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Abstract: Aimed at the issue of high feature dimensionality, excessive data redundancy, and low recognition
accuracy of using single classifiers on ground-glass lung nodule recognition, a recognition method based on Cat-
Boost feature selection and Stacking ensemble learning was proposed. First, the method uses a feature selection
algorithm to filter important features and remove features with less impact, achieving the effect of data dimension-
ality reduction. Second, random forests classifier, decision trees, K-nearest neighbor classifier, and light gradient
boosting machine were used as base classifiers, and support vector machine was used as meta classifier to fuse
and construct the ensemble learning model. This measure increases the accuracy of the classification model while
maintaining the diversity of the base classifiers. The experimental results show that the recognition accuracy
of the proposed method reaches 94.375%. Compared to the random forest algorithm with the best performance
among single classifiers, the accuracy of the proposed method is increased by 1.875%. Compared to the recent
deep learning methods (ResNet+GBM+Attention and MVCSNet) on ground-glass pulmonary nodule recognition,
the proposed method’s performance is also better or comparative. Experiments show that the proposed model
can effectively select features and make recognition on ground-glass pulmonary nodules.
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0 Introduction

In recent years, lung cancer has become the cancer
with the highest incidence rate and mortality, known
as the “king of cancer”. In the early stage of lung
cancer, lung lesions often manifest in the form of nod-
ules, among which ground-glass nodules (GGNs) are
the main manifestation of early lung cancer. In clinical
practice, doctors judge the condition of lung lesions by
observing the imaging features of pulmonary nodules
in computed tomography (CT)[1]. However, doctors
are affected by various factors during the film reading
process, resulting in missed and misdiagnosed cases[2].
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Therefore, it is necessary to use computer aided design
(CAD) based on medical imaging to assist doctors in
the diagnosis of lung cancer. CAD has fast calculation
speed, can perform accurate quantitative calculations,
and never gets tired. It can not only reduce the work-
load of doctors but also improve the diagnostic ability
of lesions. CAD diagnostic technology mainly follows
the following steps: � candidate lung nodule segmen-
tation;� feature extraction and optimization selection
of pulmonary nodules;� classification and recognition
of pulmonary nodules.

The feature dimension of ground-glass pulmonary
nodules is too high, and there is too much redundant
data. In the process of extracting and optimizing the
selection of pulmonary nodule features, it is necessary
to remove useless features and retain pulmonary nodule
features that are beneficial for nodule classification as
much as possible. Gao et al.[3] used the least absolute
shrinkage and selection operator (LASSO) to screen
the omics features of ground-glass nodules. Wan et
al.[4] used the chi-square test to screen the pathological
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characteristics of ground-glass pulmonary nodules in
patients. Cai et al.[5] used Spearman correlation anal-
ysis and Lasso regression analysis for feature dimen-
sionality reduction. Liu[6] used principal component
analysis (PCA)[7] and the method of removing low vari-
ance features for dimensionality reduction analysis. Dai
et al.[8] used a hybrid frog jumping algorithm for fea-
ture selection, while Darabi et al.[9] integrated the min-
imum redundancy maximum correlation algorithm and
genetic algorithm to select feature subsets. However,
these algorithms are only improved at the data level,
and their evaluation criteria are independent of specific
learning algorithms, so the selected feature subset may
not be optimal for different classifiers.

In the process of pulmonary nodule classification and
recognition, Li et al.[10] used support vector machine
(SVM) algorithm to construct a classifier for identify-
ing benign and malignant pulmonary nodules. Miao et
al.[11] used gradient boosting trees for predicting hep-
atitis C infection. Wu and Zhang[12] used four classic
algorithms, namely logistic regression, artificial neural
network, SVM and AdaBoost, to identify ground-glass
nodules in lung adenocarcinoma. These models have
performed well in most fields, but they are all based on
a single classifier recognition model. For complex data,
the recognition accuracy of a single classifier is often
low. To address the aforementioned issues, many schol-
ars have initiated research on ensemble learning. Chang
et al.[13] proposed a SVM ensemble algorithm based
on grouped features. Pang et al.[14] used Boosting[15]

method to predict the survival of rectal adenocarci-
noma. Che et al.[16] used Bagging integration to com-
plete disease detection. Ensemble learning has been
successfully applied in medical research, but some more
mature ensemble learning methods, such as the Boost-
ing method, have strong dependencies between learn-
ers, limited generalization ability in ground-glass lung
nodule recognition, and small data volume of ground-
glass lung nodules, which may lead to overfitting in
other ensemble learning method components. In addi-
tion, some of the latest deep learning methods, such as
ResNet+GBM+Attention[17] and MVCSNet[18], have
also been introduced into lung nodule classification and
recognition tasks.

In response to the above problems, this paper pro-
poses a method based on gradient boosting (CatBoost)
feature selection and Stacking ensemble learning. This
method combines the data level and the model level to
improve the accuracy of the identification of ground-
glass nodules. At the feature data level, this paper
adopts the CatBoost feature selection algorithm to con-
struct the optimal feature subset for the problem of re-
dundancy in ground-glass nodule feature data. At the
model level, a Stacking ensemble learning model is pro-
posed, which integrates four base classifier models: ran-
dom forest (RF), decision tree (DT), K-nearest neigh-

bor (KNN), and LightGBM, and the probability val-
ues output by the first layer of base classifiers are used
as the input of the second layer learner to achieve the
identification of ground-glass nodules. Through 5-fold
cross-validation on the lung CT dataset provided by
the General Hospital of North China Petroleum Admin-
istration, comparative analysis of the proposed model
with other feature selection methods and classifier mod-
els is conducted. The experimental results show that
the CatBoost feature selection and Stacking ensemble
learning method proposed in this paper outperforms the
mainstream ground-glass nodule identification methods
in terms of classification accuracy.

1 Related Feature Selection and Ensem-
ble Learning Methods

1.1 CatBoost Feature Selection Method
The CatBoost model provides various calculation

methods for feature importance, as follows:
(1) Prediction-Values-Change. The influence of each

input feature on the predicted value is considered sepa-
rately. The basic idea is to use the definition of deriva-
tive for reference: if the value of important features
changes, the predicted value will change greatly. The
advantage is that only one model needs to be trained in
the process of model training, and the calculation effi-
ciency is high. The disadvantage is that the feature se-
lection deviation can construct extreme examples with
high feature importance but little impact on actual in-
dicators. CatBoost’s base model uses a symmetric tree
structure, which feeds each feature into the tree to cal-
culate its importance. The importance of each feature
is defined as

I =
∑

Nt,Nl

c1(v1 − v̄)2 + c2(v2 − v̄)2, (1)

v̄ =
c1v1 + c2v2

c1 + c2
, (2)

where Nt is the number of tress, Nl is the number of
leaves, c1, c2 are respectively the sample weights corre-
sponding to the left and right leaf nodes of the corre-
sponding leaf node, and v1, v2 are the values related to
the leaf node model.

(2) Loss-Function-Change. Consider the impact of
each eigenvalue on the loss function separately. The
core idea is to retrain a model without this feature ac-
cording to the given data set, compare the difference be-
tween the original and new models in the loss function,
and obtain the feature importance. The advantage is
that the selection is unbiased, and the retrained model
completely eliminates the influence of current features
so that the evaluation is more accurate. The disad-
vantage is high time complexity. The definition of the
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feature importance is shown in

I = |(f(Ei(v)) − best f)| − |(f(v) − best f)|, (3)

where Ei(v) represents the expected value of the model
after removing the ith feature, v is the value of the
model that contains the ith feature, f is the loss func-
tion, and best f represents the best performance of the
model. The first term of Eq. (3) is the loss of the model
without a certain feature, and the second term is the
loss of the model with a certain feature. If the value of
Eq. (3) is negative, that is, the loss value of the second
term containing a certain feature is greater than the
loss value of the first term without a certain feature,
this result means that the introduction of the feature
brings an increase in loss and is not a good feature. In
other words, the larger the value of Eq. (3), the better
the feature, and the smaller the value, the worse the fea-
ture. Therefore, when using the Loss-Function-Change
importance evaluation index for feature selection, fea-
tures with negative importance should be removed to
eliminate the negative impact of these features on sub-
sequent models.

In response to the issue of identifying ground-glass
pulmonary nodules, this article needs to study which
features are extracted from ground-glass pulmonary
nodules and which feature importance measurement
methods are used to achieve the best possible feature
selection and separate recognition performance.
1.2 Stacking Ensemble Learning Methods

Stacking an integrated learning method is an inte-
grated classification strategy that combines multiple
single-models. The Stacking model is usually designed
with a 2-layer structure, as shown in Fig. 1.

Base classifier 1

Base classifier 2

Base classifier N

Meta
classifier...

Data Output

Fig. 1 Stacking model structure.

During the training process of the Stacking ensemble
model, the original dataset D is first evenly divided into
k mutually exclusive subsets: D = {D1, D2, · · · , Dk}.
Then, select one subset as the test set in sequence
and the union of the remaining (k − 1) subsets as
the training set. Next, train and test each primary
learner h1, h2, · · · , hn in the Stacking ensemble model
and obtain the outputs of n base classifiers T =
{T1, T2, · · · , Tn}. This process is also known as k-fold
cross-validation.

Finally, the output result of the base classifier ob-
tained from the above process is input as new features

D′ = T = {T1, T2, · · · , Tn} into the meta classifier h′

to obtain the final output result.
In response to the issue of identifying ground-glass

pulmonary nodules, this article needs to study which
base classifiers are specifically integrated under the en-
semble learning framework and which meta classifiers
are used to achieve the best possible recognition per-
formance.

2 Feature Extraction and Ensemble
Learning of Ground-Glass Pulmonary
Nodules

This article proposes a ground-glass lung nodule
recognition method based on CatBoost feature selection
and Stacking ensemble learning, targeting the charac-
teristics of small quantity, high feature dimension, and
large amounts of redundant data in ground-glass lung
nodules. It mainly involves the following work steps:

(1) Data preparation. Randomly select a certain
number of lung nodules from the collected data as the
dataset for this study and divide the training and test-
ing sets.

(2) Feature extraction. Extract imaging omics fea-
tures from experimental data of ground-glass pul-
monary nodules for subsequent feature selection.

(3) Feature selection. The feature dimension of
ground-glass pulmonary nodules is high, and redun-
dant features may affect the model construction effect.
Therefore, this article uses CatBoost to select features
from the extracted features.

(4) Ensemble learning methods. We have designed
a Stacking ensemble learning method that integrates
multiple heterogeneous base classifiers, which can avoid
overfitting on small datasets and improve model classi-
fication accuracy.
2.1 Evaluation Indicators

In evaluating medical image classification methods,
using only a single accuracy to assess the performance
of classifiers has certain limitations. Therefore, it is nec-
essary to comprehensively evaluate the Accuracy and
Recall of positive and negative samples. This article
focuses on the recognition of ground-glass pulmonary
nodules, which is a binary classification task. There-
fore, this article selects Accuracy, Sensitivity, Speci-
ficity, and F1 score as evaluation indicators. The F1
evaluation index involves Precision and Recall evalua-
tion indicators, where true positive (TP) is the number
of correctly classified ground-glass lung nodules, false
positive (FP) is the number of samples classified as
ground-glass lung nodules, true negative (TN) is the
number of samples correctly classified as ground-glass
lung nodules, and false negative (FN) is the number of
samples classified as ground-glass lung nodules. The
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above evaluation indicators are shown in

Accuracy =
TP + TN

TP + TN + FP + FN
, (4)

Sensitivity =
TP

TP + FN
, (5)

Specificity =
TN

TN + FP
, (6)

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1 =
2 × Precision× Recall

Precision + Recall
. (9)

2.2 Data Collection and Labelling of Ground-
Glass Pulmonary Nodules

We collected and organized lung CT data from Gen-
eral Hospital of North China Petroleum Administra-
tion, resulting in a dataset containing 500 lung CT
images. Five experienced radiologists annotated this
dataset, and everyone was trained using a unified stan-
dard before annotation. The dataset is first indepen-
dently labelled by three doctors, recording the diame-
ter, center coordinates, and type of pulmonary nodules.
Next, the deputy chief physician checks the labelling
results of the first round and provides the conclusion.
Finally, the chief physician verifies the labelling results
of the first two rounds and provides the final determi-
nation. This article visualizes 2 416 nodules labelled as
ground-glass pulmonary nodules and non-ground-glass
pulmonary nodules. Among them there are 369 ground-
glass pulmonary nodules, 1 559 non-ground-glass pul-
monary nodules, and 488 uncertain types. This article
selected 431 non-ground-glass pulmonary nodules and
369 ground-glass pulmonary nodules as the dataset for
the experiment and divided them into training and test-
ing sets at a 4 : 1 ratio.
2.3 Feature Extraction of Ground-Glass Pul-

monary Nodules
Firstly, feature extraction is performed on the exper-

imental data, as shown in Fig. 2. The specific steps are
as follows:

(1) Extract the nodule area (3D data block) from the
3D image data based on the coordinate information of
the nodules in the doctor label file.

Original nodule
three-dimensional

block

Preprocessed nodule
three-dimensional

block
Set to zero
below the
threshold Count Nodule

features

Fig. 2 Radiomics feature extraction.

(2) Set the grayscale values below 60 on the lung
nodule data block obtained in Step (1) to 0.

(3) Calculate the imaging omics features on the data
block.

Extract 45 radiomics features for each lung nod-
ule, including 15 first-order features, such as energy,
maximum, and variation. Based on the principle of
the gray level co-occurrence matrix, 20 texture fea-
ture values, such as contrast, entropy, and dissimilar-
ity, were extracted. Based on the principle of gray-
level co-occurrence matrix, 10-feature information was
extracted, such as short run emphasis (SRE), long run
emphasis (LRE), low gray level run emphasis (LDLRE)
and short run high gray level emphasis (SRHGLE).
2.4 Feature Selection Study of Ground-Glass

Pulmonary Nodules
The data volume of ground-glass pulmonary nod-

ules is small. The CatBoost algorithm has good clas-
sification performance and strong robustness for small
sample datasets. Moreover, the CatBoost algorithm is
an embedded feature selection method based on tree
models, which combines the advantages of filtering and
wrapping, embedding feature selection into the model
construction process. CatBoost feature selection de-
pends on the importance of each feature to the model.
Compared with general feature selection methods, us-
ing CatBoost for feature selection can better character-
ize the combination relationship between features and
more effectively eliminate redundant and irrelevant fea-
tures. In addition, in the literature review, most fea-
ture selection methods used for ground-glass pulmonary
nodules are filtering or wrapping, and embedded feature
selection methods are rarely used. Therefore, this arti-
cle uses the CatBoost-based feature selection method.

Based on the two feature importance calcula-
tion methods of Prediction-Values-Change and Loss-
Function-Change provided by Catboost in Subsection
1.1, 45 radiomics features extracted in Subsection 2.3
are modeled. Through experiments, this article ulti-
mately chooses Loss-Function-Change as the calcula-
tion method for feature importance. The reason is that
the two selected features were fed into the model, and
the recognition accuracy was 91.250% and 94.375%, re-
spectively. The experimental results showed that us-
ing the Loss-Function-Change calculation method sig-
nificantly improved the accuracy. In addition, for
the dataset of ground-glass pulmonary nodules in this
article, the number of features and samples is rela-
tively small. Therefore, when using the unbiased Loss-
Function-Change calculation method in this article,
the effectiveness of feature selection can be improved,
thereby enhancing the model’s performance.
2.5 Research on Ensemble Learning of

Ground-Glass Pulmonary Nodules
Stacking ensemble learning can effectively improve

the robustness of models. Its classifiers can be
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heterogeneous or homogeneous, and the models ob-
tained by combining stacked ensemble learning meth-
ods have strong generalization ability. In addition, the
Stacking algorithm also uses cross-validation to reduce
the risk of overfitting, and it can also have good results
when there is insufficient data, effectively improving the
robustness of the model. Therefore, this article pro-
poses a ground-glass lung nodule recognition method
based on the Stacking ensemble learning model. In the
research of Stacking algorithm configuration, the model
recognition effect is different for different configurations
of meta classifiers and base classifiers, so selecting an
appropriate single model for fusion is the core of affect-
ing the Stacking integration model.

In order to improve the recognition performance of
Stacking, this article introduces LightGBM, KNN, DT,
RF, and SVM into the Stacking integrated model. The
LightGBM algorithm usually performs well on multiple
datasets and generally improves the accuracy of data
classification. The KNN algorithm has mature theory
and wide applications. Its model is easy to understand
and performs well without excessive parameter tuning.
The DT model has interpretability and fast classifica-
tion speed. The RF is relatively stable and not prone to
overfitting, with the advantage of high parallelism. The
SVM algorithm projects data onto a high-dimensional
feature space based on kernel functions and constructs a
maximum interval hyperplane, which can reduce over-
fitting. The above five classifiers meet the principles
of diversity and independence when selecting classifiers
for the Stacking model, and they perform well in data
analysis and evaluation.

In recognition of ground glass pulmonary nodules, in
order to verify the accuracy and differences among var-
ious models, as well as the optimal model construction
method, this paper compares and analyzes the classi-
fiers (LightGBM, KNN, DT, RF, and SVM) using the
evaluation indicators in Subsection 2.1, namely Accu-
racy, Sensitivity, Specificity, and F1 score. The results
are shown in Table 1.

Table 1 Experimental results for the differ-
ent classifiers

Classifier Accuracy Sensitivity Specificity F1

LightGBM 0.893 75 0.851 35 0.930 23 0.881 12

KNN 0.893 75 0.824 32 0.953 49 0.877 70

DT 0.868 75 0.783 78 0.941 86 0.846 72

RF 0.925 00 0.891 89 0.953 49 0.916 67

SVM 0.918 75 0.905 41 0.930 23 0.911 57

According to the above analysis in the table, RF has
the highest accuracy, and SVM has the most height-
ened sensitivity, while LightGBM, KNN, and DT clas-
sifiers have similar classification indicators. Therefore,
LightGBM, KNN, DT, and RF are selected as the base

classifiers to meet the “accuracy but difference” of the
base model. Choosing a simple classifier for meta clas-
sifiers can prevent overfitting, while SVM performs well
under various indicators and has good learning ability.
However, RF has the highest accuracy. Therefore, ex-
periments were conducted using RF and SVM as meta
classifiers, respectively. Through experiments, it was
found that the final test accuracy of using RF as the
meta classifier is 88.75%, while the final test accuracy
of using SVM as the meta classifier is 94.375%, which is
much higher than that of RF. Therefore, SVM is chosen
as the meta classifier in this article.

In order to analyze the performance of each classi-
fier more intuitively, the receiver operating character-
istic (ROC) is used for representation. Figure 3 shows
the ROC and area under curve (AUC) of ground glass
pulmonary nodule recognition results. The horizon-
tal axis represents the probability of false positives,
which is 1−specificity, and the vertical axis represents
the probability of true positives, which is sensitivity.
ROC represents the performance of the classifier. As
shown in Fig. 3, the ROC of DT is relatively small,
indicating that a single DT model has a weak recogni-
tion ability for ground glass pulmonary nodules. How-
ever, the underlying idea of ensemble learning is that
even if one weak classifier obtains an incorrect predic-
tion, other weak classifiers can still correct the error.
Through experiments, it was found that the accuracy
of the Stacking model without DT in the base model
is 90.625%, while the accuracy of the Stacking model
with DT added to the base model is 94.375%. The
above results show that even if a single DT has weak
performance, adding it to the stacking base model can
improve the entire ensemble learning model.

Therefore, this article uses the above five classifiers in
the Stacking ensemble learning model, uses LightGBM,
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Fig. 3 ROC of different classifier test results.
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KNN, DT, and RF as the base classifiers, and uses SVM
as the meta classifier to achieve recognition of ground-
glass pulmonary nodules.

3 Experiments and Result Analysis

3.1 Experimental Design
3.1.1 Model Training

The Stacking model proposed in this article has a
two-layer structure: The first layer consists of Light-
GBM, KNN, DT, and RF; the second layer is composed
of SVM. Taking LightGBM in the first layer as an ex-
ample, based on five-fold cross-validation, this paper
divides the training set into five parts, with one part
serving as the test set and the rest as the training set.
The training and testing sets are repeatedly partitioned
5 times to obtain the predicted values of 5 labels. The
training of other base classifiers such as KNN, DT, and
RF is similar. After training all base classifiers, con-
struct a new training dataset and a new testing dataset.
The new training set is composed of a combination of
predicted label values from various base classifiers. In
contrast, the new test set is composed of the mean of
the test label values of each learner from the original
test dataset. Four base classifiers output four predicted
values of the original dataset labels, combine these four
predicted values as the input dataset for the second
layer SVM model, and train and test the second layer
model. The above steps complete the training of the
integrated model.

The flowchart of the recognition method for ground-
glass pulmonary nodules based on CatBoost feature
selection and Stacking ensemble learning is shown in
Fig. 4.

Start

Input data

Feature extraction

End

Catboost feature selection

LightGBM KNN DT

SVM

RF

Fig. 4 CatBoost-Stacking flowchart.

3.1.2 Model Parameter Setting and Optimization
The selection and setting of parameters will signifi-

cantly impact the final recognition effect of the model,
so reasonable selection of parameters is the key to
achieving model optimization. This article uses the grid
search method to evaluate and select model parameters

when optimizing parameters.
(1) CatBoost feature selection. When performing

feature selection on Catboost, the learning rate is 0.5,
the maximum number of iterations is 100, and the
depth is 5. Finally, the importance of 45-dimensional
features in the original data is obtained.

(2) Stacking ensemble learning. In terms of parame-
ter selection for the classifier, the LightGBM learner
adopts n Estimators whose number of iterations is
1 000. The weight of the nearest neighbor samples of
each sample in the KNN learner is Uniform. The eval-
uation criterion used by the DT learner for splitting
nodes is the Gini index, and the policy splitter for split-
ting nodes is specified as the best splitting strategy.
The RF learner uses a forest with 800 trees and a max-
imum depth of 100 trees. SVM serves as a classifier,
using a radial basis function kernel with a regulariza-
tion coefficient of 1 and a hyperparameter of 0.5. The
above parameters have been experimentally verified to
achieve the best results.

The software and hardware environment used in this
experiment is as follows: Intel Core i7-7820X CPU;
A NVIDIA GeForce RTX 2080Ti graphics card with
11GB of memory; Windows 10 operating system;
Pytorch 1.9.1 deep learning framework; Python 3.7
programming language; integrated development tool
PyCharm.
3.2 Feature Selection Analysis and Evaluation

of Ground-Glass Pulmonary Nodules
CatBoost feature selection was performed on the 45

radiomics features extracted above, and the original
data was standardized and modeled using the Cat-
Boost method to obtain the importance of the 45-
dimensional features of the original data, as shown in
Fig. 5. From Fig. 5, it can be seen that dissimilar-
ity and integrated memory controller (imc2) are the
two most important features, both of which are tex-
ture feature values described based on the principle
of the gray-level co-occurrence matrix. Therefore, it
can be seen that the ground-glass and non-ground-glass
lung nodule datasets used in this article exhibit differ-
ent shapes and possess different imaging information
on the high-resolution CT lung window. Some image
information is difficult to detect with the naked eye,
and the gray-level co-occurrence matrix can reflect the
comprehensive information of the image’s gray level re-
garding direction, adjacent interval, change amplitude,
and other factors. It can analyze the texture features
of the image in the global domain, provide more le-
sion information, and greatly assist in the recognition
of ground-glass pulmonary nodules. The extracted 10-
feature information based on the principle of the gray-
level co-occurrence matrix has a relatively small im-
pact on the classification importance of ground-glass.
The gray-level run-length matrix of an image reflects
the image’s grayscale in terms of direction, adjacent
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Fig. 5 Feature importance map based on the calculation method of Loss-Function-Change.

intervals, and amplitude of change. However, for pul-
monary nodules, this statistical information is less help-
ful in distinguishing different types of nodules. There-
fore, this article chooses to send the top 60% of im-
portant features into subsequent models for nodules
recognition.

In order to compare the superiority of the CatBoost
feature selection method in the classification of ground-
glass pulmonary nodules, original features, the Lasso

feature selection algorithm[3], chi-square test feature se-
lection algorithm[4], Spearman correlation analysis and
Lasso regression analysis feature selection algorithm[5],
PCA[7], as well as feature selection algorithms for
removing low variance[6], Relief[19] feature selection
algorithm[20], and mutual information feature selection
algorithm[21] were used, respectively. Compared with
the CatBoost feature representation algorithm, the ex-
perimental results are shown in Table 2.

Table 2 Effects of different feature choices

Feature expression

algorithm

KNN LightGBM RF DT Stacking

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Original 0.900 00 0.85 0.893 75 0.88 0.918 75 0.90 0.868 75 0.85 0.925 00 0.91

Lasso[3] 0.893 75 0.87 0.868 75 0.85 0.925 00 0.92 0.868 75 0.85 0.912 50 0.91

Chi-square test[4] 0.875 00 0.81 0.893 75 0.88 0.912 50 0.90 0.825 00 0.78 0.900 00 0.91

Spearman correlation analysis
and Lasso regression[5]

0.825 00 0.80 0.868 75 0.85 0.893 75 0.88 0.850 00 0.82 0.906 25 0.92

PCA[7] 0.818 75 0.79 0.831 25 0.85 0.837 50 0.80 0.837 50 0.80 0.843 75 0.86

Remove low variance[6] 0.893 75 0.88 0.900 00 0.89 0.912 50 0.90 0.868 75 0.85 0.918 75 0.92

Relief[19] 0.881 25 0.82 0.900 00 0.89 0.893 75 0.87 0.850 00 0.79 0.906 25 0.90

Mutual information[21] 0.868 75 0.85 0.906 25 0.90 0.881 25 0.90 0.812 50 0.76 0.925 00 0.92

CatBoost 0.918 75 0.85 0.893 75 0.88 0.925 00 0.91 0.868 75 0.85 0.943 75 0.93



J. Shanghai Jiao Tong Univ. (Sci.), 2024

The experimental results show that the CatBoost fea-
ture selection algorithm proposed in this paper not only
has a certain dimensionality reduction effect but also
extracts features that are more conducive to the recog-
nition task of ground glass pulmonary nodules, and all
indicators of the model have been improved.

3.3 Evaluation of Ensemble Learning Algo-
rithms for Ground-Glass Pulmonary Nod-
ules

In order to verify the effectiveness of the CatBoost-
based Stacking method in the classification of ground-
glass pulmonary nodules, this paper compared it

with SVM, voting merging[22], and Bagging algo-
rithms. The classifiers used in voting to merge en-
semble learning are RF, DT, KNN, and LightGBM,
using soft voting strategy for decision-making. The
Bagging algorithm uses a grid search method to
optimize the number of sub-models and ultimately
obtains the optimal number of base classifiers of
400. In addition, this article also compares the
experimental performance of the proposed method
with some classic and latest deep learning meth-
ods, including ResNet18[23], AlexNet[24], DenseNet[25],
ResNet+GBM+Attention[17], and MVCSNet[18]. The
experimental results are shown in Table 3.

Table 3 Performance comparison of different classification models

Classifier Accuracy Training time/s Number of model parameters

SVM 0.918 75 16.414 8.424 × 103

Voting-merging[22] 0.856 25 20.764 5.022 × 104

Bagging 0.881 25 19.07 1.674 × 104

ResNet18[23] 0.927 80 1 792 8.298 × 106

AlexNet[24] 0.833 30 2 328 2.512 × 108

DenseNet[25] 0.861 10 1 924 1.124 × 107

ResNet+GBM+Attention[17] 0.938 40 2 402 8.320 × 107

MVCSNet[18] 0.952 10 2 774 9.987 × 107

Proposed method 0.943 75 25.793 5.086 × 104

The calculation method for the number of parameters
in the above table is the sum of the SVM model param-
eters and the parameters of RF, DT, and LightGBM.
Among them, the parameter quantity of RF, DT, and
LightGBM is the product of the number of training
samples and the number of sample features. In con-
trast, the parameter quantity of SVM is the product of
the number (N1) of support vectors and the sum of the
number (N2) of vector features and the number (N3)
of weight coefficients. The above calculation formula is
shown in Parameter quantity = N1(N2 + N3).

The experimental results show that the Stacking
method used in this article integrates the advantages
of heterogeneous classifiers, with a recognition accu-
racy of 94.375%, which is 8.75 percentage points higher
than the voting merging method. Compared with the
Bagging algorithm, the proposed method’s accuracy
is 6.25 percentage points higher, which fully demon-
strates the superiority of the Stacking ensemble learn-
ing model compared to a single classifier. Compared
with deep learning models ResNet18[23], AlexNet[24],
DenseNet[25], and ResNet+GBM+Attention[17], the ac-
curacy of the method proposed in this paper is also
higher than theirs. Compared to traditional models,
deep models have strong expressive power, but they
require more training data to avoid overfitting and en-
sure good performance on the dataset. This may not be

suitable for small sample datasets in this article. Com-
pared with the recently proposed model MVCSNet[18]

in the field of ground-glass lung nodule recognition, its
accuracy is comparable. The reason for the analysis
is as follows: The MVCSNet model introduces an im-
proved self-attention mechanism, which can model the
global space well and improve recognition performance
but also has high computational complexity. The train-
ing time and parameter count of the model proposed in
this article are much smaller than those of the MVC-
SNet model, indicating that the method proposed in
this article can achieve equivalent recognition perfor-
mance with less time and memory costs. It can be
inferred that the Stacking ensemble learning method
used in this paper has good applicability for ground-
glass pulmonary nodules with small data volume and
high feature dimensions.

In addition, in this article the highly accurate iden-
tification methods for ground-glass pulmonary nodules
proposed in recent years are also validated, as shown
in Table 4. The experimental results show that com-
pared to the comparative methods, the accuracy of our
method has increased by 5.000, 3.282, and 3.125 per-
centage points, respectively, and it is also higher than
existing research results in sensitivity and F1 indica-
tors.

In order to verify that the base classifier of the
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Table 4 Comparison with existing research results

Identification method Accuracy Sensitivity F1

Lasso+Logistic regression[3] 0.893 75 0.86 0.88

Spearman+Lasso+SVM[5] 0.910 93 0.90 0.90

Remove low variance+SVM[6] 0.912 50 0.90 0.90

Proposed method 0.943 75 0.92 0.93

algorithm proposed in this article is the optimal com-
bination, comparative experiments were conducted on
different combinations of base classifiers, and the results
of each experiment are shown in Table 5.

Table 5 Comparative experiments on different
combinations of base classifiers

Classifier Accuracy F1

LightGBM 0.893 75 0.881 12

KNN 0.893 75 0.877 70

DT 0.868 75 0.846 72

RF 0.925 00 0.916 67

RF+DT+KNN 0.918 75 0.911 56

LightGBM+DT+RF 0.906 25 0.896 55

LightGBM+KNN+RF 0.918 75 0.910 34

LightGBM+KNN+DT 0.912 50 0.904 11

Proposed method 0.943 75 0.930 00

The above table shows that the accuracy of ground-
glass lung nodule recognition after integrating four clas-
sifiers is higher than that of a single classifier, and the
accuracy decreases to varying degrees when any base
classifier is reduced. From this, it can be seen that
LightGBM, KNN, DT, and RF are the best combina-
tions as the base classifiers for the model in this paper.

4 Conclusion

This article proposes a ground-glass lung nodule
recognition model based on CatBoost feature selec-
tion and Stacking ensemble learning in the recognition
method of ground-glass lung nodules. In response to
the possibility of feature redundancy in the extracted
medical images, which may affect the recognition re-
sults of the classifier, this paper uses the CatBoost al-
gorithm for modeling and then obtains the importance
of each feature. The selected features with higher pri-
ority are combined into a new dataset and sent to the
subsequent recognition model. In addition, in terms
of selecting recognition models, this article has mod-
eled and experimented with popular classifiers such as
LightGBM, KNN, DT, RF and SVM. Their perfor-
mance varies greatly from the experimental results, in-
dicating that a single classifier has certain limitations
on different datasets. Therefore, this article proposes a
recognition method for ground-glass lung nodule images

based on Stacking ensemble learning. This method first
analyzes a single classifier and builds a Stacking evalu-
ation model with LightGBM, KNN, DT, and RF as the
base classifiers and SVM as the meta classifiers. Then,
the parameters of the built evaluation model are set.
The experimental results show that the method based
on CatBoost feature selection and Stacking ensemble
learning adopted in this paper is superior to the cur-
rent mainstream feature selection methods and single
classification algorithms. Standard ensemble learning
models and deep learning models achieve an accuracy
of 94.375% in recognition, verifying the effectiveness of
the proposed method in identifying ground-glass pul-
monary nodules.

In our next research, we will refer to models such
as Transformer to study better-performing lung nodule
recognition models.
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