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Abstract: Intelligent transportation and autonomous driving systems have made urgent demands on the tech-
niques with high performance on object detection in traffic scenes. This paper proposes an improved object
detection model YOLO-VSF over the YOLOv4 model, which is a representative work with excellent performance
among YOLO series of object detection models. The main improvement measures include: The backbone feature
extraction network CSPDarknet53 of YOLOv4 is replaced with VGG16 to improve the feature extraction capa-
bility; SENet attention mechanism is incorporated to improve the salient and correlation feature representation
capability; Focal Loss is integrated into the loss function to overcome the sample imbalance problem. In addition,
the detection performance of small targets is improved by increasing the resolution of input images. Experimental
results show that on the VanJee traffic image dataset provided by Beijing VanJee Technology Co., Ltd., the pro-
posed YOLO-VSF model achieves an average mean accuracy (mAP) of 92.21 percentage points, which improves
the mAP by 3.04 percentage points compared with the YOLOv4 model while maintaining the detection speed
of the original model. On the UA-DETRAC dataset, the average accuracy of YOLO-VSF is close to that of the
latest YOLOv7 model with the number of parameters reduced by 1.329× 107. The proposed method can provide
a support for object detection in traffic scenes.
Keywords: object detection, traffic scenes, backbone network, attention mechanism, Focal Loss
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0 Introduction

With the rapid development of artificial intelligence
technology, intelligent transportation systems and au-
tonomous driving have received extensive attention
from researchers. In autonomous driving and traffic
scenes, as an important module of front-end informa-
tion collection, object detection technology plays an im-
portant role in detecting objects, such as vehicles and
pedestrians, and transmits the detected information to
the driving control system. Therefore, the design of effi-
cient and accurate object detection algorithms for traf-
fic scenes is of great significance for the development of
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autonomous driving.
The task of object detection in traffic scenes is to

locate the target’s position from roads or intersections
and classify the type of the target. So far, object detec-
tion based on computer vision is generally divided into
two categories: traditional object detection and deep
learning-based detection. The traditional object detec-
tion process is shown in Fig. 1, which first uses sliding
windows with different sizes to generate a large number
of candidate regions in a measured area, then designs
and applies artificial features for candidates’ represen-
tation, and finally uses a classifier to recognize targets
in each candidate region.

The commonly used detection features are scale in-
variant feature transform (SIFT), histogram of ori-
ented gradients (HOG), and Harr[1-3], and the classi-
fiers are usually support vector machine (SVM) and
Adaboost[4-5]. For example, the detection modes could
be Harr+Adaboost, HOG+SVM, or deformable parts
model (DPM) operation method[6]. The traditional de-
tection algorithms select features relying too much on
prior knowledge; however, there are many interference
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Fig. 1 Traditional object detection process.

factors in the actual application, such as lighting and
occlusion, so it is difficult for the traditional vehicle and
pedestrian detection algorithms to achieve the accu-
racy and robustness necessary for practical autonomous
driving applications.

In recent years, with the continuous expansion of
data volume and updates of hardware devices, the per-
formance of deep learning-based object detection algo-
rithms has been improved dramatically. Due to the
different focuses on real-time or accurate performances,
deep learning object detection algorithms have gradu-
ally developed two routes: one is the two-stage object
detection model that focuses on improving detection
accuracy as much as possible, and the other is the one-
stage object detection model that focuses on further
improving detection speed.

The two-stage object detection model first generates
a number of candidate regions that are likely to con-
tain a target to be detected, and then followed by
some subsequent measures to distinguish which tar-
gets are contained in each candidate region. For ex-
ample, the Region-CNN (RCNN)[7] uses the selective
search algorithm[8] to get the candidate regions, and
then performs further classification within these re-
gions to get the class of objects. Fast RCNN[9] opti-
mized the RCNN model for the shortcomings of slow
detection by integrating the feature extraction into the
RCNN sub-network to run detection as a whole mod-
ule, thus significantly improving the detection speed by
sharing computational operations. As a representative
algorithm of the current two-stage detection methods,
Faster RCNN[10] uses region proposal networks (RPNs)
instead of selective search algorithm to complete the
object detection task by training a complete model,
which effectively avoids the problem of too much re-
peated computation that needs to train three different
branches in RCNN, thus making Faster RCNN the best
in terms of accuracy at present.

Single-stage object detection models remove the re-
gion search part in the two-stage models, and obtain
the prediction results directly from the feature map af-
ter down-sampling the original image. For example, the
models of you only look once (YOLO) series[11-14] di-
rectly turn the task into a uniform regression problem,
processing the image once to obtain the target class,
confidence and location information from the regres-
sion of each pixel in the feature map. Compared with
the two-stage object detection algorithm, YOLO has a

faster detection speed, but the detection accuracy of the
YOLO model is lower due to the lack of a region search
and binary classification procedure. Among YOLO se-
ries, YOLOv4[14] is a representative object detection
algorithm with excellent performance in terms of ac-
curacy and speed, which optimized and improved the
backbone feature extraction network, activation func-
tion and loss function of the YOLOv3[13].

Inspired by the improvement measures taken in
YOLOv4, this paper proposes a VGG SENet focal
(YOLO-VSF) detection model which makes the im-
provement over the YOLOv4 model. The main improve-
ment measures are taken in three aspects: Replacing
the backbone feature extraction network of the origi-
nal model to improve the feature extraction capability;
incorporating an channel attention mechanism into the
feature extraction network to improve the salient and
correlation feature representation capability; integrat-
ing a new loss function into the objective function of
the original model to overcome the sample imbalance
problem.

1 Related Work: YOLOv4 Model

As a representative work of YOLO object detec-
tion model series, the YOLOv4 model is intensively in-
troduced in this section for its excellent performance.
YOLOv4 combines a large number of previous re-
search techniques with appropriate innovations, and
performs well in terms of the balance of object detec-
tion speed and accuracy. YOLOv4 is composed of three
parts: � feature extraction part: including a back-
bone network CSPDarknet53[15] for convolutional fea-
ture extraction and a spatial pyramid pooling (SPP)
module[16] for multi-scale feature extraction;� feature
fusion part: a PANet (Path Aggregation Network)
module[17] for fusion of convolutional features and
multi-scale features from the CSPDarknet53 and SPP
modules; � prediction part: three YOLO Head struc-
tures for outputting the predicted positions and classes
of objects to be detected. Its total network structure is
shown in Fig. 2.

The function of each composed part in the YOLOv4
is described as follows:

(1) Feature extraction part. It consists of two mod-
ules including the CSPDarknet53[15] and the SPP[16]

modules. CSPDarknet53 is an improved backbone net-
work over that of YOLOv3 for convolutional fea-
ture extraction, which splits the original stack of
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Fig. 2 YOLOv4 network structure.

residual blocks into a backbone path and a residual
path by adding a cross stage partial (CSP)[15] structure
to the backbone network Darknet53[13] of YOLOv3.
This structure achieves a cross-stage feature extrac-
tion, which can maintain good detection accuracy while
reducing the computational cost. After three convo-
lutions on the last layer of CSPdarknet53, the SPP
(Spatial Pyramid Pooling) module is followed for max-
imum pooling at four different scales with kernel sizes
of 13 × 13, 9 × 9, 5 × 5, and 1 × 1 respectively, which
serves to increase the perceptive fields and separate out
significant contextual features. In addition, the activa-
tion function in YOLO4 is modified from Leaky ReLU
to Mish, which is calculated as

Mish = x tanh ln(1 + ex), (1)

where x is the input of the activation function.
(2) Feature fusion part. It is operated by a path

aggregation network (PANet)[17]. The PANet receives
the convolutional features and the multi-scale features
from the CSPDarknet53 and SPP modules, and fuses
them into three groups of features to the prediction part
by concatenating, convolution, up-sampling and down-
sampling the features horizontally and vertically.

(3) Prediction part. It consists of three YOLO heads.
They output prediction results of objects to be de-
tected, including the relative position coordinates of
the prediction box with respect to the upper left cor-
ner point, the width and the height, and the confidence
level of the presence of targets in the prediction box,

and the probabilities of object classes that the predic-
tion box belongs to.

The working procedure and the training loss func-
tions of the YOLOv4 are introduced as follows:

The original image size is adjusted to 608×608 pixels
and images are input to the CSPDarknet53 for feature
convolutional feature extraction, then the three feature
layers from the CSPDarknet53 and the SPP module
are input to the PANet for feature fusion, and finally
three scales of fused feature layers with sizes of 19×19,
38×38, and 76×76 are input to three YOLO detection
heads to predict positions and classes of small, medium
and large targets, respectively.

The loss function of YOLOv4 consists of three com-
ponents: regression loss (Lreg), target confidence loss
(Lconf) and classification loss (Lcls), which are defined
as

Lobject = Lreg + Lconf + Lcls. (2)

The regression loss is defined as

Lreg =

λcoord

K×K∑

i=0

M∑

j=0

Iobj
ij (2 − wihi)(1 − CIOU), (3)

where λcoord is the positive sample weight coefficient,
Iobj
ij determines whether it is a positive sample, and

2−wihi is the penalty term. Additionally, CIOU (com-
plete intersection over union) takes into account the
scale information of overlap, center distance and aspect
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ratio of the border on the basis of IOU (intersection
over union), whose formula is defined as

CIOU = IOU − ρ2(b, bgt)
a2

− βν, (4)

where ρ2(b, bgt) represents the Euclidean distance be-
tween the center points of the prediction box and the
real box, a represents the diagonal distance of the small-
est closed area that can contain both the prediction box
and the real box, β is a parameter measuring the consis-
tency of the aspect ratio, and ν is a trade-off parameter.

The confidence loss adopts the cross entropy loss
function, which is divided into two parts: obj and
noobj, where the loss of the noobj part is multiplied
with a weight coefficient λnoobj. In addition, Ĉi is the
sample value, and Ci is the prediction value. The cor-
responding formula is defined as

Lconf = −
K×K∑

i=0

M∑

j=0

Iobj
ij [Ĉi log Ci+

(1 − Ĉi) log(1 − Ci)] − λnoobj

K×K∑

i=0

M∑

j=0

Inoobj
ij ×

[Ĉi log Ci + (1 − Ĉi) log(1 − Ci)]. (5)

The classification loss uses a cross-entropy loss
function, with c being the class number, as defined in

Lcls = −
K×K∑

i=0

M∑

j=0

Iobj
ij

∑

c∈classes

[p̂i(c) log pi(c)+

(1 − p̂i(c)) log(1 − pi(c))]. (6)

2 Methodology

Although YOLOv4 is an excellent object detection
model, it still has some spaces to be improved.

Firstly, the backbone net CSPDarknet53[15] in the
YOLOv4 is not strong enough. CSPDarknet53 is a deep
network which is designed to achieve a high speed run-
ning on GPU by adopting small convolutional kernels
with sizes of 1 × 1 and 3 × 3 to reduce model com-
plexity. Although it wins the performance on time, it
had to sacrifice some detection accuracy as the cost. In
contrast, the deep neural network of VGG16[18] adopts
the convolutional kernels with size of 3 × 3 for feature
extraction and representation. Although VGG16 could
spend more computational cost than that of CSPDark-
net53, its higher quantity of model parameters may lead
to a relatively higher ability for detection accuracy.

Secondly, there are no enough attention mecha-
nisms for correlation feature representation in YOLOv4
model. YOLOv4 modifies the attention module se-
lective attention model (SAM)[13] of YOLOv3 from
spatial-wise attention to point-wise attention. However,
SAM is only a spatial attention mechanism, and there

are still other types of attention mechanisms could be
considered. For example, the squeeze-and-excitation
(SENet)[19] mechanism, a kind of channel attention
mechanism for correlation feature representation, may
be considered to be incorporated into the model.

Thirdly, on the task of object detection, only a small
portion of candidate regions contain positive targets
and the rest are the negative backgrounds, which leads
to the imbalance problem of positive/negative samples.
Duo to the limit of the objective function of YOLOv4,
it cannot handle this problem.

In order to resolve the above problems, this paper
proposes an improved model over the YOLOv4. The
main improvements are: using more complex model
of VGG16 instead of CSPDarknet53 as feature extrac-
tion network; incorporating SENet attention mecha-
nism in the feature extraction networks; integrating Fo-
cal Loss[20] in the loss function of the original model to
balance positive and negative samples during training.
Therefore, we name the model proposed in this paper
as YOLO-VSF model.

The total YOLO-VSF network structure is shown
in Fig. 3. It is composed of a new VGG16 backbone
network, three new SENet attention modules, an SPP
module, a path aggregation network (PANet) and three
YOLO Heads with new loss function of integrated Focal
Loss.

The working procedure of the proposed model is as
follows: First, the input image is subjected to 3 × 3
convolution, ReLU activation function, and maximum
pooling operations by the VGG16 backbone feature ex-
traction network, and a total of five such groups of oper-
ations are performed to obtain three sets of output fea-
tures in different sizes. Then two of them are processed
by two SENet attention modules between VGG16 and
PANet and one of them is processed by an SENet atten-
tion module between VGG16 and SPP to produce three
fused features at different scales which focus more on
targets of interest. Finally three YOLO Heads are fed
with three scale features and prediction results are out-
put at three detection scales respectively, which include
the relative coordinates of the center of the prediction
box with respect to the upper left corner of the predic-
tion box, the width and height of the prediction box,
the confidence level of the presence of the target in the
prediction box, and the probability corresponding to
multiple target classes.

The main improvements of the proposed model are
elaborated in the next subsections.
2.1 Improving the Feature Extraction by Re-

placing the CSPDarknet53 with VGG16
With reference to Fig. 2, the backbone network

CSPDarknet53 of YOLOv4 is a combination of Res-
block body modules, which is composed of a single
down-sampling model and multiple residual structures
stacked with 3 × 3 or 1 × 1 convolutional kernels. The
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Fig. 3 YOLO-VSF network structure.

CSPDarknet53 has no full connection layers. One of
the improvements in this paper is to replace the CSP-
Darknet53 network structure with VGG16 network[18].
VGG16 uses 3×3 convolution kernels, which has the ad-
vantage that using two 3×3 convolution kernels has the
same perceptive field as using a 5 × 5 convolution, and
using three 3× 3 convolution kernels has the same per-
ceptive field as using a 7 × 7 convolution. The VGG16
has 13 convolutional layers and three full connection
layers. By abstracting layer by layer, VGG16 network

is able to continuously learn the features from low to
high layers and has stronger nonlinear expression ca-
pability to fit more complex features. In addition, as
the network deepens, the number of convolutional ker-
nels increases from 64, to 128, 256, and 512, giving it
a larger network width and allowing the network layers
to learn richer features such as color and texture. These
enhance the feature representation ability of the model.
The model structure with this improvement measure is
shown in Fig. 4.
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Fig. 4 Replacing the backbone network CSPDarknet53 with VGG16 for stronger feature extraction.
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2.2 Improving the Salient and Correlation
Feature Representation by Incorporating
Channel Attention Mechanism

Since the convolution operation assigns the same
weight to each channel of different feature maps,
YOLOv4 lacks the ability to describe salient or cor-
relation features between channels. As the representa-
tive model of channel attention mechanism, SENet[19]

can optimize the channels by introducing an weight-
ing mechanism so that the model can better describe
the salient and correlation features. The SENet works
through an SE operation, which is divided into 3 main
steps, as shown in Fig. 5.

Inception
(1) Squeeze

(2) Excitation

(3) Scale

X

X

H×W×C

H×W×C

1×1×C

1×1×C

1×1×C
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C
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Fig. 5 Structure of SENet for channel weighted attention.

The first step Squeeze is a global average pooling op-
eration that is performed on a group of feature maps
with size of H × W × C, and a squeezed feature map
with size of 1 × 1 × C will be obtained after the oper-
ation, which has a global receptive field. The second
step Excitation is an operation to perform nonlinear
transformation on the result of the squeeze operation
by first reducing the dimension and then increasing
the dimension of the two full connection layers, and
it generates weights for each feature channel to repre-
sent the correlation between the feature channels. This
operation can not only reduce the complexity of the
model, but also better fit the complex correlation be-
tween channels and improve the generalization ability
of the model. The third step Scale is an operation that
applies the weights obtained in the Excitation opera-
tion to the original feature maps by channel through
multiplication to complete the weighting of the original
feature in the channel dimension. In short, the princi-
ple of the SENet module is to enhance the important
features and weaken the unimportant features.

As shown in Fig. 6, this paper incorporates two
SENets between the VGG16 and the PANet as well as
one SENet between the VGG16 and the SPP module
to represent more salient features.
2.3 Handling Imbalance Problem of Class

Samples by Integrating the Focal Loss into
the Loss Function

On the object detection task, each image may gener-
ate tens of thousands of target candidates, but only a
small portion of them contain targets, and the rest are
image background, which results in the class sample
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Fig. 6 Incorporating the channel attention mechanism with three SENets.
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imbalance problem. The loss function of YOLOv4
consists of three components: regression loss (Lreg),
target confidence loss (Lconf) and classification loss
(Lcls). These losses are not able to solve the sam-
ple imbalance problem. In contrast, the Focus Loss
function[20] can decrease the weights of samples easy
to classify and focus more on samples difficult to clas-
sify during training, which is beneficial to overcome the
imbalance problem. In the following paragraphs, we dis-
cuss how to improve the original model by integrating
the Focal Loss into the loss function of the YOLOv4
to address the imbalance effect of positive and negative
samples.

For the general binary classification problem, the
cross-entropy loss function for a single sample (p, y) is
defined as

CE(p, y) =

{
− log p, y = 1

− log(1 − p), otherwise
, (7)

where p is the probability that the predicted sample
belongs to the positive sample.

For the classification problem of unbalanced data set,
in order to reduce the influence of negative samples, the
weights α and 1 − α can be applied to each of positive
and negative samples, and the balance of positive and
negative samples can be achieved by setting the value
of α. In this way, the cross-entropy loss function can
be improved, as shown in

CE(p, y, α) =

{
−α log p, y = 1

−(1 − α) log(1 − p), y = 0
. (8)

The Focal Loss function combines the above two
weighting methods to achieve both the weighting of pos-
itive and negative samples and the weighting of samples
easy and hard to classify, which is defined as

FocalLoss(p, y, α) =
{
−α(1 − p)γ log p, y = 1

−(1 − α)pγ log(1 − p), otherwise
, (9)

where γ is an adjustment coefficient. Comparing with
the cross-entropy loss function, we can see that Focal
Loss can dynamically adjust the weights of samples easy
and hard to classify in the loss function during the train-
ing process.

Finally, the Focal Loss is integrated into the target
confidence loss (Lconf) of Eq. (5), which is shown in

Lconf = −
K×K∑

i=0

M∑

j=0

Iobj
ij α(1 − p)γ×

[Ĉi log Ci + (1 − Ĉi) log(1 − Ci)]−

− λnoobj

K×K∑

i=0

M∑

j=0

Inoobj
ij (1 − α)pγ×

[Ĉi log Ci + (1 − Ĉi) log(1 − Ci)], (10)

where α is set to 0.25 and γ is set to 2[20].
The above three subsections are the main improve-

ments proposed in this paper. In order to verify the
effect of the improved method in this paper, we carried
out comparison experiments on the dataset provided
by Beijing VanJee Technology Co., Ltd. and the UA-
DETRAC[21] dataset. The experiments show that the
mean average precision (mAP) of the proposed model in
this paper is improved compared with YOLOv4 and can
accurately complete the detection of vehicle and pedes-
trians, and the details of the experiments are shown in
Section 3.

3 Experiments

This section provides a detailed description about the
experimental environment, data sets, training parame-
ters, evaluation metrics, and experimental comparisons
of with and without improved parts to illustrate the
effectiveness of the model proposed in this paper. In
addition, experiments are conducted for images in dif-
ferent resolutions, which show that increasing the res-
olution of images can significantly improve the overall
average accuracy of the detection of small objects.
3.1 Experimental Environment

The hardware configuration for these experiments
is: CPU: Intel(R) Core(TM) i7-7820X CPU@3.60 GHz;
GPU: NVIDIA GeForce RTX 2080 Ti. The software
environment is: Linux operating system, Torch 1.11.0
deep learning framework, Python 3.7 programming en-
vironment, and PyCharm development tools; NVIDIA
CUDA10.1 and cuDNN 7.6.3 are configured to accel-
erate GPU computing, and a series of third-party li-
braries, such as NumPy, are installed to support the
running of codes. To improve the convergence speed of
the network, stochastic gradient descent (SGD) is used
to learn and update the network parameters during the
training of the network model.
3.2 Object Detection Datasets in Traffic

Scenes
The goal of this paper is oriented to the task of

vehicle-pedestrian detection in traffic scenes for vehicle
infrastructure cooperation. The existing large publicly
available datasets, such as COCO[22] and VOC[23], are
not applicable to our task. Therefore, in this paper two
object detection datasets in traffic scenes are chosen for
experiments.

The first object detection dataset in traffic scenes
used in the experiment is provided by Beijing VanJee
Technology Co., Ltd. who captured moving objects at
city crossroads with fixed cameras. It includes a total
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of 3 032 images of 1 920 × 1 080 pixels with object an-
notation information, the objects of which are divided
into 7 categories: pedestrian, bicycle, motorbike, car,
van, truck, and bus. The object number of each cate-
gory is shown in Table 1. The image examples from the
Beijing VanJee dataset are shown in Fig. 7.

Table 1 Beijing VanJee dataset

Dataset category Number

Pedestrian 1 514

Bicycle 8 293

Motorbike 826

Car 18 273

Van 1 670

Truck 502

Bus 414

Fig. 7 Image examples of the Beijing VanJee dataset.

The data set is divided into training set, validation
set, and test set according to a ratio of 81 : 9 : 1. The
training techniques in YOLOv4, such as Mosaic data
enhancement, Label Smoothing, CIOU, and learning
rate cosine annealing decay, are adopted for the pro-
posed model.

The second object detection dataset in traffic scenes
is UA-DETRAC dataset[21]. It is an open vehicle object
detection dataset with rich traffic scenes, which con-
tains 60 image sequences, totally 83 791 frames of im-
ages with size of 960×540 pixels. We divide the objects
of vehicles in the dataset into four categories, namely:
car, bus, van, and others. The dataset is also divided
into training set, validation set, and test set with the
same ratio as the Beijing VanJee dataset. The image
number of each category is shown in Table 2. The image
examples from the UA-DETRAC dataset are shown in
Fig. 8.

Table 2 UA-DETRAC dataset

Dataset category Number

Car 453 230

Bus 30 299

Van 51 285

Other 3 358

Fig. 8 Image examples of the UA-DETRAC dataset.

3.3 Parameters Setting for Model Training
For the first dataset of Beijing VanJee dataset, all the

experimental training number is limited to 300 epochs.
For the second dataset of UA-DETRAC, the training
number is limited to 100 epochs. Other parameters for
the training on the above two datasets are set the same
as follows: the batch size is set to 8, the initial learning
rate is 0.01, the momentum factor is 0.937, the weight
decay factor is set to 0.000 5, and the IOU threshold is
set to 0.5.
3.4 Evaluation Indicators

The experimental performance of tested models is
evaluated in terms of Precision (P ), Recall (R), F1-
Score, Average Precision (AP), and mean Accuracy
Precision (mAP).

The calculation formulas of Precision rate, Recall
rate and F1-Score are defined in

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

F1-Score =
2 × Precison× Recall

Precison + Recall
, (13)

where, TP (true positives) is the number of positive
samples predicted to be positive samples; FN (false neg-
atives) is the number of positive samples predicted to
be negative samples; FP (false positives) is the number
of negative samples predicted to be positive samples.
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The average precision (AP) and the mean average
precision (mAP) can be used to measure the quality of
the model, which needs to be calculated according to
the Recall and Precision of the model. Establish coor-
dinate system with P (Precision) and R (Recall) as co-
ordinate axis respectively, and AP is the area enclosed
by P -R curve. The calculation formulas are shown in

AP =
∫ 1

0

P (R)dR, (14)

mAP =
1
N

N∑

i=1

APi. (15)

3.5 Optimal Experiments for Choosing Best
Improved Modules and Image Resolution

For YOLOv4, its entire network can be divided into
three parts: feature extraction part including a back-
bone network CSPDarknet53 for convolutional feature
extraction and an SPP module for multi-scale feature
extraction, the feature fusion part of PANet, and the
prediction part of YOLO Heads.

In order to evaluate the individual contributions of
improved modules to the overall performance of the
improved model and choose the optimal improvement,
this paper adopts an incremental approach to gradu-
ally modify related modules and image resolutions in
three parts of YOLOv4 and observe whether they can
improve the model performance individually.

The experiments are conducted on the Beijing Van-
Jee dataset. To accelerate training, the images in the
Beijing VanJee dataset are normalized to a middle level
of resolution of 608×608 pixels with 3 channels of RGB

colors for the experiment in Subsection 3.5.1. To find an
optimal image resolution with which the model could
perform better for small objects, the images in the Bei-
jing VanJee dataset are normalized to the low, middle
and high levels of resolutions of 416 × 416, 608 × 608,
and 1 056×1 056 pixels respectively for the experiment
in Subsection 3.5.2. As a result of finding that images
with resolution of 1 056 × 1 056 pixels perform better
for small objects, all the images in the Beijing VanJee
dataset are normalized to a size of 1 056× 1 056 pixels
for the experiments in Subsections 3.5.3 and 3.5.4.
3.5.1 Evaluation of Improvements on the Backbone

Feature Extraction Network
The function of the backbone network CSPDark-

net53 is to perform convolutional feature extraction.
As we discussed in Section 2, the CSPDarknet53
could be replaced by other more powerful convolu-
tional networks. In order to choose the best alter-
native network to improve the backbone network, a
series of convolutional networks are tested, which in-
clude lightweight networks such as mobilenetV1[24],
mobilenetV2[25], mobilenetV3[26] and GhostNet[27], as
well as heavyweight networks, such as Resnet-50[28],
Densenet121[29] and VGG16[18].

To accelerate training, the images in the Beijing Van-
Jee dataset are normalized to a middle level of resolu-
tion of 608 × 608 pixels with 3 channels of RGB colors
for the experiment in this subsection. The experimen-
tal results are shown in Table 3, where YOLOv4 net
represents that the YOLOv4 backbone network is re-
placed with some net model; YOLOv4 Mobilenetv1
means that the YOLOv4 backbone network is replaced
with a Mobilenetv1 network.

Table 3 Performance comparison with different backbone networks in the Beijing VanJee dataset (image
resolution at middle level: 608 × 608 pixels)

Model
AP/%

mAP/%

Bicycle Bus Car Motorbike Van Pedestrian Truck

YOLOv4 86.01 95.42 96.42 50.56 59.81 28.45 94.96 73.09

YOLOv4 Mobilenetv1 80.74 94.64 93.4 16.45 55.35 2.1 97.2 62.84

YOLOv4 Mobilenetv2 75.63 94.51 93.62 5.87 57.17 1.28 92.97 60.15

YOLOv4 Mobilenetv3 72.18 89.09 91.99 26.99 45.15 0.2 89.85 59.35

YOLOv4 Ghostnet 53.36 92.93 92.44 28.51 48.4 0.24 94.52 58.63

YOLOv4 Resnet50 90.97 99.29 97.37 10.66 90.32 39.64 97.27 75.07

YOLOv4 Densenet121 90.14 97.92 96.97 31.76 83.14 33.3 99.78 76.15

YOLOv4 VGG16 91.49 95.95 97.12 71.96 88.82 39.19 99.3 83.29

From Table 3, it can be learned that in terms of detec-
tion accuracy, after the backbone network is replaced
by lightweight networks such as Mobilenet series and
Ghostnet, the mAP is 10—13 percentage points lower
than YOLOv4’s, and the detection of small object ob-

jects, such as pedestrians, is poorer. It can be also
seen that lightweight networks’ detection accuracies for
small targets (e.g., pedestrian) are lower. In contrast,
the mAP performance of YOLOv4 could be improved
by 1.98 percentage points and 3.06 percentage points by
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YOLOv4 Resnet50 and YOLOv4 Densenet121, respec-
tively. Especially, the mAP could be improved by 10.2
percentage points when using the YOLOv4 VGG16
model compared to the YOLOv4 model. The above re-
sults show that replacing the feature extraction network
of YOLOv4 with Resnet50, Densenet121 and VGG16
can effectively improve the object detection accuracy,
among which the replacement with VGG16 has the
most obvious improvement.

However, we also find that the detection results of all
the models for small objects, i.e., pedestrians, are not
as good as that for other big objects. An intuitive idea
to solve this problem is to improve image resolution, as
all the feature extraction parts of the aforementioned
models can extract more discriminative features from
enlarged small objects. In the next subsection, we will
conduct experiments on the basic YOLOv4 with differ-
ent image resolutions to verify our idea.
3.5.2 Evaluation of the Improvement on Increasing

Image Resolution
In the object detection task, small objects carry less

information due to their low resolution and blurred
images. The resulting feature representation is weak,
which means that very few features can be extracted
for a stable detection of small targets. A simple ap-
proach to this problem is to increase the image resolu-
tion for extracting more features, e.g., setting cameras
to capture moving objects in the crossroads with higher
resolution than the ordinary resolution.

To find an optimal image resolution with which the
model could perform better for small objects, the im-
ages in the Beijing VanJee dataset are normalized to the
low, middle and high levels of resolutions of 416× 416,
608× 608, and 1 056× 1 056 pixels respectively for the
experiment.

The experiment is carried out on the basic model of
YOLOv4 to compare the detection results for pedestri-

ans with different image resolutions, which are shown
in Table 4. The Precision-Recall (P -R) curves of detec-
tion for pedestrians are shown in Fig. 9.

Table 4 Performance comparison of different im-
age resolutions for detection of the small
targets of pedestrians (evaluated by AP)
and all the objects (evaluated by mAP)

Model Image resolution/pixels AP/% mAP/%

YOLOv4 416 × 416 3.71 68.10

608 × 608 28.45 73.09

1 056 × 1 056 68.03 89.17

With reference to Table 4 and Fig. 9, it can be
learned that increasing the resolution of the input im-
age can obviously improve the detection performance of
small targets as well as that of all the objects. For ex-
ample, when the resolution is increased from the middle
level of 608×608 pixels to the high level of 1 056×1 056
pixels, the detection AP for pedestrians reached 68.03%
which is 39.58 percentage points higher than that for
the middle level of resolution, and simultaneously the
detection AP for all the objects reached 89.17% which is
16.08 percentage points higher than that for the resolu-
tion of 608×608 pixels. On the contrary, if we decrease
the image resolution from the middle level of 608× 608
pixels to the low level of 416× 416 pixels, the detection
AP for pedestrians is 3.71% which is 24.74 percentage
points lower than that for the middle level of resolution,
and simultaneously the detection AP for all the objects
decreased to 68.10% which is 4.99 percentage points
lower than that for the middle level of resolution.

As a result of the optimal resolution experiment in
this subsection, the succeeding experiments in Subsec-
tions 3.5.3 and 3.5.4 adopt 1 056 × 1 056 pixels as the
optimal resolution of the input images.
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Fig. 9 P -R curves and AP values of different resolutions for detection of small targets (pedestrian).

3.5.3 Evaluation of Incorporating Attention Mecha-
nisms for Salient and Correlation Feature Ex-
traction

In order to enhance the ability to describe the salient
features of input images and to better acquire the

correlation features on different channels, we incorpo-
rate different attention mechanisms, such as CBAM[30],
ECANet[31] and SENet[19], into the places between
three feature map layers of the backbone network and
the SPP/PANet modules for optimal experiments. A
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performance comparison between the original YOLOv4
model and the modified YOLOv4 model that are incor-
porated with the above attention mechanisms is shown
in Table 5.

Table 5 Performance comparison with different in-
corporated attention mechanisms (image
resolution at high level: 1 056 × 1 056 pix-
els)

Model mAP/%

YOLOv4 89.17

YOLOv4 with ECANet 89.24

YOLOv4 with CBAM 89.30

YOLOv4 with SENet 89.45

As can be seen from the table, compared with
YOLOv4, the mAP is improved by 0.07, 0.13 and 0.28
percentage points after the incorporation of ECANet,
CBAM and SENet attention mechanisms respectively.
The above experimental results show that the optimal
attention mechanism to increase the detection accuracy
is the SENet, which is considered to be chosen to in-
corporate into the final improved model.

In addition, to verify the effects of incorporating at-
tention mechanisms, this paper generates several class
activation maps from original images, as shown in
Fig. 10. From the figure, it can be clearly observed
that the proposed model with incorporated attention
mechanism mainly focuses on the vehicle areas to be
detected in the images.

Fig. 10 Illustration of class activation maps (the 2nd row) from original images (the 1st row).

3.5.4 Evaluation of the Improvement on the Loss
Function

In order to overcome the sample imbalance problem,
this paper integrates the Focal Loss to the target confi-
dence loss function of YOLOv4. To verify the incremen-
tal contribution of the improved modules on the detec-
tion effect, the YOLOv4 model is gradually changed in
order. That is, the performances of the YOLOv4 model
with substituted VGG backbone network (YOLO-V),
the YOLO-V model with incorporated SENet attention
mechanism (YOLO-VS) and the YOLO-VS model with
integrated Focal Loss function (YOLO-VSF) are com-
pared. The comparison experimental results are shown
in Table 6. In this experiment, the positive and neg-
ative sample balance parameter α in Eq. (8) is set to
0.25, and the hard and easy classification sample bal-
ance parameter γ in Eq. (10) is set to 2, so that the
model focuses more on the hard classification samples.

From Table 6, it can be learned that the proposed
method (YOLO-VSF) in this paper improves the mAP

Table 6 Performance comparison of incremental
improvements (image resolution at high
level: 1 056 × 1 056 pixels)

Model mAP/% FPS

YOLOv4 89.17 8.456 4

YOLO-V 91.60 5.281 8

YOLO-VS 91.84 5.334 4

YOLO-VSF 92.21 5.392 4

by 3.04 percentage points compared to YOLOv4, 0.61
percentage points compared to YOLO-V, and 0.37 per-
centage points compared to YOLO-VS, respectively. At
the same time, the increase of 2.43 percentage points of
mAP from YOLO-V to YOLOv4 indicates that VGG16
has better feature extraction capability compared to
CSPDarknet53; the increase of 0.24 percentage points
of mAP from YOLO-VS to YOLO-V and the increase
of 0.37 percentage points of mAP from YOLO-VS to
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YOLO-V indicate the effectiveness for the incorporated
channel attention mechanism SENet and the integrated
Focal Loss function respectively.
3.6 Comparison Experiments with the

YOLOv7 Model
YOLOv7[32] is one of the latest models with excellent

performance in YOLO model series. In order to further
verify the effectiveness of the improved model, the pro-
posed YOLO-VSF is compared with some commonly
used object detection models on the Beijing VanJee set
dataset and the open UA-DETRAC dataset. The ex-
perimental results are shown in Table 7 and Table 8,
respectively.

Table 7 Performance comparison on the Beijing
VanJee dataset (image resolution at high
level: 1 056 × 1 056 pixels)

Model mAP/% F1-Score
Number of

parameters

SSD[33] 91.11 0.855 2.414 6 × 107

RetinaNet[20] 74.71 0.735 3.645 4 × 107

Faster RCNN[20] 66.56 0.651 1.368 12 × 108

YOLOv4 89.17 0.873 6.44 × 107

YOLOv7 92.56 0.900 3.69 × 107

YOLO-VSF 92.21 0.915 2.361 × 107

Table 8 Performance comparison on the UA-
DETRAC dataset (image resolution: 608×
608 pixels)

Model mAP/% F1-Score
Number of

parameters

SSD[33] 94.10 0.870 2.414 6 × 107

RetinaNet[20] 91.16 0.890 3.645 4 × 107

YOLOv4 97.26 0.955 6.44 × 107

YOLOv7 99.55 0.980 3.69 × 107

YOLO-VSF 98.24 0.977 2.361 × 107

As can be seen from Tables 7 and 8, the mAPs of the
proposed model YOLO-VSF increase by 3.04 percent-
age points and 0.98 percentage points compared to the
YOLOv4, and the numbers of parameters decrease to
2.361 × 107, which accounts for only 36.66 percentage
points of the quantity of parameters of the YOLOv4.
The mAPs of YOLO-VSF are close to that of YOLOv7,
but the number of parameters of YOLO-VSF is lower
than that of YOLOv7 by 1.329× 107. The YOLO-VSF
model achieved a high F1-Score while ensuring rela-
tively high mAP and fewer parameters.

Figure 11 shows an effect comparison of the detection
examples using the YOLOv4, YOLOv7 and the pro-
posed YOLO-VSF on the UA-DETRAC dataset. Due
to lack of channel attention mechanism, both YOLOv4

and YOLOv7 models lose the correlation information
between their feature channels which may not provide
a powerful support to detect object robustly. For ex-
ample, it can be seen from Fig. 11 that the same small
target of a bus far away from the camera in Figs. 11(a)
and 11(b) is not detected by YOLOv4 and YOLOv7
while a handrail and a car are mistakenly detected as
a bus and a van respectively; in contrast, our improved
model YOLO-VSF can detect the small target of bus
and the target of van, as shown in Fig. 11(c).

(a)

(b)

(c)

Fig. 11 Effect comparison of detection examples using
three models on the UA-DETRAC dataset. (a)
YOLOv4; (b) YOLOv7; (c) YOLO-VSF.

4 Conclusion

In this paper, a YOLO-VSF model is proposed which
is improved over the YOLOv4 object detection model.
The proposed model provides contributions as follows:

(1) Substituting VGG16 for the backbone network
CSPDarknet53 improves the feature extraction abil-
ity, which makes a significant increase on the detection
accuracy.

(2) Incorporating channel attention mechanism of
SENet between the feature extraction network and the
SPP/PANet parts makes the model focus more on the
targets of interest and the correlation information be-
tween feature channels.

(3) Integrating Focal Loss in the loss function makes
the model focus more on the hard-to-classify samples,
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which improves the detection ability of the model.
The experimental results show that the proposed

model achieves an average detection accuracy of 92.21
percent points on the Beijing VanJee dataset. And on
the UA-DETRAC dataset, the proposed model im-
proves the average detection accuracy while decreas-
ing the number of parameters by about 4 × 107 com-
pared with YOLOv4, and it reaches an average detec-
tion accuracy close to that of YOLOv7 by decreasing
about 1.3×107 parameters. The model proposed in this
paper obtains the improvement in both accuracy and
number of parameters, which can provide supports for
the applications on practical object detection in traffic
scenes. In the future study, as a new direction, models
of transformers[34-36] could be considered to be embed-
ded into the model to achieve higher performance.
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