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Abstract

Structural topological optimization is the most general form of structural optimization and requires a less detailed description of the
concept. One of the most exciting and challenging problems in this field is to find optimized layouts with minimization of
compliance (maximization of stiffness) for a given total mass of the structure discretized by truss members, which cannot be well
solved by evolutionary algorithms. Particle Swarm Optimization (PSO) is a new paradigm of Swarm Intelligence which is inspired
by concepts from ‘Social Psychology’ and ‘Artificial Life’. PSO is particularly a preferable candidate to solve highly nonlinear, non-
convex and even discontinuous problems and has been applied to many different kinds of optimization problems. The motivation of
this paper is to propose an enhanced Lbest based PSO and geometrical consistency check tightly connecting to the ground structure
approach to break through in this optimization field. Through a popular benchmark test, two kinds of Modified Lbest based PSO
(MLPSO) exhibited competitive performance due to improved global searching ability.

Keywords: particle swarm optimization, truss topological optimization, nonlinear programming, non-convex optimization,

Sequential Unconstrained Minimization technique (SUMI)

··································································································································································································································  

1. Introduction

In countless areas of human life, we attempt to exploit rigorously

the limited amount of resources available to us so as to be able to

maximize output or profit (Spillers and MacBain, 2009). In

engineering design, for example, we are concerned with choosing

design parameters that fulfill all the design requirements at the

lowest cost possible. We deal in the same way with the task of

allocating limited resources: Our main motivation is to comply with

basic standards but also to achieve good economic results.

Transforming problems of this nature into functions with

corresponding constraints helps us to realize this aim. Optimization

offers a technique for solving issues of this type because it provides

a theoretical foundation, as well as methods for transforming the

original problems into more abstract mathematical terms.

Conventional structural optimization is a central branch of

optimization, which aims to find a best output that maximizes

benefit for the designer or decision maker. Until recently, the

method has been successfully applied in the automotive, aerospace

and civil engineering industries. The rapid development of

structural optimizations has been catalyzed by real-life problems,

aided by the evolution of sophisticated computing techniques

and the extensive applications of the finite element method. As a

result, structural optimization now plays an indispensable role in

structural design (Nocedal and Wright, 1999).

Structural topological optimization is the most general form of

structural optimization and requires a less detailed description of

the concept than the other two kinds of optimization problem

(sizing optimization and shape optimization) (Bendsøe and

Sigmund, 2005). The design variables in topology optimization

describe the structural configuration. Topology optimization is a

difficult problem and it has received more attention in applications

to skeletal structures such as trusses (named truss topological

optimization). In this case, the optimum criterion can be defined

by determining which joints are connected to each other by

members. 

The initial study of the fundamental properties of optimal grid

like continua was pioneered by Michell (1904) which was

important in view of the theoretical background. However, the

numerical methods in this field have a shorter history which

appeared following the initial developments of high-speed

computers. Early contributions can be found in Dorn et al.

(1964) and Fleron (1964) in which numerical implementations

were first proposed and exercised on very small test problems

due to computing limitations. Since the 1980’s, there has been an

unprecedented and most dramatic growth in computing techno-

logies. Since then, the theoretical work on structural topology

optimization has continued to unfold. To illustrate this, Rozvany

(1989) obtained new optimality conditions (Continuum-like

Optimization Criterion (COC)) of the Michell truss which lead
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to different and lighter trusses compared with those from

Michell. Rozvany (1996) pointed out shortcoming in Michell’s

truss theory, Zhou (1996) listed difficulties in truss topology

optimization with stress and local buckling constraints, exact

solutions of some truss layout optimization were derived. In

particular, Lewi ski et al. (1993) derived exact least weight truss

layouts for rectangular domains with various support conditions,

as well as exact analytical solutions for some popular benchmark

problems in topology optimization from Rozvany (1998), Lewi ski

and Rozvany (2007). On the other hand, numerical approaches

have been developed and applied to larger-scale, more realistic

structures. Two fundamental techniques were proposed for this

kind of optimization problem: evolution and degeneration. The

evolution approach is a growing and heuristic approach, in

which the basic structure is a simple bar truss and the finial

optimal topology is generated by adding nodes and members

(Rule, 1994). Although the use of this approach can avoid

unrealistic or unstable optimal solutions, there is no theoretical

criterion for addition of nodes and members. On the contrary, as

a representative of the degeneration approach, the ground structure

technique was first introduced by Dorn et al. (1964) and is now

widely used in all kinds of truss topological optimization

problems. In this approach, the nodal locations are fixed and the

ground structure is created by connecting any two nodes. During

the optimization procedure, unnecessary members are removed.

Many methods have been presented based on the ground

structure approach. Two normal kinds of ground structure are

shown in Fig. 1. On the left side of Fig. 1, the member length is

restricted to a certain number which expresses the fact that

spectrum of possible member lengths can be restricted and can

thus be viewed as a reduced form. As a result, the computational

effort is also reduced. However, the optimal topology may not be

the global optimum because some connecting members are ignored

which may belong to the optimal candidates. The ground structure

that can be seen on the right side is known as a fully connected

ground structure and owns the set of all possible connections

between every two chosen nodal points. This approach consumes,

of course, more computer resources, producing, in turn, more

exact solutions.

In this paper, the simplest possible optimal design problem,

namely the minimization of compliance (maximization of stiffness)

for a given total mass of the structure, is considered. Several

classic problems of this kind can be seen as a standard bench-

mark test for optimization algorithms due to its high-dimensional

and non-convex features. The well-known formulation of problem

P1 Eq. (1) is expressed as:

s.t. (1)

 

 

where, xi is the volume of the ith bar and xiKi is the element

stiffness matrix for the ith bar written in global coordinates.

The problem P1 can efficiently be solved by employing various

equivalent formulations (Achtziger et al., 1992; Achtziger and

Stolpe, 2007; Ben-Tal and Bendsøe, 1993; Bendsøe et al., 1994;

Ben-Tal and Zibulevsky, 1997; Jarre et al., 1998). However,

these equivalences are all based on the optimality criterion which

is derived from the necessary condition. As soon as a new

objective function arises and/or new constraints are added, the

original equivalence looses its validity. The acquisition of a new

equivalence requires a strong mathematical background (most

researchers who work on truss topology optimization and

equivalences in particular come from institutes of mathematics).

Another class of research is based on stochastic optimization

algorithm, successful approaches can be found in Hajela and Lee

(1995) (genetic algorithm), in Topping et al. (1996) (simulated

annealing), Giger and Ermanni (2006) (Evolutionary algorithm)

and et al. However, the test examples are restricted in small

scale. Particle Swarm Optimization (PSO) is a new paradigm of

Swarm Intelligence which is inspired by concepts from ‘Social

Psychology’ and ‘Artificial Life’. It has been empirically shown

to perform well with regard to many different kinds of optimization

problems excluding complex truss topological optimization. In

this paper, a modified Particle Swarm Optimizer is applied to this

kind of problem including more than 200 design variables in its

original form. The motivation is to expand the application field

of evolutionary algorithm to more complex optimization problems.

Also, ground structure approach is used to constitute the design

domain. This paper is structured as follows:

Section 2 introduces the basic PSO and our proposed variant;

section 3 describes supplementary key points to our approach in

order to solve topology optimization problem; section 4 presents

benchmark test to evaluate the performance of the proposed PSO

variant; section 5 is the part of conclusion and outlook.

2. Particle Swarm Optimizer and its Variant

As a newly developed subset of Evolution Computation (EC),

the Particle Swarm Optimization has demonstrated its many

advantages and robust nature in recent decades. It is derived

from social psychology and the simulation of the social behavior

of bird flocks in particular. Inspired by the swarm intelligence

theory, Kennedy created a model which Eberhart then extended

to formulate the practical optimization method known as Particle
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Fig. 1. Two Kinds of Classic Truss Ground Structures: (a) Partly

Ground Structure, (b) Fully Ground Structure
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Swarm Optimization (PSO) (Eberhart and Kennedy, 1995). It

has been applied to areas such as image and video analysis,

signal processing, electromagnetic, reactive power and voltage

control, end milling, ingredient mix optimization, antenna design,

decision making, simulation and identification, robust design as

well as structural optimization (Poli, 2007; Fourie and Groenwold,

2002; Bochenek and Fory , 2006; Levitin et al., 2007; Venter

and Sobieszczanski-Sobieski, 2004; Prez and Behdinan, 2007).

The algorithm behind PSO is based on the idea that individuals

are able to evolve by exchanging information with their neighbors

through social interaction. 

The PSO is initialized with a population of random solutions

and the size of the population is fixed at this stage and is denoted

as s. Normally, a search space should first be defined, e.g. like a

cube of the form [xmin, xmax]
D for a D dimensional case. Each

particle is distributed randomly in the search region according to

a uniform distribution which it shares in common with other

algorithms of stochastic optimization. The position xi(t) (in case

of particle i on time step t) of any given particle in the search

space is a vector representing a design variable for the

optimization problem, which is also called a potential solution.

In addition, each particle has a velocity vi(t) (in case of particle i

on time step t). This constitutes a major difference to other

stochastic algorithms (e.g. GA). Here, the velocity is a vector

that functions much like an operator that guides the particle to

move from its current position to another potential improved

place. Additionally, each particle i has its best personal position

pi(t) so far discovered and so far discovered best position bi(t) of

particle i after exchanging information with its neighbors. All the

particles’ velocities are updated in every iteration. Thus, the

standard form of PSO could be denoted in Eqs. (1) and (2) as:

(2)

(3)

where, ω (t) is called inertia weighting factor and used to better

control the scope of the search, R1 and R2 are two independent

random numbers selected in each step according to a uniform

distribution in a given interval [0,1] and  C1 and C2 are two

constants which are equal to 2 in this standard version. The

random number was multiplied by 2 to give it a mean of 1, so

that particles would “overshoot” the target about half the time.

Eq. (2) clearly shows that the particle’s velocity can be updated

in three situations: The first one is known as the “momentum”

part, meaning that the velocity cannot change abruptly from the

velocity of the last step. The second one is called “memory” part

and describes the idea that the individual learns from its flying

experience. The last one is known as the “cognitive” part which

denotes the concept that particles learn from their group flying

experience because of collaboration. 

As a member of stochastic search algorithms, PSO has two

major drawbacks (Eberhart et al., 2001). The first drawback of

PSO is its premature character, i.e. it could converge to local

minimum. According to Angeline (1998), although PSO converge

to an optimum much faster than other evolutionary algorithms, it

usually cannot improve the quality of the solutions as the number

of iterations is increased. PSO usually suffers from premature

convergence when high multi-modal problems are being optimized.

The second drawback is that the PSO has a problem-dependent

performance. This dependency is usually caused by the way

parameters are set, i.e., assigning different parameter settings to

PSO will result in high performance variance. In general, based

on the no free lunch theorem (Christensen and Oppacher, 2001),

no single parameter setting exists which can be applied to all

problems and performs dominantly better than other parameter

settings. There are modified PSOs to deal with this problem.

Such as, using Self-adapted PSOs by Clerc (1999), Shi et al.

(2001), Hu and Eberhart (2002), Alatas et al. (2009) and so on.

Another common way is to use PSO hybridized with another

kind of optimization algorithm, so that the PSO can benefit from

the advantages of another approach. Hybridization has been

successfully applied to PSO by Krink and Løvberg (2002),

Shelokar et al. (2007), Kaoa and Zahara (2008) and so on. All

improvements to PSO have diminished the impact of the two

aforementioned disadvantages. It is noted that all those

approaches are based on Gbest PSO (shown in Fig. 2), which is

one of major type of neighbourhood. In this topology model, all

members of the population are connected to one another, so that

each individual is attracted to the best solution b found by a

member of the swarm, if b cannot be updated regularly, the

swarm may converge prematurely.

Lbest model is another kind of topology model of the swarm

intelligence (Mendes et al., 2004). In this model, each individual

is influenced by the best performances of its neighbours. Note

that once the neighborhood topology is created, it will not be

changed during optimization procedure. The Lbest model tried

to prevent premature convergence by maintaining diversity of

potential problem solutions. Whilst it can search the design space

sufficiently, its convergence speed is relatively slow compared to

the Gbest model. The most widely used Lbest model is called

ring topology. As it is already mentioned, the problem p1 is a

kind of high-dimensional and non-convex optimization and has

the least detailed description to the structures, so it can be easily

só

v
i

t 1+( ) = w t( )vi
t( ) + C1R1 p

i
t( ) x

i
t( )–( )

 + C2R2 b
i

t( ) x
i

t( )–( )

x
i

t 1+( ) = x
i

t( ) + v
i

t 1+( )

Fig. 2. Gbest Topology



Solving Truss Topological Optimization via Swarm Intelligence

Vol. 19, No. 7 / November 2015 − 1965 −

to obtain unstable or undesired layout (algorithm isn’t converged),

as it is pointed out by Ohsaki and Swan (2002).

1. A large amount of members and nodes are needed in the ini-

tial ground structure. 

2. The optimal topology strongly depends on the initial design

and infinite number of nodes and members are needed if the

nodal locations are also to be optimized (such as simulta-

neous shape and topology optimization).

3 Unrealistic optimal solutions are often obtained.

4. The truss may lose stability if too many members are

removed.

In this sense, it is really a kind of difficult problem to the

Particle Swarm Optimizer. In order to break through in this

optimization field, a modified Lbest based PSO is proposed by

adding two new rules to the position updating procedure to

enhance the swarm searching ability, which is inspired by the

Guaranteed Global Convergence Particle Swarm Optimizer (Cui

and Zeng, 2004).

Note that in Eq. (2), if for particle i on time step t, Xi(t) = pi(t)

= bi(t), its new updated velocity will be vi(t + 1) = ωvi(t), it

means that particle i will move following its previous track,

especially during the later evolution iterations. Most of the

particles cluster around this global best position and their

velocities are relatively small compared with their initial ones so

that eventually all the particles will converge to this point, even

though it may be not an optimum which would reduce the

particle's searching ability. This disadvantage is the main reason

for the problem of prematurity that attaches to PSO. For Lbest

PSO, each particle has its own local best position bi, in order to

set a convenient stopping criterion, a variable b(t) is defined,

called current global best position, which is defined in Eq. (4) as:

(4)

Now, the stopping criterion can be expressed as: if b(t) are not

being updated in n consecutive iterations, the program will stop

running.

In this new approach, in order to improve the searching ability

of Lbest based PSO, two new mechanisms are added to a

particle’s evolution procedure:

1. In case that the condition  is satisfied in

continuous n iterations, where ε is a predetermined small

value to determine if Xi(t) is much closed to bi(t) and m is an

integer to determine if a particle could find a better solution

in a very small region around bi(t), the particle i's position

for next iteration Xi(t+1) will be randomly generated.

2. Furthermore, if f(Xi(t)) < f(bi(t − 1), bi(t) is updated to Xi(t)

and the particle i's best individual position (pi(t)) is not

replaced by  Xi(t).

For other particles which do not match these conditions are

manipulated according to Eq. (2). It is noted that these two

mechanisms are used to maintain the diversity of the swarm and

improve the particle's searching abilities. The purpose of the first

one is to avoid the particle’s accumulating phenomenon in later

phases of the evolution procedure. The second one can avoid pi

and bi colliding each other, thus directions of the “memory” part

and the “cognitive” part in particle's velocity update Eq. (2) keep

different, which can assure that the particles’ trajectories are

always affected by three different directional vectors if their

positions are updated via Eq. (2).

The ring topology is used for the proposed variant due to its

superior performance compared with other Lbest topologies

(Mendes et al., 2004). In ring topology, each individual interacts

with their k nearest neighbors (k can be selected from {2, L, s −
1}, where s is the total amount of particles. If k = s, Lbest

topology is automatically transformed into Gbest topology). In

this work, ring topologies with k = 2 and k = 3 are studied for this

new variant of PSO and are shown in Fig. 3.

The whole work flow of the MLPSO is seen below:

1. Initialize

a) Set ε, m, stopping condition n, random seed and create ring

topology

b)Generate a swarm with particles randomly distributed in the

design domain

c) Generate the initial velocities randomly for each particle,

d)Evaluate finess values for each initial particle f (xi(0)) and

set pi(0) = xi(0)

e) Find the best local position 

f) Find currently the best global position 

2. Optimize

a) For each particle i

Evaluation fitness function value using coordinates xi(t) in

design space 

If  and bi cannot be updated in n continuous

iterations then

Randomly generate 

Else

Update particle’s velocity  using Eq. (2)

Update particle’s position  using Eq. (3)

End if

b)Update
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Fig. 3. Two Kinds of Ring Topologies: (a) Ring Topology with

k = 2, (b) Ring Topology with k = 3
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c) If stopping criteria is satisfied, go to 3; otherwise go to 2 d)

d)For each particle i

If  then

Set 

Set 

Else if  then

Set 

Set 

Else

Set 

Set 

End if

3. Terminate, Export Result

3. Other Key Techniques

3.1 Parameter Selection

The parameters of LPSO used for the numerical experiments

are the following:

1. Inertia Weight ω: It is set as ω = 0.5+rand() where rand() is a

random number generator.

2. Acceleration Coefficients ϕ1 and ϕ2: There are mostly used

in the community of particle swarms, the values are ϕ1 = ϕ1

= 1.49445.

3. Population Size: All the swarms used in this study comprise

twenty individuals.

4. Stopping Criterion: If the best position of the swarm cannot

be improved in fifty consecutive iterations the program will

be stopped artificially and the fitness of the best position will

be considered as the result of this numerical test.

3.2 Geometric Check

In the ground structure approach, there is a large number of

potential nodes and an even larger number of potential bars

distributed over a design domain (Ohsaki and Swan, 2002), so

that the mathematical optimization problem is formulated in

terms of real/integer cross-section areas of the bars to design

variables and the displacements to state variables. One of the

difficulties inherent in ground structures is their high flexibility,

meaning that their connecting members can be added or

removed freely during the optimization procedure. In order to

avoid the computing of unrealistic structures, and thereby

reducing the computing effort, a consistency check with regard

to geometry before structural analysis is proposed in this paper.

This is the case because PSO constitutes a global stochastic search

algorithm and the intermediate structure may be a mechanism or

have redundant members (It may cause loss of parallel

performance, which is discussed later). Several common

potential cases that need to undergo a geometry consistency

check are shown in Fig. 4. A very important assumption is that

all trusses are elastic structures and can thus be analyzed by

means of the linear elastic finite element analysis. It must be

noted that the substructures shown in the left column in Fig. 4 are

taken from the overall structure. The strategy followed can be

described in the following terms:

1. In case (a), node a and node c are connected through bar 1

and bar 2 with an inner node b. Because all bar members are

suppressed by axial load, the inner node b can be eliminated

and bar 1 and bar 2 can be merged into bar 3 with the vol-

ume x3 = x1 + x2.

2. In case (b), node a is connected by bar 1 and bar 2 and not

suppressed by an external load. Based on the elastic theory,

the stresses of bar 1 and bar 2 are zero, so that bar 1 and bar

2 can be removed from the structure and node a is elimi-

nated also.

3. In case (c), similar to case (a), bar 3 can be seen as a free

member, i.e. if there is no external load and/or displacement

constraints on node d, bar 3 will have a rigid motion. There-

fore, node d and bar 3 need to be removed from the struc-

ture, bar 1 and bar 2 are combine into bar 4 and node b is

consequently eliminated, as in case (a).

4. In case (d), an external load is applied to an isolated node,

i.e. the external load cannot be transferred to the structure’s

boundary. Thus, this case is, of course, inapplicable to prob-

lem 6, so that it can be ignored with regard to further. Note,

that it may cause an unbalanced task in parallel computing,

since the computing node, in this case, will not analyze the

structure but output a predefined large value and then stand

in an idle status, meanwhile other computing nodes are still

executing structural analysis.

Case (a) highlights that it is impossible for overlapping members

to appear simultaneously with sub-members. As a result, the

dimension of the design variables can be reduced from the

number (1/2)N(N−1) (where, N is the number of all the nodes) of

fully possible members to the number of non-overlapping

members, therefore the computing effort is also reduced.

3.3 Constraints Handling

Most of structural optimization problems include constraints,

such as stress, displacement, buckling and etc. Therefore, it is

necessary to choose a technique to transfer constrained optimi-

f x
i

t 1+( )( )< f b
i

t( )( ) < f p
i

t( )( )
b
i

t 1+( ) = x
i

t 1+( )
p
i

t 1+( ) = p
i

t( )
f b

i
t( )( ) f x

i
t 1+( )( ) < f p

i
t( )( )≤

b
i

t 1+( ) = b
i

t( )
p
i

t 1+( ) = x
i

t 1+( )

b
i

t 1+( ) = b
i

t( )
p
i

t 1+( ) = p
i

t( )

Fig. 4. Geometry Consistent Checks
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zation problem to unconstrained optimization problem. Since the

PSO belongs to the evolutionary algorithm, the mechanism to

handle the constraints from the evolutionary algorithm could

also be utilized by PSO. Pulido and Coello (2004) have made a

survey to summarize the theoretical and numerical constraint-

handling techniques. So far the main categories of the constraint-

handling techniques are classified below:

1)Penalty functions, e.g. external penalty, internal penalty,

death penalty

2)Special representations and operators, e.g. Davis’ applica-

tions, Random keys.

3)Repair algorithms

4)Separation of objectives and constraints, e.g. co-evolution,

behavioral memory.

5)Hybrid methods, e.g. Lagrange multipliers, fuzzy logic.

Because of the No-Free-Lunch Theorem (Christensen and

Oppacher, 2001), it is known that it is impossible to create a

universal constraint-handling technique which is able to treat all

kinds of constraints with most excellent performance. The penalty

function technique is a compromising and conservative way of

dealing with constraints. Also, it allows for easy implementation

and offers effective solutions to most types of optimization

problems that have been tested.

A common approach of penalty function technique is called

Sequential Unconstrained Minimization Technique (SUMT) that

was first proposed by Fiacco and McCormick (Fiacco and

McCormick, 1964). SUMT transforms a given constrained

optimization problem into a sequence of unconstrained optimization

problems. This transformation is accomplished by defining an

appropriate auxiliary function, in terms of problem function, to

define a new objective function whose optima are unconstrained

in some domain of interest (Fiacco and McCormick, 1990).

Thus, in the case of SUMT, a sequence of penalty functions is

defined where the penalty terms for the constraint violations are

multiplied by some positive coefficient, so that the constrained

optimization problems are transformed into a sequence of

unconstrained but penalized optimization problems which can be

solved by all kinds of optimization methods. By penalizing

constraint violations more and more severely, the minimizer is

forced to the feasible region for the constrained problem. 

Note that in problem P1 there exist equality and inequality

constraints. Inequality constraints are applied on section areas

of bars which can be handled directly by setting proper

intervals for design variables by the boundary-check of PSO

(Masuda et al., 2010). Thus, these inequality constraints are

automatically guaranteed to be fulfilled. Equality constraints

can be dealt with by employing an exterior quadratic penalty

function. For stochastic algorithms, equality constraints can

only rarely be satisfied since in the case of equality constraints

the feasible domain is reduced to quite a narrow region and the

particles search the design space randomly. As a consequence,

the exterior penalty function is used to handle constraints of

this sort in this work. The exterior quadratic penalty function

for equality constraints is chose in this paper and given by:

(5)

where, µ is the penalty parameter. By driving µ to zero, the

constraint violations are penalized with increasing severity. It

makes good intuitive sense to consider a sequence of value

{µ(t)} with µ(t) −> 0 as t −> 0, so that the task is to seek the

approximate minimizer x(t) of F(x, µ((t)) for each t. It is noted

that PSO is not affected by the ill-conditioned properties of (5).

Additionally, the penalty parameter is updated by µ(t) = 105−t,

 consequentially. In order to study the algorithm’s

performance, each example is solved using all the possible µ

consequentially. Each example is tested twenty times independently

in order to obtain the best result. 

Before calculating fitness values with the corresponding penalty

term in Eq. (5), certain additional procedures should be carried

out. To begin with, a fully connected ground structure needs to

be constructed at the beginning of the program. Secondly, a

geometry consistency check is necessary for as long as the

design variables x are computed. Thirdly, because the state

variables u are not directly supplied, they need to be obtained by

means of structural analysis (per finite element analysis, for

example) with given x. As mentioned in the foregoing, because a

penalty function is employed in handling structural constraints

PSO needs to be implemented consequentially. Finally, the entire

work flow is illustrated in brief in Fig. 5.

4. Truss Topological Optimization Examples

The three examples are selected from Achtziger and Stolpe

(2007), and optimal solutions are presented and compared with

those from Achtziger and Stolpe (2007) which prove to be the

best results found so far. The Young's modulus of elasticity E for

all benchmark problems is scaled to unity for all bars as well as

F x, µ( ) = f
T
u + 

1

µ
---  

i 1=

m

∑ xi V–⎝ ⎠
⎛ ⎞

2

t 1,2,...,10{ }∈

Fig. 5. Workflow of Applying LPSO to Truss Topology Optimization
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the external loads are used here. Each example is tested by two

ring topologies with k = 2 and k = 3 with two kinds of design

variables:

Member volume xi is real and stays in the interval [0, 1],

marked as .

Member volume xi is real and stays in the interval [0, 5],

marked as .

4.1 Single-Load Wheel

The design domain, the load, as well as the boundary conditions

are shown in Fig. 6(a). A vertical load is applied at the center of

the lower side of the design domain. The ground structure is

shown in Fig. 6(b). In addition, in order to achieve a stable

solution, minute horizontal loads are applied to each design node.

The optimal designs with continuous design variables 

obtained by MLPSO with k = 2 and k = 3, as well as that from

Achtziger and Stolpe (2007) are shown in Figs. 6(c), 6(d) and

6(e) respectively. The solution from MLPSO with k = 2 is the

best one, the solution from MLPSO with k = 3 is the second best

one, however, the advantage is not obvious. The optimal topologies

of the continuous minimal compliance problem with 

from different algorithms are shown in Figs. 6(f), 6(g) and 6(h).

Similarly, the MLPSO with k = 2 finds the best solution without

obvious ascendancy. It must be noted that the solution in this

instance from Achtziger and Stolpe (2007) is only stable in the

vertical direction but a mechanism in other directions, so that,

considering additional bars are used to guarantee structural

stability which do not promote the objective function, the solutions

from MLPSO are more competitive. The convergence curves for

this problem are shown in Figs. 7(a) and 7(b). The horizontal

axis represents the generation of the penalty factor and the vertical

axis shows the value of the corresponding penalized objective

function, as below. It can be seen that the performance of the two

differing MLPSOs is quite similar with respect to real cases and

virtually identical for integer problems. The convergence curves

for integer cases are than higher those for the corresponding real

cases due to a larger fitness value.

4.2 Single-Load Cantilever

The design domain, external load and the boundary conditions

for this cantilever example are shown in Fig. 8(a). In this

instance, a unit vertical load is applied at the lower right corner

of the design domain. Its ground structure is shown in Fig. 8(b).

Similar to the first example, minute horizontal loads are applied

x 0,1[ ]m∈

x 0,5[ ]m∈

x 0,1[ ]m∈

x 0,5[ ]m∈

Fig. 6. Summary of Results from Example 1: (a) Design Domain,

(b) Ground Structure, (c) Solution with  and

V = 14 Solved by MLPSO with k = 2, 1/2fTu = 0.4068066,

(d) Solution with  and V = 14 Solved by MLPSO

with k = 3, 1/2fTu = 0.4072573, (e) Solution with 

and V = 14 (Achtziger and Stolpe, 2007), 1/2fTu = 0.4070793,

(f) Solution with  and V = 20 Solved by MLPSO

with k = 2, 1/2fTu = 0.2773669, (g) Solution with 

and V = 20 solved by MLPSO with k = 2, 1/2fTu = 0.2773722,

(h) Solution with  and V = 20 (Achtziger and Stolpe,

2007), 1/2fTu = 0.2777778

x 0,1[ ]
m

∈

x 0,1[ ]
m
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m

∈

x 0,5[ ]
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∈

x 0,5[ ]
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Fig. 7. Converge Curves for Example 1: (a) Converge Curve for Example 1 with  and , (b) Converge Curve for

Example 1 with  and 
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to each design node in order to acquire a stable solution. The

optimal designs with continuous design variables 

obtained by MLPSO with k = 2 and k = 3, as well as that from

Achtziger and Stolpe (2007) are shown in Figs. 8(c), 8(d) and

8(e) respectively. The solutions from the MLPSOs are stable

both vertically and horizontally. Solution from MLPSO with

k = 2 is slightly better than that from Achtziger and Stolpe (2007)

where the bar suppressing the external load is a mechanism.

Similar occurrences appear for problems with continuous design

variables  which are shown in Figs. 8(f), 8(g) and

x 0,1[ ]m∈

x 0,5[ ]m∈

Fig. 8. Summary of Results from Example 2: (a) Design Domain,

(b) Ground Structure, (c) Solution with  and V = 7

Solved by MLPSO with k = 2, 1/2fTu = 2.642803, (d) Solu-

tion with  and V = 7 Solved by MLPSO with k = 3,

1/2fTu = 2.654129, (e) Solution with  and V = 7

(Achtziger and Stolpe, 2007), 1/2fTu = 2.647288, (f) Solution

with  and V = 20 Solved by MLPSO with k = 2, 1/

2fTu = 0.9238297, (g) Solution with  and V = 20

Solved by MLPSO with k = 3, 1/2fTu = 0.9253831, (h) Solution

with  and V = 20 (Achtziger and Stolpe, 2007), 1/

2fTu = 0.9251736

x 0,1[ ]
m

∈

x 0,1[ ]
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x 0,1[ ]
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Fig. 9. Converge Curves for Example 2: (a) Converge Curve for Example 2 with, , (b) Converge Curve for Example 2 withx 0,1{ }
m

∈

x 0,5{ }
m

∈

Fig. 10. Summary of Results from Example 8: (a) Design Domain,

(b) Ground Structure, (c) Solution with  and V = 40

Solved by MLPSO with k = 2, 1/2fTu = 21.7115, (d) Solu-

tion with  and V = 40 Solved by MLPSO with

k = 3, 1/2fTu = 21.97252, (e) Solution with  and

V = 40 (Achtziger and Stolpe, 2007), 1/2fTu = 21.98687, (f)

Solution with  and V = 100 solved by MLPSO with

k = 2, 1/2fTu = 8.771632, (g) Solution with  and

V = 100 Solved by MLPSO with k = 3, 1/2fTu = 8.771661, (h)

Solution with  and V = 100 (Achtziger and Stolpe,

2007), 1/2fTu = 8.773395
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8(h). The convergence curves for this example are shown in

Figs. 9(a) and 9(b). It can be seen that the two different MLPSOs

exhibit a similar performance in the case of all four problems.

4.3 Single-Load Michell Beam

The design domain, the external load and the boundary

conditions are illustrated in Fig. 10(a). The vertical unit load is

applied at the center of the right hand side of the design

domain. Half of the left hand side is fixed to a wall. The ground

structure for the design domain is shown in Fig. 10(b). It is

worth noting that this constitutes the largest problem dealt with

in this benchmark test. Similar to the first and second

examples, for the continuous optimization problems with real

design variables  and , MLPSO with

k = 2 obtained the best solution compared with the other two

solutions. However, it is not in a dominating position. The

convergence curves for problems with  and

 are shown in Figs. 11(a) and 11(b) respectively. It

can be seen that the shapes of these curves are similar to those

of the first and second example. This indicates that the

quadratic penalty function works well with two MLPSOs.

A short summary of the benchmark test is listed in Table 1.

It can be concluded that MLPSO with k = 2 and k = 3 can

always find a competitive solutions than those from Achtziger

and Stolpe (2007). Note that MLPSO with k = 2 shows its strong

global searching ability but with larger average iterations than

MLPSO with k = 3. MLPSO with k = 3 can be seen as com-

promising solver if accuracy and efficiency are considered.

5. Conclusions

Finally, it is concluded:

1. MLPSO exhibits fairly good global searching ability and

obtain competitive results in tests to determine a minimum

compliance truss with a pre-determined volume compared

with those from Achtziger and Stolpe (2007). This consti-

tutes the best solution for the benchmark test so far. MLPSO

with k = 3 can be seen as compromising solver to find an

optimized layout of design domain discretized by truss ele-

ment, if accuracy and efficiency are considered.

2. It is necessary to perform a geometry consistency check

before the structural analysis in order to eliminate any redun-

dant members and to choose possible intermediate structures

since the MLPSO relies on the problem in its original form

and searches the design space at random.

3. The quadratic penalty function is proved effective, so long as it

is combined with MLPSO. In case the acquisition of new con-

straints is necessary, the only task is to add them to the penal-

ized objective function with proper penalty functions.

Despite having obtained successful results from all of the

numerical tests, the room for further research is vast, including,

amongst others, the following points of interest:

1. Make a convergence proof for MLPSO so that it is able to

x 0,1[ ]m∈ x 0,5[ ]m∈

x 0,1[ ]m∈
x 0,5[ ]m∈

Fig. 11. Converge Curves for Example 3: (a) Converge Curve for Example 3 and , (b) Converge Curve for Example 3 withx 0,1{ }
m

∈

x 0,5{ }
m

∈

Table 1. Summary of the Benchmark Test

Design 
Variables

PMLPSO with k = 2 PMLPSO with k = 3 Optimum form
(Achtziger and 
Stolpe, 2007)Optimum Avg. iterations Optimum Avg. iterations

A single-load wheel with 200 
design variables

0.4068066 4527 0.4072573 4215 0.4070793

0.2773669 4891 0.2773722 4693 0.2777778

A single-load cantilever with 200 
design variables

2.642803 4671 2.654129 4317 2.647288

0.9238297 4931 0.9253831 4746 0.9251736

A single-load Michell beam with 
632 design variables

21.97115 6710 21.97252 6417 21.98687

8.771632 6934 8.771661 6853 8.773395
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maximize its potential by changing algorithm parameters or

using adaptable parameters.

2. Expand MLPSO to problems of truss topological optimiza-

tion that feature more structural constraints (such as fre-

quency, global stability and so on), problems of continuum

material distribution, as well as those of material reinforce-

ment. This is of interest because PSO still constitutes a con-

siderably novel addition to the field topology optimization.

3. Develop a parallel pattern for MLPSO so that it can solve

optimization problem efficiently.
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Notations

 = the best global position so far discovered

b(t) = Current global best position

bi(t) = The best position of particle i after exchanging

information with its neighbors

bi = The local best position for particle i

C1, C2 = Two constants which are equal to 2 in the standard

version

D = Numbers of dimension

f = The nodal external load vector

F(x, µ)= The exterior quadratic penalty function for equality

constraints

fT = The transposition of the nodal external load vector

k = The number of nearest neighbors for each individual

interact in ring topology, can be selected from {2,

L, s−1}

Ki = The element stiffness matrix for the ith bar

m = An integer to determine if a particle could find a

better solution in a very small region around bi(t)

N = The number of all the nodes

pi(t) = The best personal position for particle i

R1, R2= Two independent random numbers selected in

each step according to a uniform distribution in a

given interval [0,1]

Rn = Design domain of the design variable x

s = The total amount of particles

Si = A collection of particle i and its neighbor which is

defined by the topology of its neighborhood

u = State variables

V = The volume constraint to the optimization problem

vi(t) = Velocity of particle i on time step t

= The so far discovered best position of particle i

compared with its neighbors within Si

xi(t) = Position of particle i on time step t

xi = The volume of the ith bar

xmax = Maximal value of the design variable

xmin = Minimal value of the design variable

ε= A predetermined small value to determine if Xi(t)

is much closed to bi(t)

ϕ1, ϕ2= Acceleration Coefficients, which are mostly used

in the community of particle swarms, the values

are ϕ1 = ϕ2 = 1.49445

µ= The penalty parameter

νmax = Particle's velocity constraint

ω(t) = The inertia weighting factor used to better control

the scope of the search
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