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Abstract

The present study compares the results of the Soil and Water Assessment Tool (SWAT) with a Support Vector Machine (SVM) to
predict the monthly streamflow of arid regions located in the southern part of Iran, namely the Roodan watershed. Data collected over
a period of 19 years (1990-2008) was used to predict the monthly streamflow. Calibration (training) and validation (testing) were
performed within the same period for both the models after the preparation of the required data. A semi auto-calibration was performed
for the SWAT model. Also, the best input combination of the SVM model was identified using the Gamma Test (GT). Finally, the
reliability of the SWAT and SVM models were evaluated based on performance criteria such as the Nash-Sutcliffe (NS) model
efficiency coefficient and the Root Mean Square Error (RMSE). The obtained results from the development of the SWAT model and
SVM model indicated satisfying performance in predicting the monthly streamflow in the large arid region. The SWAT obtained NS
and RMSE values of 0.83 and 6.1 respectively, and the SVM obtained NS and RMSE values of 0.84 and 6.75 respectively for the
validation (testing) period. Results indicate that for high flows of more than 19 (m3/s), both models predict flow with over and under
estimation in the validation (testing) period. Moreover, the SVM has a closer value for the average flow in comparison to the SWAT
model; whereas the SWAT model outperformed for total runoff volume with a lower error in the validation period.
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1. Introduction

Rainfall-runoff modeling is one of the most important hydro-

logical processes, especially large-scaled processes (Chang, 2009).

Also, nonlinearity and multidimensionality render the modeling

of the transformation of rainfall into runoff very complex (Ishtiaq

et al., 2010). Hydrological models have an extensive classifi-

cation but in general, these models have been divided into three

groups, which are the empirical or data-driven models, conceptual

or gray box models, and physically-based or white box models

(Willems, 2000). Empirical or data-driven models do not explicitly

use laws and processes, instead they merely relate the input

conversion functions to output one (Leavesley et al., 2002). The

second group consists of conceptual models which are not

formed based on all the physical processes but on understanding

the behavior of system model’s designer. The third group, which

includes the theoretical models (physically-based models), try to

provide all the existing processes in the required hydrology system

through inserting physical senses (Moore et al., 1988). The Soil

and Water Assessment Tool (SWAT) is a hydrological model de-

veloped by the American Agricultural Research Organization. The

SWAT model is a conceptual semi-distributed model according

to the basin scale framework. This model consists of various

processes including climate, hydrology, nutrients, erosion, vege-

tation, managerial methods, and flow routing. Therefore, it is

popularly applied around the globe (Gassman et al., 2007).

Moreover, in recent decades, the development of artificial intelli-

gence techniques, such as Artificial Neural Networks (ANN),

Support Vector Machine (SVM) and more, have provided a

significant evolution in the predictors of hydrological phenomena

(Yang et al., 2009; Kisi et al., 2009; Kocabasa et al., 2009; Kisi

and Cigizoglu, 2007). Mathematically, the SVM is used for both

classification and regression algorithms, which are formulated

through the principles of statistical learning theory by Vapnik,

(1995). Due to the wide capability of the SWAT and SVM model

regarding water and soil research studies, many studies have

been performed all over the world by these models separately

(Shepherd et al., 1999; Spruill et al., 2000; Saleh and Du, 2004;

Birhanu et al., 2007; Gassman et al., 2007).

In regards to recent studies, the SWAT model was applied by
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Changbin Li et al. (2010) to simulate the basin flow and the

amount of sediment in China. Rostamian et al. (2008) used the

SWAT model for modeling the runoff and sediment in the central

part of Iran. In Africa, Shimelis et al. (2010) assessed the effect

of topography, land use, soil, and climate on the hydrology of

Ethiopia by evaluating the application of the SWAT model.

Tibebe and Bewket (2010) stimulated the monthly surface runoff

production and the basin erosion rate of the Keleta region in

Ethiopia using the SWAT model. In South Korea, Hong et al.

(2010) reported spatial and temporal correlation for resolution

imaging integrated with the SWAT model. This was due to the

fact that soil moisture is an important hydrologic state variable

which can affect the actual plant and crop Evapotranspiration

(ET), storage capacity for surface runoff, subsurface flow, and

recharge of groundwater. Generally, discussions have been made

regarding the SWAT soil moisture and new integrated features

via calibration and validation periods. 

On the other hand, the SVM model is applied for evaluation in

hydrology. Bray and Han (2004) used the SVM model for runoff

modeling and showed that the SVM model could accurately

stimulate the runoff. Han et al. (2007) used an SVM model for

predicting floods in a basin and compared it with basic models

such as simple, trend, multivariate regression, and ANN models.

Recently, Jie and Yu (2011) used SVM and ANN for predicting

the suspended sediment load of the Kaoping River in Taiwan and

results showed that the SVM model had a higher capability than

the ANN model. One of the major issues concerning modeling

using artificial intelligence techniques is selecting the best combi-

nation of the input variables for the model. Thus, various approaches

have been used so far, including Principle Component Analysis

(PCA), Genetic Algorithm (GA) and many more. GT is one of

the approaches that has recently been given attention by many

hydrologists (Moghaddamnia et al., 2009). Ahmadi et al. (2009)

evaluated the capabilities of GT techniques and the theory of

entropy to identify effective variables on solar radiation in the Brue

basin in the UK. The results showed that the number of required

variables for the modeling significantly reduced using GT. Noori

et al. (2011) reviewed the role of pre-processing the input para-

meters through PCA, GT, and stepwise regression in the perfor-

mance of SVM to predict flows. The results indicated higher effec-

tiveness of a pre-processing role in determining input variables.

Few studies have been done to compare SWAT and data-

driven models in the past decade. Srivastava et al. (2006) applied

SWAT and ANN models in a small agricultural watershed for the

evaluation of base and surface flow. The results suggested that

these models provided a viable alternative approach for hydro-

logical and water quality modeling. Demirel et al. (2009) used

ANN and SWAT models for predicting the daily flow of the

Pracena basin located in Portugal. The results showed that the

ANN model was a better model in predicting the peak flow than

SWAT model. However, the results of the SWAT model illustrated

a much better values for the Mean Squared Error (MSE). Prasantha

Hapuarachchi and Zhijia, (2003) compared two types of ANN

architectures, namely the Multi-Layer Perceptron network (MLP),

and the Radial Basis Function network (RBF) with the SWAT

model. However, ANNs gave better results in the subject of the

simulation of streamflow; the results revealed that the perfor-

mance of the SWAT model strictly depends upon the quality of

input data (Arnold et al. 1998). Morid et al. (2002) compared

SWAT and ANN for snowy catchments in the subject of snowmelt–

runoff simulation in Iran. This research showed that during low

flows, ANN is better than the SWAT; however, the SWAT

performed better for high flows, especially for the peak flows. 

The major aim in this research, which serves as a new contri-

bution, is to compare the efficiency of the SVM and SWAT (version

2009) models for predicting the monthly streamflow of the

Roodan basin located in Iran as an arid to semi-arid region. The

objectives of this study are (i) monthly streamflow prediction by

SWAT and calibration by SWAT-CUP software; (ii) prediction of

monthly streamflow by the types of regression SVM (υ-SVR)

and application of new gamma test technique for finding the best

input combination using SVM; (iii) evaluation of the capability

of SVM and SWAT in runoff prediction of Roodan watershed.

2. Methodology

2.1 Case Study: Introduction of Roodan Watershed

The study area is located in the southern part of Iran between

the Hormozgan and Kerman provinces, i.e. Roodan watershed.

The area of catchment is 10,570 km2 (Fig. 1). The Roodan basin

is mountainous in the north and east direction, and plain in the

center and south part. During 1978 to 2008, the average annual

precipitation was 215 mm. Generally, the soil type in Roodan

watershed is a mix of clay, silt, and sand. The environment of

Roodan is arid to semi-arid with high intensity and short

precipitation. The Roodan watershed land is made up of shrub

land, mix grassland with shrub land, rock, irrigated agriculture/

orchard farms, and urban areas. In this study, 13 years (1990-

2002) were utilized for training (calibration) the models and 6

years (2003-2008) were utilized for testing the models. 

2.2 Support Vector Machines

The support Vector Machine is formulated through statistical

learning theory principles by Vapnik (1995). The main equation

Fig. 1. Roodan Watershed in South of Iran
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for statistical learning is as below:

(1)

where the model output is the sum of M linear; the non-linear

convert part of the model is shown by ϕ( ). This equation is

converted into as follows to use the Support Vector Machine

model:

(2)

where K is the kernel function, wi and b are the model

parameters, N is the number of data for training, Xi is the data

vector for the network training, and X is the independent vector.

The parameters of the model are determined by maximizing the

target function. The aim of a linear regression model is to find a

linear function in order to do the best interpolation of the training

points. Provided that y=f(x)=<w.x>+b is obtained based on

methods of minimizing the sum of squares, the <w, b> para-

meters can be determined (Cristianini and Shawe-Taylor, 2000).

(3)

In this method, the cost function can be formulated by using

the following equation:

(4)

The Euclidean norm of a smooth vector space should be

minimized with accounting the cost function:

Min

Subject to :

(5)

where, C is the cost coefficient. After solving the equation, it will

be:

(6)

This developed equation is supporting vectors for the linear

model. Kernel function K(x, z) is the internal production of

<ϕ(x), ϕ(z)>. In various studies, Radial Basis Function (RBF)

kernel has been reported as the best kernel. The RBF kernel is

shown in Eq. (7):

(7)

Kakaei Lafdani et al. (2013), and Han and Yang (2001)

provides further explanations on kernel function. 

2.3 Gamma Test (GT)

Gamma test estimates the minimum mean square errors which

are obtainable in continuous non-linear models with unseen data

(Moghaddamnia et al., 2009). The relationship is established

between the set members:

(8)

where r is a random variable. In order to calculate Γ, the linear

regression is fitted from p spot to values of δM(k) & γM(k): 

(9)

where,

(10)

(11)

The Delta function calculates the mean squared distance of the

kth neighbor (Ahmadi et al., 2009). |.| indicates the Euclidean

distance and its corresponding Gamma function, providing that

m is the number of the input variables, the combination of 2m-1

would be among them. Reviewing all these combinations takes a

lot of time. The Gamma test can identify the most effective

variable in modeling and the best combination of the input

variables. Kakaei Lafdani et al. (2013), and Han and Yang

(2001) provide further explanations on the Gamma test.

2.4 Local Linear Regression

In this method, three points are required to obtain a primary

estimate and then using all new updated data for future prediction.

The only problem with this model is decision-making for the size

of Pmax, the number of nearest neighbors for considering in local

linear model. Selection of Pmax model for linear regression is

called statistical effect explained as below:

(12)

For a neighborhood of Pmax point, the following equation must

be solved:

(13)

where X is a matrix subsequent Pmax×d from Pmax in the input

point in d dimension, xi (1≤i≤Pmax) are the nearest neighbor

points, y output vector corresponding to the input. The m vector

of parameters should be determined to provide the best relation

between X input and Y output (Remesan et al., 2009). 

2.5 Introduction of Soil and Water Assessment Tool (SWAT)

Some hydrologic models have been developed for watershed

assessment as reported by Johansen et al. (1984), Williams et al.

(1984), Young et al. (1989), Knisel (1980), Arnold et al. (1990),

y fX wiϕi X( )
i 1=

M

∑ Wϕ X( )= = =

y f X( ) wiK Xi X,( )
i 1=

N

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

b–= =

yi w.x〈 〉 b––( )2

i f1=

l

∑

ξ
ε

y f x( )– ε
0 if  y f x( )– ε≤
y f x( )– ε – o.w.⎩

⎨
⎧

= =

1

2
--- w 2 C ξ i

*

i

l

∑ ξ i

i

l

∑+⎝ ⎠
⎛ ⎞+

yi w.x〈 〉– b– ε ξ i+≤
w.x〈 〉 b yi–+ ε ξ i

*+≤
ξi ξi

*, 0≥

f x( ) αi αi
*–( ) xi x,〈 〉

i 1=

l

∑ b+=

K x z,( ) exp α x z––( )=

y f x1 ... xm, ,( ) r+=

γ Aδ Γ+=

δM k( ) 1

M
----- XN i k,[ ] Xi– 2

i 1=

M

∑=

γM k( ) 1

2M
-------- yN i k,[ ] yi– 2

i 1=

M

∑=

Xm y=

x11 x12 x13 L x1d

x21 x22 x23 L x2d

M M M O M

xp
max

1, xp
max

2, xp
max

3, L xp
max

d,⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ m1

m2

m3

M

md
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

y1

y2

M

yp
max⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=



Milad Jajarmizadeh, Elham Kakaei Lafdani, Sobri Harun, and Azadeh Ahmadi

− 348 − KSCE Journal of Civil Engineering

and USACE-HEC (2002). Usually, hydrological models have

limitations in numerous features of catchment modeling as re-

ported by Saleh et al. (2000). Recently, a model has been developed

by the U.S. Department of Agriculture (USDA), named Soil and

Water Assessment Tool (SWAT). SWAT is a physically based

model and it suggests the ability of simulating changes in land

management, a high level of spatial detail, continuous-time re-

production, efficient computation, and a limitless number of

watershed sections (Lenhart et al., 2002). In SWAT, a watershed

is classified into numerous subcatchments, which is subsequently

further subdivided into Hydrological Response Units (HRUs) that

consist of homogeneous management, land use, and soil uniqueness.

The HRUs correspond to the percentages of the subcatchments

area. The water balance of each HRU in the watershed is charac-

terized by four storage volumes: soil profile, deep aquifer, shallow

aquifer, and snow (Jha et al., 2004). A full report of the SWAT

model can be found in Neitsch et al. (2005a; 2005b)

2.6 SWAT-CUP Software

The SWAT-CUP software is a public domain program attributed

with algorithms through calibration and validation for the SWAT

model (Abbaspour and Yang, 2006; Beven and Binley, 1992;

Abbaspour et al., 2007; Van Griensven and Meixner, 2006).

Yang et al., (2008) reported that the SUFI-2 algorithm is appro-

priate for the calibration and validation of the SWAT model due

to the representation of uncertainties of all sources through para-

meter uncertainty in the hydrological model. SUFI-2 involves a

parameter sensitivity analysis by analyzing which parameters

contribute the most to the output variance due to the input

changeability (Abbaspour et al., 2007). A comprehensive report

of SUFI-2 algorithm and uncertainty procedure can be found by

Abbaspour et al. (1997), and Huang and Qin (2008).

2.7 Model Results Evaluation and Residual Measures Indices

In this study, graphical evaluations and numerical indicators

were used to provide a comprehensive judgment for the SWAT

and SVM models, as well comparing them as suggested by WMO

(1975). In this study, the Nash-Sutcliffe coefficient of efficiency

(NS) was used as relative goodness-of-fit and Root Mean Square

Error (RMSE) for absolute measuring (Srivastava et al., 2006). 

(1) Nash-Sutcliffe:

(14)

Generally, the NS coefficient is a development over the corre-

lation-based measures because it is responsive to the measured

and simulated averages and variances (WMO, 1975).

(2) Root Mean Square Error (RMSE):

(15)

The RMSE is a dimension measure that shows the agreement

between the observed and simulated data. When RMSE is close

to zero, it indicates better performance modeling. In addition, in

order to study the performance of SVM and SWAT models, the

relative error, Erelative between the maximum values of the actual

flow discharge rate and its corresponding simulated flow

discharge (by SVM and SWAT models) were calculated as the

following equation:

(16)

where, Q(obs)i is the observed value of time i, Q(pre)i is the predicted

value of time i, n is the sum of observations, and Qobsave are the

average of observed values. Also, Q(m.Obs)i and Q(m.pre)iare the

maximum values of the actual and predicted flow discharge

during i time respectively.

2.8 Flow Prediction using SWAT

Usually, necessary data for the SWAT model development

include DEM, land use map, soil map, and meteorological data

in a sub-daily or daily scale (Winchell et al., 2010). A mesh-sized

map between 50-90 m resolutions is sufficient for the SWAT

model (Chaplot, 2005). In Roodan watershed, the DEM was

prepared with a 90 m resolution from 1:25000 topographic maps,

which were provided by the topography organization of Iran. To

obtain accurate simulation in this study, the digital river network

burning technique was applied on the DEM. The FAO soil map

was used due to the availability of information for needed pro-

perties of 5000 soil types in the SWAT model (Faramarzi et al.,

2009). Evaluation of the soil map for the distribution of soil types

was performed by preparing the geology map (1:25000) and

available soil samples from the case study. Then, land use of Roodan

was prepared in accordance to the satellite image of Landsat7

(2002), observation of various case studies (2007-2008), available

land use map (1:25000), and statistics of agricultural areas from

the agriculture organization of Hormozgan, Iran. Generally, in-

formation from the available data (satellite images and statistics

from the development of agricultural areas) do not show much

significant differences in land use, which accounted to less than

2%. As reported by Oeurng et al. (2011), changes in land use

which are less than 5% is not essential for large-scale modeling.

Hargreaves-Samani method was used for potential evapotranspi-

ration. Therefore, only precipitation and temperature data are

sufficient for running the model (Neitsch et al., 2005a; 2005b).

The daily rainfall-runoff curve number method for soil moisture

condition II was used for the calculation of discharge modeling.

Water was routed through the channel network by using the

variable storage routing method (Chow et al., 1988). Many semi-

arid and arid basins have ephemeral channels that take large

quantities of streamflow. A procedure for estimating transmission

losses for ephemeral streams, which has been incorporated into the

SWAT model, can be found in Lane (1983, 1982). Five percent

was specified for land-use, soil and slope distribution in HRUs

definition stage, which is suitable for large basin modeling,
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according to Raneesh et al. (2010). Roodan watershed was

divided into 513 HRUs for whole catchment and 45 sub-basins.

At last, the prepared model was run from 1988 to 2008 including

a two-year warm-up period. 

2.8.1 Calibration Procedure for SWAT Model

Calibration is a fairly tough task for hydrological models, such

as SWAT, that include a large range of data and parameters.

Therefore, sensitivity analysis is significant to reduce the number

of parameters to be optimized throughout the calibration method

(Lenhart et al., 2002).

In this study, for finding the sensitive parameters in Roodan

watershed, the Latin-Hypercube One-factor-At-a-Time (LH-OAT)

method was used before the calibration scheme, which was

embedded in the SWAT package model (Van Griensven and

Meixner, 2006). The LH-OAT sensitivity analysis method merges

the robustness of the Latin-Hypercube sampling with the preci-

sion of an OAT design (Van Griensven and Meixner, 2006).

Therefore, the full range of all parameters have been sampled,

assuring that the changes in the output in each model run can be

unambiguously attributed to the input changed. 

In this study, twenty-six hydrological parameters were used for

sensitivity analysis, as provided in the SWAT (2009) model's

user manual (Winchell et al., 2010). In this study, after finding

the sensitive parameters in the streamflow simulation, SUFI-2

algorithm was applied in the SWAT-CUP software. The SUFI-2

algorithm calculates the sensitivity of each parameter. It allows

users to judge the degree of sensitivity and significance of the

parameters for better modeling. A detailed explanation of the

SUFI-2 algorithm for calibration and sensitivity analysis can be

found comprehensively in Abbaspour et al. (2007). Schuol et al.

(2008) reported that a sensitivity analysis of SUFI-2 algorithm is

a more in-depth judge to evaluate parameters for a better

simulation. Therefore, many parameters can be analyzed for

reviewing the sensitivity for specific objectives during the

calibration. Finally, the modeling period was divided in two parts

for calibration and validation. Lastly, calibration periods were

defined from 1990 to 2002 and the period of 2003 to 2008 was

used for validation. In fact, two-third of the data were considered

for calibration and one-third of them were considered for

validation. The sensitivity analysis for the SWAT model has been

reported in Table 1.

The seven highest sensitive parameters have a p-value equal to

zero, which is indicated by bold font in Table 1. The effective

hydraulic conductivity of the main channel (CH_K2) was assessed

as highly sensitive. Indeed, CH_K2 is involved with intermittent

tributaries resulting in a contribution of streamflow to the main

river. Base flow alpha factor (ALPHA_BF) is another notable

sensitive parameter. It is a direct index of groundwater flow response

to changes in recharge. Curve number (CN2) was found to be

sensitive, possibly due to the application of the soil conservation

services-curve number method (SCS-CN) for calculating surface

runoff. The available water capacity of the soil layer (SOL_AWC)

was found to be sensitive. Besides that, the surface runoff lag

coefficient (SURLAG) in Roodan was also evaluated as sensitive.

The SWAT model integrates a surface streamflow storage charac-

teristic to lag a fraction of the surface streamflow discharge to the

main channel. This procedure is significant when the watershed

is in a large scale such as in Roodan watershed.

2.9 Flow Prediction using SVM based on Gamma Test

2.9.1 Model Input Selection by Gamma Test

In order to predict the flow discharge, inputs of average monthly

rainfall, average monthly temperature, average monthly runoff,

and each of the four time delays were considered as the input

model (Rt-1, Qt-1, Tt-1, Rt-2, Qt-2, Tt-2, Rt-3, Qt-3, Tt-3, Rt-4, Qt-4, and Tt-4)

and Qt was considered as the output model. Parameters whose

existence enhanced the complexity of the model and have no

significant influence on the results of the model were identified

and eliminated. In order to choose effective parameters to predict

monthly streamflow, the mentioned inputs were assessed by the

GT. To identify the effective input variables, the gamma values

were first obtained through GT. Then, one of the input variables

was eliminated and the gamma value was calculated for the

assumed combination. Therefore, the mentioned variable was

entered and another variable was eliminated, and gamma values

were obtained for the new combination. Thus, in this way, every

variable was deleted once from the input combination. Table 2

illustrates the gamma value for each of the variables from the

input combination. As indicated in Table 2, out of 12 variables,

Table 1. List of Sensitive Parameters and Their Ranking for SWAT Model

Sensitivity
Rank

Parameter Description t-Value* p-Value*

1 **v_CH__K2.rte Effective hydraulic conductivity of main channel -20.5 0

2 v_ALPHA__BF.gw Base flow alpha factor 12.66 0

3 v_CN2.mgt__SHRB SCS runoff curve number for antecedent moisture condition type II for Shrub land 11.4 0

4 v_CN2.mgt__MIGS
SCS runoff curve number for antecedent moisture condition type II for Mixed
Grassland and Shrub land

5.1 0

5 ***r_SOL__AWC(1).sol Available water capacity of the soil layer -5 0

6 v_ESCO.hru Soil evaporation compensation factor 2.46 0

7 v_SURLAG.bsn Surface runoff lag coefficient -1.7 0

*t-value and p-value show measure (large absolute value) and significance of sensitivity (close to zero) respectively for each parameter; **v: parame-
ter value is replaced by given value or absolute change; ***r: parameter value is multiplied by (1 + a given value) or relative change (Abbaspour et al.,
2007). 
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Rt-2 and Rt-1 have the highest influence on the flow discharge

because eliminating these variables from the modeling will cause

the gamma value to increase. In addition, eliminating the

variables Rt-3 and Qt-3 had no impact on the amount of gamma.

Furthermore, the variables Tt-2, Rt-4, Qt-4, and Tt-4 caused a decline

in the amount of gamma. Eliminating the other remaining variables

had a similar effect in increasing the gamma. Therefore, the

variables Tt-2, Rt-3, Qt-3, Rt-4, Qt-4, and Tt-4 were eliminated from the

input combination. 

To determine the best input combination in modeling, various

combinations of input parameters were assessed using GT so as

to identify the most appropriate combination among the remained

variables to predict the flow discharge (note that in selecting the

combination, various parameters were tried, including parameters

which have been identified as the most effective input variables

through GT in prediction). These combinations, along with

gamma values, are shown in Table 3.

The results suggested that among the five defined scenarios,

the best input combination out of the variables was the combi-

nation Rt-1, Qt-1, Tt-1, Rt-2, Qt-2, and Tt-3 (Scenario 4). The low

gamma value indicated that the data with that combination might

possibly provide better results in modeling.

In the next step, the traditional regression model was used

among the input and output variables in order to determine the

best combination of the input variables. Fig. 2 illustrates the

results of correlations among the 12 input variables and the

discharge rate (Qt). As shown in this figure, the variables Rt-2, Tt-1,

Qt-2, Rt-1, Tt-2, and Qt-1 have the highest correlations with the

output discharge. However, it is possible that there is a correla-

tion between some of these variables and one of which may

represent one or more variables. Therefore given the covariance

matrix, the inputs from the predicted model have been chosen in

Table 4. According to Table 4, there is a high correlation between

Rt-2 and Qt-2; however, according to Fig. 2, there is a higher

correlation with the output discharge. Hence, Qt-2 will be eliminated

from the input combination. Besides, there is a high correlation

between Tt-1 and Tt-2. According to the Fig. 2, variable Tt-2 has a

lower correlation than Tt-1 with the output discharge; therefore,

this variable (Tt-2) will also be eliminated from the input combina-

Table 2. Identifying the Most Effective Variable for Prediction based on GT

Scenario Input parameter Mask Gamma value Scenario Input parameter Mask Gamma value

1 All 111111111111 0.0040398 8 All-Rt-3 111111011111 0.0040887

2 All-Rt-1 011111111111 0.0050465 9 All-RQt-3 111111101111 0.0040814

3 All-Qt-1 101111111111 0.0046458 10 All-Tt-3 111111110111 0.0042499

4 All-Tt-1 110111111111 0.0046616 11 All-Rt-4 111111111011 0.0036506

5 All-Rt-2 111011111111 0.0060799 12 All-Qt-4 111111111101 0.0034653

6 All-Qt-2 111101111111 0.0051154 13 All-Tt-4 111111111110 0.00281

7 All-Tt-2 111110111111 0.0037165

Table 3. Determination of the Best Combination from the Input

Variables through GT

Scenario Input parameter Mask Gamma value

1 Rt-1, Rt-2, Qt-2 100110000000 0.0097917

2 Rt-1, Qt-1, Rt-2, Qt-2 110110000000 0.0010122

3 Rt-1, Qt-1a, Tt-1, Rt-2, Qt-2 111110000000 0.00084539

4 Rt-1, Qt-1, Tt-1, Rt-2, Qt-2, Tt-3 111110110111 0.00047904

5 Rt-2, Qt-2 000110000000 0.0099458 Fig. 2. Correlations among Input Variables and Discharge

Table 4. The Correlation Coefficient Values between Input Variables

Rt-1 Qt-1 Tt-1 Rt-2 Qt-2 Tt-2 Rt-3 Qt-3 Tt-3 Rt-4 Qt-4 Tt-4

Rt-1 1 0.887 -0.54 0.318 0.196 -0.49 0.283 0.185 -0.32 -0.01 0.007 -0.07

Qt-1 0.887 1 -0.38 0.274 0.192 -0.36 0.368 0.311 -0.25 0.031 0.04 -0.07

Tt-1 -0.54 -0.38 1 -0.41 -0.29 0.851 -0.16 -0.1 0.482 0.096 0.082 -0.01

Rt-2 0.318 0.3 -0.41 1 0.887 -0.38 0.318 0.196 -0.49 0.283 0.185 -0.32

Qt-2 0.196 0.2 -0.29 0.887 1 -0.38 0.274 0.192 -0.36 0.367 0.311 -0.25

Tt-2 -0.49 -0.36 0.851 -0.54 -0.38 1 -0.42 -0.29 0.853 -0.17 -0.1 0.485

Rt-3 0.283 0.368 -0.16 0.318 0.274 -0.42 1 0.887 -0.54 0.318 0.196 -0.49

Qt-3 0.185 0.311 -0.1 0.196 0.192 -0.29 0.887 1 -0.38 0.274 0.192 -0.36

Tt-3 -0.32 -0.25 0.482 -0.49 -0.36 0.853 -0.54 -0.38 1 -0.42 -0.29 0.853

Rt-4 -0.01 0.031 0.096 0.283 0.367 -0.17 0.318 0.274 -0.42 1 0.887 -0.54

Qt-4 0.007 0.04 0.082 0.185 0.311 -0.1 0.196 0.192 -0.29 0.887 1 -0.38

Tt-4 -0.07 -0.07 -0.01 -0.32 -0.25 0.485 -0.49 -0.36 0.853 -0.54 -0.38 1
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tion. In addition, there is a high correlation between the variables

Qt-1 and Rt-1. As Fig. 2 indicates, Qt-1, which has a lower correlation

than Rt-1 with the output discharge, will be eliminated from the

input combination. Hence, the determined combination using the

regression model was Rt-1, Tt-1, and Rt-2.

2.9.2 The Flow Prediction by SVM Model

In the runoff prediction out of 228 data collection, 156 data

(1990-2002) were used in the training model and the rest (2003-

2008) were also used for the testing model. In this step, the

amount of flow was predicted by two steps through the SVM

model: 1. predicting the flow through the SVM model based on

the determined combination using GT (GT-SVM), and 2. Predict-

ing the flow through the SVM model based on the determined

combination by regression method (Reg-SVM). In addition, the

results of the prediction were compared with the results of the

LLR model as a benchmark model.

As indicated, to predict using υ-SVM and RBF kernel, the optimal

values of the parameters C, ε and γ should be determined. In this

study, the values of these parameters were determined using the

trial and error method. In selecting the optimal values of the

parameters, it was found that the model has minimum error in

the testing stage using these values. The C and ε parameters had

influence on the quality and duration of training. The C parameter

keeps a balance between margin maximization and training error

minimization. A smaller C results in low pressure; whereas a

very large C value causes overfitting of data training. C is useful

for controlling the smoothness of the function. The kind of noise

in the data, when determinable, directly influences the optimal

value of ε. The number of resulting support vectors should be

considered as well. The training sets, if insensitive to ε, will not

encounter the boundary condition (Kakaei Lafdani et al., 2013).

Moreover, the value of the γ parameter influences the occurrence

of overfitting and underfitting in the network. When γ increases

substantially, it results in overfitting (i.e. the prediction of only

the trained data). In this case, the model becomes complex due to

the need to consider the distances of all support vectors. When

the value of γ drops substantially, under fitting occurs (i.e. the

model being unable to predict the trained data), which is caused

by the machine ignoring most of the support vectors (Kakaei

Lafdani et al., 2013). Fig. 3 shows the curve changes of the

predicted flow using different values of C. Increasing C values

will penalize the errors and hence, the resulting GT-SVM will

have a small number of support vectors. According to Fig. 4, the

increased value of C from 1 to 4.3 changed the error value

slightly from 16.6 m3/s to 14.1 m3/s, and then the increase to

C=1000 increased the error value to 42.2 m3/s. Therefore, C=4.3

would be selected.

In addition, Fig. 5 shows the curve changes of the predicted

flow using different values of ε. As indicated in the Fig. 5, with

an increase in ε value, prediction error increased during the

testing period with a constant value (equal to 4.1 m3/s). Fig. 6

shows the RMSE changes of the GT-SVM model according to

various ε values. Fig. 6 illustrates that if the value ε=0.006 is

chosen, the GT-SVM model would be able to predict the value of

flow discharge with a lower error. Curve changes of the

simulated runoff using different values of γ are shown in Fig. 7.

As shown in the Fig. 7, by decreasing the value of γ, the

predicted flow curve is more inconsistent with the observed flow.

Due to the RMSE change curve's correspondence to the different

values of γ (Fig. 8), γ=1.5was selected because at this point, the

GT-SVM model predicts the flow discharge with a lower error

and the error value had no significant change with an increased

value of γ. When the γ value is very small, underfitting occurs

Fig. 3. Observed and Predicted Runoff based on Different C Values

Fig. 4. Determination of Optimal C Value

Fig. 5. Observed and Predicted Runoff based on Different ε Values

Fig. 6. Determination of Optimal ε Value

Fig. 7. Observed and Predicted Runoff based on Different γ Values
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because most of support vectors are ignored. Also, a large value

of γ increases the complexity of the model and will lead to

overfitting. 

Therefore, the values of three parameters (i.e. C, ε, and γ) were

selected based on the determined combination for the GT-SVM

model and the correlation method. The three parameters, C, ε,

and γ, were equal to 4.3, 0.006, and 1.5, respectively. For the

Reg-SVM model parameters, C, ε, and γ were equal to 9, 0.0085,

and 3.4, respectively. The obtained results from flow prediction

using the GT-SVM, Reg-SVM, and LLR models are shown in

Table 5.

Given the results of Table 5, the determination of the predictors

through the regression method (Rt-1, Tt-1, and Rt-2) has been the

best model in the training phase of the network. In other words,

the performance of the Reg-SVM model was much better than

the GT-SVM model during the training period because the Reg-

SVM model had a lower RMSE value (4.36 m3/s) and a higher

NS value between the predicted and actual values. However, in

the testing period, the model with the determined input combi-

nation by the gamma test (GT-SVM) had the best performance

(lowest RMSE=6.75 m3/s) compared to the model with the

determined combination by the regression method; this indicates

the efficiency of the GT model in selecting the input variables in

the prediction model.

In addition, Table 5 shows that both the GT-SVM model and

Reg-SVM model performed remarkably well in the training and

testing stages. Also the GT-SVM model showed better perfor-

mance over the Reg-SVM and LLR models. While using the GT-

SVM model (RMSE=5.47 m3/s) during the training stage, the

predicted error is 55.2% lower than LLR model (RMSE=12.21

m3/s). The NS coefficient for the GT-SVM model (NS=0.98) in

this stage was 55.56% higher than the NS coefficient for the LLR

model (NS=0.63). For the testing period, the GT-SVM model

with the lowest RMSE value (6.75 m3/s) and highest NS value

(0.84) was the best model in predicting the streamflow compared

to the LLR model (RMSE=16.85 m3/s, NS=0.51).

3. Results

As mentioned during the introduction section, the main aim for

this study was to evaluate the physically-based and distributed-

parameter SWAT model with the performance of the GT-SVM

model for predicting monthly discharge from a large, arid to semi-

arid watershed in the southern part of Iran. The results obtained

from the prediction using SWAT and GT-SVM models for indices

are shown in Table 6.

The results of Table 6 show that SWAT and GT-SVM models

have very good performance during training and testing stages.

By comparing the performance of SWAT and GT-SVM models

during the training stage, it was found that the GT-SVM performed

better (NS=0.98) than the SWAT model (NS=0.92). However, it

does not mean that the SWAT is weak due to its prediction. In

addition, while using the GT-SVM model (RMSE=5.47 m3/s)

during the training stage, the predicted error which is 47.9%, was

lower than the SWAT model (RMSE=10.5 m3/s). The linear scale

plot of the observed and predicted flow is shown in Fig. 9

(training stage). Generally, both of the models have a reasonable

accordance trend with the observed data in Fig. 9. As it can be

seen from Fig. 9, for the highest recorded flow of the 38th month

(Feb/1993), SWAT overestimated the flow in contrast to GT-

SVM which underestimated the flow.

By comparing the results during the test of the models, results

indicated that both SWAT and GT-SVM models have a high

performance in predicting the runoff. The NS coefficient in SWAT

and GT-SVM models are close to each other (NSSVM=0.84 and

NSSWAT=0.83). This shows that both of the models have a high

level of performance. The NS coefficient for the GT-SVM model

(NS=0.84) in this stage was 1.2% higher than the NS coefficient

for SWAT model (NS=0.83). The absolute prediction error of flow

was 9.63% lower through the SWAT model (RMSE=6.1 m3/s)

during the testing stage than the GT-SVM model (RMSE=6.75

m3/s).

Generally, both of the models have a reasonable accordance

trend with the observed data in Fig. 10. As it can be seen from

Fig. 8. Determination of Optimal γ Value

Table 5. The Results of Training and Testing Stages of GT-SVM,

Reg-SVM and LLR

Model
Training Testing

GT-SVM Reg-SVM LLR GT-SVM Reg-SVM LLR

RMSE 5.47 4.36 12.21 6.75 8.45 16.85

NS 0.98 0.99 0.63 0.84 0.76 0.51

Table 6. The Results of Training and Testing Stages of SWAT and

GT-SVM Models

Model
Training Testing

RMSE NS RMSE NS

SWAT 10.5 0.92 6.1 0.83

GT-SVM 5.47 0.98 6.75 0.84

Fig. 9. Observed and Predicted Runoff in the Calibration (Training)

Stage
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Fig. 10, SWAT and GT-SVM similarly underestimated the flow

for the highest recorded flow of the 24th month (Dec/2004). A

comparison between the observed and predicted monthly flow in

the validation period is shown in Fig. 11. It can be seen from Fig.

11, predicted flows by GT-SVM and SWAT closely follow the

observed data. The scatter plot clearly shows that the GT-SVM

has a higher R2 value (0.9) than the SWAT model (0.8).

Due to the importance of validation period, which shows the

generalization of a model, the statistical index for this period was

evaluated. Table 7 illustrates the statistical index of observed and

predicted runoff. As seen from Table 7, mean streamflow of

SWAT is lower than observed data. In addition, the GT-SVM has

a higher mean flow during the testing period in comparison with

the observed flows. 

Also the maximum flow values (more than 19 m3/s) and its

corresponding predicted flow during the testing stage are shown

in Table 8 and the relative error of the actual and predicted values

have been calculated according to Eq. (20). As indicated in Table

8, while the SWAT model predicted the maximum observed flow

(76.58 m3/s) to be 55.93 m3/s with a relative error of 26.97%

lower than actual value, the GT-SVM model predicted this value

to be 61.01 m3/s with a relative error of 20.33% lower than actual

value. In addition, while the GT-SVM model predicted the

second max peak to be 75.37 m3/s with a relative error of 17.91%

lower than actual value, the SWAT model predicted the same

value with a lower relative error of 0.38% higher than the actual

value and provided a more accurate estimation of the flow

discharge. The results of Table 8 showed that the maximum pre-

dicted values through the GT-SVM model are closer to its actual

corresponding values than the maximum predicted runoff by the

SWAT model. In other words, according to this research, the GT-

SVM had higher capability in predicting the flow peak values.

The total observed discharge volume during the training (cali-

bration) stage was equal to 2254.66 m3/s. The SWAT and GT-

SVM models predicted this value as 1754.19 m3/s and 2298.39

m3/s, respectively. The predicted flow volume using the SWAT

model was 22% lower than actual value; while the GT-SVM

model predicted the flow volume during the training stage 1.94%

higher than the actual value. As a result, the GT-SVM model pro-

vided a more accurate estimation from the flow volume during

the training stage than the SWAT model.

Figure 12 illustrates the observed and predicted cumulative

runoff curve by the SWAT and GT-SVM models during the

testing (validation) period. The total observed discharge volume

during the testing stage was equal to 375.34 m3/s. The GT-SVM

and SWAT models predicted this value as 420.18 m3/s and

354.604 m3/s, respectively. The predicted flow volume using the

SWAT model was 5.5% lower than actual value; while the GT-

SVM model predicted the flow volume during the testing stage

11.95% higher than the actual value. As a result, the SWAT

model has provided a more accurate estimation from the flow

volume during the testing stage than GT-SVM model. In

summary, GT-SVM has better indices, such as RMSE and NS,

Fig. 10. Observed and Predicted Runoff in the Validation (Testing)

Stage

Fig. 11. Scatter Plot of Observed Flow (m3/s) versus SWAT Data

(Green Circles) and GT-SVM Data (Blue Circle)

Table 7. Statistical Indices of Observed and Predicted Runoff by SWAT and GT-SVM Models

Model n Range xmax xmin x xmax/x σ
2

Observed Runoff --- 72 72.554 76.581 0.02652 5.213 14.69 224.02

Predicted Runoff
SWAT 72 75.65 75.65 0 4.93 15.35 185.35

SVM 72 61.79 61.83 0.04 5.84 10.59 193.39

Table 8. Comparing the Maximum Predicted Flow Discharge Val-

ues by SWAT and GT-SVM Models

Runoff
> 19 m3/s

SVM SWAT
Relative Error %

SVM SWAT

25.27 17.61 14.49 -30.31 -42.67

76.58 61.01 55.93 -20.334 -26.97

24.36 20.64 28.06 -15.28 15.168

75.37 61.87 75.65 -17.91 0.3777

62.15 55.15 35.08 -11.27 -43.56

20.35 42.08 31.83 106.76 56.397

19.88 19.8 48.03 -0.26 141.58

Fig. 12. Observed Cumulative and Predicted Cumulative Runoff in

the Validation (Testing) Stage for Validation
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for the training period in comparison with the SWAT model;

however, the SWAT model has a better estimation for the total

predicted flow in the testing period (total flow volume).

The observed and predicted flows were evaluated over the

modeling period (1990-2008). This was done by drawing a box

plot to show the five significant statistics values – minimum

flow, maximum flow, median flow (50th percentile), first quartile

flow (25th percentile), and third quartile flow (75th percentile). A

box plot is useful for displaying the distribution of a scale

variable and pinpointing outliers. In this study, the resultant box

plot is as depicted in Figs. 13, 14, and 15 for the SWAT and GT-

SVM models.

The line that divides the box plot into two is the median; the

two lines drawn at the top and bottom parts depict the maximum

and minimum flow; the circle point is the relative outliers and the

star is the outlier’s data. In Figs. 13, 14 and 15, the box plots

show that the maximum flow was in the 38th month for the

observed GT-SVM and SWAT data (February-1993). The flows

were also particularly high in the 36th and 75th month over the

modeling period. According to the 25th percentile (first quartile)

box plot, GT-SVM has an overestimation; meanwhile SWAT has

an underestimated prediction of flows. Moreover, the evaluations

of box plots show that SWAT underestimated the flows under the

50th percentile (median) during the modeling period. On the

other hand, GT-SVM has predicted flows with more agreement

against observed data under the 50th percentile. As it can be seen

from the box plots, GT-SVM has an overestimation for the 75th

percentile (third quartile); however, SWAT has underestimated

the predicted flow. Generally, distribution of low flows (around

zero) indicates that GT-SVM has better predictions in comparison

with SWAT. The reason can be attributed with mathematical

approximation via GT-SVM.

4. Conclusions

In this study, an SVM model and a semi-distributed SWAT

model was used to predict the monthly streamflow of Roodan

watershed located in the southern part of Iran. In order to predict

using the SVM model, the best combination of the input

variables was identified using the gamma test technique (GT-

SVM). Moreover, in order to assess the capability of the gamma

test in determining the best combination of the input variables,

the best combination was determined through the regression

method between the input and output variables (Reg-SVM). The

performance of the GT-SVM and Reg-SVM models was com-

pared against each other. Then, the performance of the GT-SVM

model was compared with the performance of the LLR model as

a benchmark model. In addition, after preparing the required

data, such as DEM, land use, and soil maps, the SWAT model

was calibrated by using the SUFI-2 algorithm as a semi auto-

calibration procedure.

According to the results of the gamma test, the combination of

rainfall, runoff, and temperature with one time delay; rainfall and

runoff with two time delays; and temperature with three time

delays (Rt-1, Qt-1, Tt-1, Rt-2, Qt-2, Tt-3) was the best combination to

predict the flow during the studied duration for Roodan

watershed. The results showed that if the inputs of the model are

selected using the gamma test method, they would have the lowest

error in comparison to selecting them through the correlation

method in predicting the flow of the area. In addition, in the training

and testing phases, the GT-SVM model had better performance

Fig. 13. Box Plot of Observed Streamflow (m3/s) in Attributed Month

(Number of event) over Modeling Period (1990-2008)

Fig. 14. Box Plot of Predicted Streamflow (m3/s) via SWAT in Attrib-

uted Month (Number of event) over Modeling Period (1990-

2008)

Fig. 15. Box Plot of Predicted Streamflow (m3/s) via GT-SVM in

Attributed Month (Number of event) over Modeling Period

(1990-2008)
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than the LLR model with the lowest RMSE and highest NS-

coefficients value.

This study showed that both SWAT and GT-SVM models

possessed a satisfying capability in predicting the monthly

streamflow in Roodan watershed and there are small differences

in such cases between them. For example, during calibration,

GT-SVM was more satisfying by NS-coefficient (0.98) and

RMSE (5.47 m3/s). During the validation period, GT-SVM and

SWAT have closer values to each other in regard to the NS-

coefficient; meanwhile SWAT gave a more satisfying value for

RMSE (6.1 m3/s). It should be noted that in the testing stage, the

GT-SVM model performed better in predicting peak flows over

19 m3/s due to lower relative errors. However, the results of

cumulative runoff volumes showed that SWAT has a more

rewarding trend in terms of runoff volume for 2003 to 2005 in

comparison with GT-SVM. This study showed that application

of the SUFI-2 algorithm provided a very promising result of the

SWAT model, which involved many parameters of adjustment. It

should be mentioned that the application of semi auto-calibration

for semi-distributed models is a good task to adjust many

parameters to be faster and better.

Although artificial intelligence techniques usually provide

appropriate efficiency despite data shortage in a watershed, the

performance of these models is highly dependent upon utilizing

patterns in their training, and if an event was beyond their

training scope, the performance of the model would be extremely

poor at predicting the required phenomenon. Despite the GT

technique showing that it had an appropriate capability in de-

termining the optimal combination of the input variables model;

it needed more studies for achieving more knowledge towards

this technique to determine an appropriate combination of the

input variables, as well as the duration of the test model. It also

can be mentioned that GT can be used as a modern technique for

pre-processing the input variables parallel with other pre-processing

techniques such as the Principal Component Analysis (PCA)

method, the Genetic Algorithm (GA), and more.
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