RMSE) and mean absolute percentage error (MAPE) statistical

indexes are used to examine the performance of the ANN(a) to A

NN(f) models for all three algorithms presented in this study:

(18)

(19)

(20)

The above-mentioned statistical indexes are used to quantitatively

examine the predictions carried out by the MLP neural network.

The MLP neural network served to predict the Fr value for each

different model. Three different algorithms, including variable

learning rate (MLP-GDX), resilient back-propagation (MLP-

RP), and Levenberg-Marquardt (MLP-LM) were employed to

train this type of ANN. Therefore, 18 different models are

presented in this study. The results obtained from the predictions

carried out by all models using the statistical indexes are given in

Table 2. As demonstrated in this table, compared with the other

models, ANN(d) is the most accurate for the three learning

algorithms presented in the current study. In this model, the

effective parameters in Fr evaluation considered are volumetric

sediment concentration (CV), proportion of particles’ mean

diameter to pipe diameter (d/D), relative depth of flow (R/d) and

overall sediment friction factor (λs). As the table shows, in

training MLP networks the LM algorithm yields better results for

ANN(d) (the best model) than the other algorithms (R2 = 0.98,

RMSE = 0.02 and MAPE = 5.13%). Therefore, it can be stated

that the d/D parameter produces better results than other

dimensionless parameters in the sediment group and the d/R

parameter produces better results in the transport mode dimensionless

group.

Accordingly, compared to the two other algorithms, i.e. variable

learning and resilient back-propagation, the Levenberg-Marquardt

(LM) algorithm is more accurate in estimating the Fr. First-order

methods use a linear local approximation of error space while

second-order methods use quadratic approximation. The LM

training algorithm is a second-order gradient method. As previously

mentioned, it utilizes second-order derivatives (Hessian matrix)

and may be effective under certain conditions. Not only is the

Levenberg-Marquardt algorithm more accurate than the other

two algorithms, but its convergence speed is also higher so much

so that the number of epochs the algorithm uses in this study is

equal to 100 while the other two algorithms use 1000.

Figure 1 illustrates the results of examining the Fr predicted by

the models using LM. It is evident that the error of model
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i
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Table 2. Validation of ANN Models for Different Training Algorithms

using Statistical Indexes 

Models R2 RMSE MAPE

ANN (a) - GDX 0.94 0.0314 6.85

ANN (b) - GDX 0.94 0.0431 6.56

ANN (c) - GDX 0.92 0.0423 6.96

ANN (d) - GDX 0.96 0.0298 5.90

ANN (e) - GDX 0.90 0.0569 7.21

ANN (f) - GDX 0.87 0.0428 9.26

ANN (a) - RP 0.95 0.0353 6.95

ANN (b) - RP 0.95 0.0471 7.12

ANN (c) - RP 0.93 0.0557 8.05

ANN (d) - RP 0.95 0.0264 5.74

ANN (e) - RP 0.91 0.0579 8.52

ANN (f) - RP 0.88 0.0631 9.84

ANN (a) - LM 0.97 0.0288 6.54

ANN (b) - LM 0.96 0.0317 6.95

ANN (c) - LM 0.96 0.0302 6.54

ANN (d) - LM 0.98 0.0200 5.13

ANN (e) - LM 0.96 0.0325 6.99

ANN (f) - LM 0.96 0.0318 8.53
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ANN(b) is greater than 10%. This entails overestimated values

that lead to a non-economical design due to the large error. In

almost all samples, model ANN(e) predicts higher Fr than the

observed value; therefore, it causes a condition similar to that of

model ANN(b). Models ANN(c), ANN(a), and ANN(f) have

mean relative errors of 6.54%, 6.54%, and 8.53% (respectively)

and make better predictions than ANN(e) and ANN(b). Although

their mean relative errors are greater, they bear a relative error

greater than 10% at some points while ANN(d) estimates Fr

values with a relative error less than 10% while its least mean

relative error is approximately 5.13%.

Model ANN(d)-LM, which is more accurate in predicting Fr

than other models presented in this study, is compared with

existing equations in Fig. 2. Vongvisessomjai et al.’s experimental

results (2010), which had no role in training ANN, were used to

do so. The value of Fr predicted by model ANN(d)-LM has a

relative error of less than 10% in almost all cases. The examinations

carried out using the statistical indexes signify this model

performed well (RMSE = 0.025 & MAPE = 5.78). The values of

these indexes are almost equal to their values when we used Ab

Fig. 1. Validation of the Fr Predicted by the Different ANN-LM Models using Observed Values (Ab Ghani’s data)
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Ghani’s data (Table 1). The equations presented by May et al.

(1996) and Novak and Nalluri (1975) have low accuracy, with

mean relative error of 21.7% and 34.3% (respectively) while the

maximum relative error value of the ANN(d)-LM model presented

in this study is nearly 10%. Azamathulla et al.’s (2012) equation

often overestimates the Fr; therefore, using this equation results in

sediment deposit in the sewer. Thus, considering the explanations

in Fig. 2 and Table 2, it can be stated that compared with other

existing methods, the model presented in this study (ANN(d)-

LM) can predict Fr fairly accurately.

Since ANN(d)-LM had the best results, Fr can be calculated

with the following equation:

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

6. Conclusions

The capability of a Multilayer Perceptron (MLP) network

optimized with three training algorithms, including variable

learning rate (MLP-GDX), resilient back-propagation (MLP-

RP) and Levenberg–Marquardt (MLP-LM) to predict sediment

transport in sewer pipes is investigated. In this study, a

multilayer perceptron (MLP) network optimized with three

training algorithms was used to estimate sediment transport at

limit of deposition. The training algorithms utilized were

variable learning rate (MLP-GDX), resilient back-propagation

(MLP-RP) and Levenberg–Marquardt (MLP-LM). Different

models were used to examine the effect of various dimensionless

parameters on predicting the Fr. The parameters related to the

“transport” (CV) and “flow resistance” (λs) groups were

constant in all these models and the effects of the parameters

related to the “sediment” (Dgr, d/D) and “transport mode” (d/

R, R/D, D2/A) groups were examined. Thus, 6 different groups

were presented. 

The results of the examinations carried out using different

statistical indexes indicate that the ANN(d) model, which considers

the influential parameters to be volumetric sediment concentration

(CV), relative depth of flow (R/d), proportion of median diameter

of particles to pipe diameter (d/D) and overall sediment friction

factor (λs) predicted the Fr more accurately than the other

models (ANN(d)-LM). The values of the statistical indexes for

this model are MAPE = 5.13% and RMSE = 0.02. Also, the

results of comparing all three algorithms used indicate that MLP-

LM mostly produced better results for all models compared with

MLP-GDX and MLP-RD. Subsequently, a set of data that had

no role in the current model was used from Vongvisessomjai et

al.’s (2010) data set in order to examine the accuracy of the

presented model. The results indicate there was no significant

change in prediction accuracies, which shows the flexibility of

this model in different data sets. Comparing the present model

with existing sediment transport equations signifies that ANN(d)-

LM is more accurate.

Fr purelin sig input iw b1+×( )tan( ) lw× b2+( )=

input CV  d D⁄  d R⁄  λs, , ,[ ]=

purelin x( ) x=

sig x( )tan
2

1 e
2x–

+
---------------- 1–=

iw

3.03 3.10 3.36 0.97– 2.82– 0.72– 0.42 1.95 0.89 0.75

0.52– 0.71 7.55 0.87– 0.52 1.02 1.97– 1.21– 1.03– 1.72–

5.06 1.85 4.47– 3.06 1.51– 1.38– 0.02 3.05 1.11 0.56–

0.86– 1.77– 0.25– 3.52 1.23– 2.79– 0.41– 1.30 3 1.61–

=

lw

5.21–

0.16–

4.29

3.59–

0.09–

1.07

0.22

0.38

2.12

0.96

=

b1 7.75  3.43  – 7.14  2.48  – 0.73  2.31  – 0.33  0.98  2.96  – 3[ ]=

b2 0.85–[ ]=
Fig. 2. Comparison of Fr Predicted by the ANN(d)-LM Model with

Existing Sediment Transport Equations using Vongvisessom-

jai et al., 2010’s Data

Table 3. Comparison of Existing Sediment Transport Equations

and ANN(d)-LM Model using Vongvisessomjai et al.’s

(2010) Data

RMSE MAPE (%)

ANN(d) - LM 0.025 5.78

Novak and Nalluri (1975) 0.118 34.30

May et al. (1996) 0.183 13.74

Azamathulla et al. (2012) 0.039 21.70

Ebtehaj et al. (2014) 0.032 7.63
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