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Abstract

The paper presents an extension of the Edge-based Smoothed Finite Element Method (ES-FEM-T3) using triangular elements for
the dynamic response analysis of two-dimension fluid-solid interaction problems based on the pressure-displacement formulation. In
the proposed method, both the displacement in the solid domain and the pressure in the fluid domain are smoothed by the gradient
smoothing technique based on the smoothing domains associated with the edges of the triangular elements. Thanks to the softening
effect of the gradient smoothing technique used in the ES-FEM-T3, the numerical solutions for the coupled systems by the ES-FEM-
T3 are improved significantly compared to those by some other existing FEM methods. 
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1. Introduction

Thanks to various practical applications in civil engineering, the

dynamic response analysis of the two-Dimension (2D) Fluid-Solid

Interaction (FSI) systems subjected to dynamic loads has attracted

much interest of scientific community. Such typical examples of

these FSI problems can be listed such as the interaction between

the dam and reservoir during seismic loads or the interaction

between the fluid and the container under dynamic loads, etc. In

general, it is difficult to find the closed form analytical solutions

due to complicated multidisciplinary nature of the FSI problems.

Instead, various numerical methods have been proposed to help

determine the approximation solutions.

One of efficient numerical approachs for solving the FSI

problems is the partitioned approach, which treats the fluid and

solid as two separated computational domains and applies

different numerical analyses on each domain. An interfacial

condition is then introduced as the interaction channel between

two fields. Based on this manner, a number of numerical

algorithms have been employed such as the Finite Element

Method (FEM), the Boundary Element Method (BEM) and the

meshfree methods (Wilson and Khalvati, 1983; Chen and Taylor,

1990; Brunner et al., 2009; Everstine and Henderson, 2009; He

et al., 2010; Bathe et al., 1995; Wang and Bathe, 1997; Rabczuk

et al., 2010; Wall and Rabczuk, 2008). In the analysis of fluid

domain, serveral polular finite element formulations have been

developed such as the displacement formulation (Wilson and

Khalvati, 1983; Chen and Taylor, 1990), pressure formulation

(Brunner et al., 2009; Everstine and Henderson, 2009; He et al.,

2010) or mixed formulation (Wang et al., 1997).

For the analysis of 2D mechanics problems using the FEM, the

usage of high-order elements can help directly improve the

performance of the solution, but it also makes increase

remarkably the computation cost in the problems with complex

geometries. Therefore, the three-node triangular elements (FEM-

T3) are often prefered in many engineering applications for its

simplicity and efficientcy in automatic mesh re-generation.

However, the FEM-T3 elements result in the overestimated

stiffness matrix that leads to the poor accuracy of solutions and

the locking phenomena in the problems related to the

incompressible material or bending domination. In order to

overcome this issue of the FEM-T3, Liu and Nguyen-Thoi

(2010) have developed a series of “soften” models namely

Smoothed FEM (S-FEMs) in which the strain smoothing

technique of meshfree methods (Chen et al., 2001) is

incorporated into the standard compatible FEM. The key point of
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the methods is to replace the standard compatible strain by the

smoothed strain calculated based on smoothing domains which

can be created easily from the element mesh of the FEM. So far,

there are three main smoothed finite element methods which are

based on different respective smoothing domains. They include

the Cell-based Smoothed FEM (CS-FEM) based on the cell-

based smoothing domains (Liu et al., 2007a; 2007b; 2009c;

2010a; Dai et al., 2007; Nguyen-Thoi et al., 2007), the Node-

based Smoothed FEM (NS-FEM) based on the node-based

smoothing domain (Liu et al., 2009a; Nguyen-Thoi et al., 2009a;

2010a), and the Edge-based Smoothed FEM (ES-FEM) based on

the edge-based smoothing domains (Liu et al., 2009a). In the S-

FEM models, the weak form and local computation are

evaluated based on the smoothing domains which can contain

the information of neighbouring elements. This technique can

generate the close-to-exact stiffness only by linear interpolations,

and hence the solutions obtained from the S-FEM models show

the desired accuracy and good convergence with no much more

computational cost. Each of the S-FEM models exhibits different

desired characteristics that can help diversify the applications of

the S-FEM models in various mechanics problems such as plates

and shells (Phung-Van et al., 2013a; Nguyen-Thoi et al., 2012;

2013a; 2013b; 2013c; Thai et al., 2012; Luong-Van et al., 2013),

piezoelectricity (Phung-Van et al., 2013b), fracture mechanics

(Liu et al., 2010b), and fluid-solid interaction (Nguyen-Thoi et

al., 2014), etc.

Among the mentioned S-FEM models, the ES-FEM-T3 (Liu

et al., 2009a) using triangular elements shows excellent properties

in the analyses of 2D solid mechanics problems such as super-

convergence, high accuracy, no spurious non-zeros energy modes,

stability for dynamic analysis and high computational efficiency.

The ES-FEM have been then extended to the three-Dimension

(3D) problems using tetrahedral elements to give the Face-based

Smoothed Finite Element Method (FS-FEM-T4) (Nguyen-Thoi

et al., 2009c) and various applications such as visco-elastoplastic

analyses (Nguyen-Thoi et al., 2009b), n-sided polygonal elements

(Nguyen-Thoi et al., 2010b), 2D piezoelectric (Nguyen-Xuan et

al., 2009a) and plate (Nguyen-Xuan et al., 2009b; 2012). 

Following this trend, the present paper further extends the

application of the ES-FEM-T3 to the dynamic response analysis

of 2D FSI problems based on the pressure-displacement formulation.

In the proposed method, both the displacement in the solid

domain and the pressure in the fluid domain are smoothed by the

gradient smoothing technique based on the smoothing domains

associated with the edges of the triangular elements. Two numerical

examples will be performed to illustrate the efficiency of the

proposed coupled method. 

2. Governing Equations for Analysis of the 2D FSI
System 

In general, a FSI problem can be illustrated by three main

components as shown in Fig. 1 which includes a solid domain

Ωs, a fluid domain Ωf, and an interfacial boundary between the

fluid and solid domain defined by . On the fluid

domain, there are two boundary conditions including an outter

fluid pressure boundary  subjected to a prescribed pressure,

, and a normal pressure boundary  subjected to a

prescribed normal pressure gradient . On the solid

domain, there are two boundary conditions including a Neumann

boundary  subjected to a prescribed displacements ,

and a Dirichlet boundary  subjected to prescribed force

vectors . 

For the present FSI system, the solid is modeled by differential

equations of motion of a continuum body subjected to small

deformations, while the fluid is modeled by wave equations with

small translations and is assumed to be irrotational and inviscid.

In addition, the interfacial coupling conditions are used to ensure

the compatible displacement and pressure equilibrium between

the solid domain and fluid domain. In general, the governing

equations and boundary conditions for the present FSI system

can be given by (Carlsson, 1992):

In the solid domain: (1)

In the fluid domain: (2)

On the interfacial boundary: (3)

in which, for fluid domain p(t) is the dynamic pressure; qf(t) is

the added fluid mass per unit volume; c0 is the speed of sound;

 and ; and for

solid domain,  is the stress vector; 
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Fig. 1. 2D Model of the FSI Problems
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is the displacement vector;  is the body force

vector; ρs is the material density; and  is the boundary

normal vector pointing outward from the fluid boundary;  is the

2D symmetric differential operator and ns is the boundary normal

matrix pointing outward from the solid boundary defined by:

(4)

In addition in the solid, the kinematic relationship (between

displacement vector us and strains εs) and the Hook’s law (between

the stresses σs and the strains εs) are given respectively by:

 and (5)

where,  is a Symmetric Positive Definite (SPD) matrix

of material constants.

3. ES-FEM for Fluid-Solid Interaction Problems

3.1 Brief on the FEM for Fluid Domain (Carlsson, 1992)

Let  be a test function associated to the pressure field p,

the weak form corresponding to the first term in Eq. (2) can be

obtained by the usual test-function method as:

(6)

By using Green-Gauss theorem on the second term, the weak

form in Eq. (6) is tranformed into:

(7)

Now, by discretizing the fluid domain Ωf into a mesh of Nef

three-node triangular elements and Nnf  nodes, we can approximate

the pressure field  and the test weight function  in

the forms of:

(8)

where, p is the vector containing the nodal pressure values;

cf is the vector containing the nodal chosen test values; and

Nf is the vector containing the nodal finite element shape

functions. 

Substituting the approximations p and vf in Eq. (8) into the

weak form (7), the finite element formulation for the fluid domain

is then written as:

(9)

or in the matrix form:

(10)

where,

(11)

3.2 Brief on the FEM for Solid Domain (Carlsson, 1992)

Let  be the test function associated to the solid

displacement field us, the weak form corresponding to the first

term in Eq. (1) can be obtained by the usual test-function method

as:

(12)

By using Green-Gauss theorem and substittuting Eq. (5) on the

second term, the weak form in Eq. (12) is tranformed into:

(13)

Now, by discretizing the solid domain Ωs into a mesh of Nes

three-node triangular elements and Nns nodes, we can approximate

the displacement field  and the test weight function

 in the forms of:

(14)

where, ds is the vector containing nodal displacement values; cs
is the vector containing nodal chosen test values; and Ns is the

vector containing the nodal finite element shape functions.

Substituting the approximations us and vs in Eq. (14) into the

weak form (13), the finite element formulation for the solid

domain is then written as:

(15)

or in the matrix form:

(16)

 where,

(17)

3.3 FEM for the Coupled Fluid - Solid System (Carlsson,

1992)

In order to maintain the compatibility and continuity condition

on the interface  between the solid and the fluid, the

movement of fluid particles and the solid in the normal direction
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of the boundary should be identical. To express these conditions,

we now introduce the vector  

which is the normal vector pointing toward the solid region, and

express the continuity of displacement of the two fields in the

form of:

(18)

and the continuity of pressure in the form of:

(19)

where,  is the displacement of the fluid particles. 

Basing on Eq. (19), we now can express the force vector ff in

Eq. (17) by the vector of fluid pressure as:

(20)

Within the fluid domain, the interactive act is expressed via the

force term fs in Eq. (10). By using the relationship between

pressure and acceleration in the fluid domain:

(21)

and the boundary condition in Eq. (18), we can express the

condition  in the form of:

(22)

Then, the force term acting on the fluid fs in Eq. (10), can be

described in terms of structural acceleration by:

(23)

Let introduce a spatial coupling matrix as:

(24)

we now can rewrite the coupling forces ff in Eq. (20) and fs in Eq.

(23) in the reduced forms as:

and (25)

The coupling fluid-solid interaction problem can be expressed

by an unsymmetrical matrix expression as:

(26)

3.4 Edge-based Smoothed Finite Element Method using

Triangular Elements (ES-FEM-T3) 

Basically, the ES-FEM-T3 inherited all the fundamental properties

of FEM-T3 using triangular elements including the triangular

mesh discretization, the linear nodal shape functions and continuous

approximated fields (displacement or pressure) on the whole

problem domain. However, unlike the standard FEM-T3 which

calculates the local stiffness matrix Ke through on the elements,

the ES-FEM-T3 applies the gradient smoothing technique (Chen

et al., 2001) to calculate the local stiffness matrix  through

on the edge-based smoothing cells  which are created by

connecting two endpoints of the edge to centroids of contiguous

elements as shown in Fig. 2. 

3.4.1 ES-FEM-T3 for the Fluid Domain in the Coupled Fluid

- Solid System

Based on the triangular discretization generated in the standard

FEM-T3, a smoothing cell  in the ES-FEM-T3 is created by

connecting two end-points of edge k with centroids of the

contiguous triangles sharing the edge k. With such the manner,

the fluid domain can be further divided into  smoothing

cells  such that, , , , where

 is the total number of edges of the finite element mesh.

Now by using the gradient smoothing technique (Chen et al.,

2001), the pressure gradient  in Eq. (9) can be used to

define the smoothed pressure gradient  on the smoothing

cell  as:

(27)

where,  is a given smoothing function which satisfies at

least the unity property . Normally, the following

Heaviside constant smoothing function fitting this property is

used in the ES-FEM 

(28)

where,  is the area of the smoothing cell . 

Next by applying a divergence theory, we acquire the constant
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Fig. 2. Mesh of Triangular Elements and the Forming of the Smooth-

ing Cells Associated with Edges in the ES-FEM-T3
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the common edge k ( = 3 for boundary edges and = 4 for

inner edges as shown in Fig. 2), and  is denoted as the

smoothed pressure gradient matrix on the smoothing cell , 

(30)

and its items are computed by:

(31)

where,  and  are two components of the outward normal

vector on the boundary .

Next, by using the same assembly manner as in the FEM, the

global smoothed stiffness matrix  can be expressed by:

(32)

where,  is the edge-based smoothed stiffness matrix computed

by:

(33)

3.4.2 ES-FEM-T3 for the Solid Domain in the Coupled

Fluid - Solid System

Similarly to the fluid domain, the solid domain is also divided

into  smoothing cells  such that  and

, , where  is the total number of edges of

the finite element mesh in the solid domain. And then by using

the gradient smoothing technique (Chen et al., 2001), the

compatible displacement gradient  in Eq. (13) is used to

define the smoothed displacement gradient  on the smoothing

cell  as:

(34)

where,  is the constant Heaviside smoothing function

defined as:

(35)

where,  is the area of the cell .

Next by applying a divergence theory, we acquire the constant

smoothed displacement gradient  over the domain  as

following:

(36)

where,  is the total number of nodes of elements sharing the

edge k, and  is denoted as the smoothed displacement

gradient matrix on the smoothing cell , 

(37)

in which, the non-zero items are calculated by:

(38)

where,  and  are two components of the outward normal

vector on the boundary .

Next, by using the same assembly manner as in the FEM, the

global smoothed stiffness matrix  can be expressed by:

(39)

where,  is the edge-based smoothed stiffness matrix computed

by:

(40)

3.5 ES-FEM-T3 for 2D Fluid - Solid Interaction Problems

As presented in section 3.4, two basic differences between the

ES-FEM-T3 and the FEM-T3 is the way to define the gradient

fields and the way to compute the stiffness matrix. In the FEM-

T3, the compatible gradient fields on the elements are used and

the stiffness matrices Kf and Ks are calculated based on the

elements. While in the ES-FEM-T3, the smoothed gradient

fields on the edge-based smoothing domains are used and the

smoothed stiffness matrices  and  are calculated based on

the edge-based smoothing domains. Therefore based on Eq. (26),

the global system of equations for the fluid–solid interaction

problems using the ES-FEM-T3 can be expressed in the form of:

(41)

where,  and  are calculated by Eqs. (39) and (32),

respectively.

4. Dynamic Analysis 

Stability is a one of the primary concerns in dynamic analysis.

On this aspect, the ES-FEM-T3 shows the excellent properties in

both spacially and temporally stable (Liu and Nguyen-Thoi,

2010; Liu et al., 2009b). Hence, it is very suitable to apply the

ES-FEM-T3 for free and forced vibration analyses of the fluid-

solid interaction problems. For the case of considering the

damping forces, Eq. (41) for the dynamic anlysis of the fluid–
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solid interaction problems using the ES-FEM-T3 can be

described as:

(42)

where,

(43)

and C is the Rayleigh damping matrix assumed to be propotional

to both the stiffness matrix  and the mass matrix M as:

(44)

where, α and β are the Rayleigh damping coefficients.

To solve the second-order time dependent problem Eq. (42),

the Newmark method is employed in this paper. The basic

procedure of this direct integration method is to sub-divide the

reponse period T into n intervals of length ∆t = T/n and then to
determine the solution of the equibrilium equation at each step.

In detail, at the interval t = t0, the initial state  is

assumed known. Then our aim is to find a new state  at

the next interval t1 = t0 + θ∆t where. The process can be
described by the following equations:

(45)

(46)

(47)

In the case the damping and forcing terms are ignored, Eq. (42)

is reduced into a homogenous differential equation by:

(48)

and the corresponding eigenvalue equation of Eq. (48) is written

in the form of:

(49)

where, ω is the angular frequency and  is the amplitude of the

sinusoidal displacements expressed by .

5. Numerical Examples 

This section presents two numerical examples to demonstrate

the superior features of the ES-FEM-T3 in analysing the dynamic

behaviours of the coupled fluid-solid interaction problems. The

accuracy and stability of ES-FEM-T3 will be verified by comparing

its numerical results with those of standard FEM-T3 and FEM-Q4

using four-node elements. Moreover, the numerical solutions by

FEM-Q8 using 8-node elements will be used as the reference

solutions for convergence analysis of the numerical methods. 

5.1 Dynamic Analysis of a 2D Deformable Solid Backed

by a Closed Box Filled with Water

In this example, we analyze a clamped 2D deformable solid

backed by a closed rectangular tank filled with water as shown in

Fig. 3. The dimension of the rectangular tank is given by 10 m ×
4 m. The data of the fluid in the tank is given by the fluid material

density ρ = 1000 kg/m2 and speed of air c = 1500 m/s2, and the

data of the solid is given by the material density ρs = 2500 kg/m2,
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Fig. 3. Model of a 2D Deformable Solid Backed by a Closed Tank

Filled with Water

Fig. 4. Mesh using Triangular Elements for both Fluid and Solid

Domains of the 2D Deformable Solid Attached with a Closed

Tank Filled with Water

Fig. 5. Comparison on the Convergence of the First Coupled Eigen-

mode by Three Methods: ES-FEM-T3, FEM-T3 and FEM-

Q4
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elastic module E = 2.1 × 109 N/m2 and poisson’s ratio υ = 0.3.

The model is discretized by a mesh of triangular elements for

both fluid and solid domains as shown in Fig. 4.

5.1.1 Free Vibration Analysis 

At first, we conduct an eigenmode analysis to determine the

frequencies and natural mode shapes of the fluid solid system.

The result by the FEM-Q8 with 1290 DOFs for solid and 729

Degree Of Freedom (DOFs) for fluid is chosen as the reference

solution. This choice is rational because it is not only consistent

with those of the comsol solution but also reflects the mesh

quality (high-order element) required in conventional FEM in

order to achieve close-to-exact solutions. Three different coupled

methods: the FEM-T3, FEM-Q4 and ES-FEM-T3 using the

same set of DOFs are investigated for the benchmarking.  Fig. 5

compares the convergence of the first eigenmode obtained from

the testing methods. It can be seen that the ES-FEM-T3 acquired

the best results and even performed much better than the FEM-

Q4 using bilinear elements. 

Frequencies of seven coupled eigenmodes by the testing

methods are presented in Fig. 6. The results again show that the

ES-FEM-T3 is closest to both the reference solution and the

comsol solution. In addition, Fig. 7 illustrates the value and

shape of first nine coupled eigenmodes obtained from the ES-

FEM-T3. It is observed that the shapes express correctly the real

physical vibration modes of the system without spurious non-

zero energy mode. 

5.1.2 Forced Vibration Analysis 

In this example, we study the dynamic response of the FSI

system by the ES-FEM-T3. The applied force is a harmonic

vertical load  at point x, where  is the

Dirac function. First, we consider the case t = 0 where the point x

is set up at point A (2.0, 5.0) as in Fig. 4. The temporal frequency

ω /2π is adjusted in the distance from 3 Hz to 17 Hz covering the

scope of the first three coupled eigenfrequencies of the system

given in Fig. 7. Fig. 8 shows the corresponding displacement

responses measured at the loading point A(2.0, 5.0). The results

show that the peaks of the first three modes happen when the

force frequency reaches the first three eigenfrequencies. Keeping

F x ω,( ) δc x( )iωeiω t= δc x( )

Fig. 6. Comparison on Seven Coupled Eigenmodes of the FSI Sys-

tem by Three Methods: ES-FEM-T3, FEM-T3 and FEM-Q4

Fig. 7. Mode Shapes Corresponding to 9 Coupled Eigenmodes of

the FSI System by the ES-FEM-T3

Fig. 8. Displacement Response at Point A(2.0, 5.0) by the ES-FEM-

T3 (for the case the force applied also at point A(2.0, 5.0))

Fig. 9. Displacement Response at Point A(2.0, 5.0) by the ES-

FEM-T3 (for the case the force applied to point B(2.0, 3.0))
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the same context, we change the loading point position to point

B(2.0, 3.0) and still measure the displacement responses at the

point A(2.0, 5.0) as shown in Fig. 9. The results again show that

the peak values happen exactly at the first three eigenfrequencies.

To that extent, the ES-FEM-T3 method illustrates the ability to

produce adequate details for the modal analysis and dynamic

analysis of the fluid-solid interaction system. 

Moreover, the forced frequency response analysis also

provides different eigenfrequencies of the solid system under

coupling and uncoupling conditions. As seen in Table 1 and Fig.

10, the eigenfrequency values of the coupling fluid-solid system

are much greater than those of the uncoupling solid system.

Therefore, it is essential to employ the fluid-solid interaction

model for correct simulation of the behaviour of the solid system

coupling with the fluid. 

The accuracy of the ES-FEM-T3 in the dynamic response

analysis of the FSI system is also demonstrated by comparing its

displacement responses with those from the FEM-Q4 and the

reference solution as shown in Fig. 11. It is clear that the ES-

FEM-T3 provides the closest results to the reference solution by

the FEM-Q8. Moreover, Fig. 11 also illustrates the increasing

trend of the deviation between the testing methods versus the

reference solution as the frequency increases. Both the ES-FEM-

T3 and the FEM-Q4 follow this trend, however, the variance of

the ES-FEM-T3 are much smaller than those of the FEM-Q4.

Fig. 12 presents the transient response by the ES-FEM-T3 and

the FEM-Q4. It also exhibits that the displacement responses by

the ES-FEM-T3 are closer to those by the reference solution. 

Through the example, the accurate and robust performance of the

ES-FEM-T3 for dynamic analysis of the FSI system is mainly

verified by comparing its eigenfrequencies, frequency responses and

transient responses with those of other standard FEM models.

Table 1. Comparison on Values of Seven First Coupled and Uncoupled Eigenmodes of Solid

Method
Mode sequence number

1 2 3 4 5 6 7

Without coupling 3.0511 7.8045 14.0971 15.3153 21.4347 29.5174 30.5690

With coupling 5.4897 10.4565 15.2791 17.8334 24.8878 30.4727 33.8092

Fig. 10. Comparison of Displacement Response at Point A(2.0, 5.0)

by ES-FEM-T3 under Coupling and Uncoupling Conditions

Fig. 11. Comparison of the Displacement Response at Point A(2.0,

5.0) between the ES-FEM-T3 and FEM-Q4 (for the case

the force applied also at point A(2.0, 5.0))

Fig. 12. Comparison of the Displacement Response at Point A(2.0,

5.0) by ES-FEM-T3, FEM-T3 and FEM-Q4 (for the case

the force applied also at point A(2.0, 5.0))

Fig. 13. 2D Model of a Deformable Water Dam
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5.2 2D Deformable Water Dam 

In this example, we investigate an eigenmode analysis for a 2D

model of the deformable water dam with fixed foundation as

shown in Fig. 13. Data of the dam is given by the solid material

density ρs = 2500 kg/m
2, elastic module E = 2.1 × 109 N/m2 and

poisson’s ratio υ = 0.3. The water is blocked by the dam and

filled up to the dimension of 10m × 4m. Data of the water is

given by density ρ = 1000 kg/m2 and speed of air c = 1500 m/s2.

The model is discretized by a mesh of triangular elements for

both fluid and solid domains as shown in Fig. 14.

Similarly to the previous example, the reference solution is

also computed by the FEM-Q8 with 697 Degree Of Freedom

(DOFs) for the fluid domain and 1570 DOFs for the solid domain.

Three coupled methods are employed for the benchmarking are

the FEM-T3, FEM-Q4 and ES-FEM-T3. Convergent rates of the

first eigenmode obtained by the testing methods are shown in

Fig. 15. The results again comfirm the outstanding performance

of the ES-FEM-T3 compared with the FEM-Q4 and FEM-T3 for

eigenmode analysis of FSI problems. 

6. Conclusions

This paper further extends the application of the ES-FEM-T3 to

the dynamic analyses of the 2D fluid-solid interaction problems

based on the pressure-displacement formulas. In the proposed

method, both the displacement in the solid domain and the pressure

in the fluid domain are smoothed by the gradient smoothing

technique based on the smoothing domains associated with the

edges of triangular elements. The edge-based smoothing technique

takes advantage from generating the triangular elements for

complex geometry domains and the soften effect by the gradient

smoothing technique to relieve the overstiff behavior of the standard

FEM-T3. Through some numerical examples for dynamic analysis

of the FSI problems, it is seen that the ES-FEM-T3 shows the

outstanding performance in eigenfrequencies, frequency responses

and transient responses compared to some existing FEM models. 
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