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Abstract: The common target speech separation directly estimates the target source, ignoring the interrelation-
ship between different speakers at each frame. We propose a multiple-target speech separation (MTSS) model
to simultaneously extract each speaker’s voice from the mixed speech rather than just optimally estimating the
target source. Moreover, we propose a speaker diarization (SD) aware MTSS system (SD-MTSS). By exploiting
the target speaker voice activity detection (TSVAD) and the estimated mask, our SD-MTSS model can extract
the speech signal of each speaker concurrently in a conversational recording without additional enrollment audio in
advance. Experimental results show that our MTSS model achieves improvements of 1.38 dB signal-to-distortion
ratio (SDR), 1.34 dB scale-invariant signal-to-distortion ratio (SISDR), and 0.13 perceptual evaluation of speech
quality (PESQ) over the baseline on the WSJ0-2mix-extr dataset, separately. The SD-MTSS system makes a
19.2% relative speaker dependent character error rate reduction on the Alimeeting dataset.
Keywords: target speech separation, interrelationship, speaker diarization (SD), target speaker voice activity
detection, multiple-target speech separation (MTSS) model
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0 Introduction

In the real world, noise and speaker interference can
degrade the system performance of back-end speech
applications. Speech separation effectively solves this
problem by extracting the target speech from the mixed
utterance. Early methods called blind speech sepa-
ration, such as deep clustering (DPCL)[1], deep at-
tractor network (DANet)[2], and permutation invari-
ant training (PIT)[3-4], can separate each source from
a mixed speech. These algorithms formulated in the
time-frequency domain have an upper bound on re-
constructing waves[5]. Recent solutions in the time-
domain, such as time-domain audio source separation
(Tas-Net)[5-6] and dual-path recurrent neural network
(DPRNN)[7] break through the constraints and achieve
state-of-the-art performance in the separation task. De-
spite this, the unknown number of speakers and the
global permutation problem are still two challenges for
blind speech separation.
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To address the above two problems, a frame-
work called speaker extraction[8-9] or target speech
separation[10-12] can extract a target speaker’ speech
from the mixed audio by utilizing an auxiliary reference
speech of the target speaker. However, it is required to
filter out multiple target speakers in certain tasks, e.g.,
meeting scenarios. The common approach is to infer
the mixed speech several times and each process is in-
dependent of the other, ignoring the interrelationship
between the speech of different speakers at each frame.
In addition, obtaining the reference speech of multi-
ple target speakers in advance is difficult to achieve.
Considering the aforementioned problems, repeatedly
processing the mixture speech towards different target
speakers separately may not be a feasible solution.

It is worth noting that speech in the meeting sce-
nario usually has a long duration and contains both
single-talker and overlapped voice segments. Thus,
it is possible to use the single-talker segments as the
reference speech for participants instead of obtain-
ing additional speech for enrollment. Speaker diariza-
tion (SD)[13] technology is very suitable for this role.
SD aims to slice different speaker segments in a con-
tinuous multiple speaker conversation and determine
which speaker each segment belongs to. More recently,
multi-channel target speaker voice activity detection
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(MC-TSVAD)[14], which selects target speaker voice ac-
tivity detection (TSVAD) as the post-processing mod-
ule and employs cross-channel self-attention, achieved
the best result in the multi-party meeting transcription
challenge (M2Met)[15].

In this work, we propose the multiple-target speech
separation (MTSS) model, which is a speech extrac-
tion method for multiple target speakers. The MTSS
model infers each speaker’s mask simultaneously and
limits their estimated masks to be sum to 1. We con-
sider that the energy values of different speakers at
each frame are not independent to each other. More-
over, we propose the SD-MTSS framework, which asso-
ciates target speech separation with speaker diarization.
We select the TSVAD system as the speech diariza-
tion network. Based on the decisions from TSVAD[16],
we can obtain each speaker’s reference speech directly
from the mixed audio. Then, each speaker’s reference
speech is fed into the MTSS module in the separation
stage.

1 Methods

1.1 Multiple Target Speech Separation Model
1.1.1 Backbone

The backbone of the MTSS model is SpEx+[17] which
consists of two twin speech encoders, a speaker encoder,
a speaker extractor, and a speech decoder. The twin
speech encoder models the input sequence and auxil-
iary speech in a common latent space through shar-
ing the structure and parameters. The speaker encoder
model is a ResNet-based speaker classifier used to gen-
erate the speaker embedding of the reference speech.
The speaker extractor takes both the speaker embed-
ding and the output of the twin speech encoder as
the inputs, and then produces masks in three differ-
ent scales. The speech decoder outputs the estimation
by multiplying the input sequence and the multi-scale
masks.
1.1.2 MTSS Model

Herein, we propose a speech extraction model MTSS
for multiple target speakers, which can simultaneously
separate the speech of each speaker present in the con-
versation. The schematic diagram of the MTSS model
is shown in Fig. 1. Unlike the fact that the origi-
nal SpEx+ neural network takes only one speaker’s
reference speech, MTSS takes two speakers’ refer-
ence speeches as the inputs and processes them sep-
arately. Moreover, we replace the ReLU with softmax
to establish the relationship between the masks of each
speaker in the same utterance. We believe that tak-
ing the interrelation into account will improve the final
separation performance of the model. Because in the
definition of binary masks, each time-frequency cell be-
longs to a speaker with stronger energy. Specifically, the
responses of MTSS ests1 , ests2 can be formulated as
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Fig. 1 Details of the MTSS model. Scale-invariant signal-
to-distortion ratio (SISDR). Cross-entrop (CE). s1

and s2 represent the two speakers presented in the
mixture. ests1 , ests2 denote the estimations of two
speakers. auxs1 and auxs2 are the reference waves
of two speakers. m is the mixed wave. w is the
encoder output of m. “C” denotes the operation
of concatenate. ⊗ is an operation for element-wise
product.

follows:

(ests1 , ests2) =
m ⊗ {softmax(cat(masks1 ,masks2))}, (1)

where, masks1 , masks2 ∈ R
N×1×T , N is the feature

dimention, and T is the time length; ⊗ is an opera-
tion of element-wise product; softmax and cat indicate
that a softmax function and concatenation operate on
the penultimate dimension, respectively. We also im-
plement a multi-task learning framework for the target
speech separation.
1.2 SD-MTSS System

Considering that it is feasible to apply speaker di-
arization techniques to target speech separation, we
expend the MTSS to speaker diarization (SD) aware
MTSS (SD-MTSS) system. The SD-MTSS system ar-
chitecture is shown in Fig. 2. Rather than requiring
additional registration, SD-MTSS directly obtains ref-
erence speech from the long utterance itself through the
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SD module. In real applications, the single-channel SD
approach[18] can be used here. The SD-MTSS system
consists of an SD module and an MTSS module. The
SD module produces the TSVAD decision for multiple
speakers, which are the probabilities of each speaker’s
presence at the frame level. The MTSS module adopts
each speaker’s reference speech from the SD module
and the mixture audio as inputs, and then outputs the
estimation for multiple target speakers.
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Fig. 2 Schematic of the SD-MTSS system. γ is a thresh-
old (0.5 often). ds1 and ds2 indicate the binarized
TSVAD decision. dmix indicates the TSVAD deci-
sion where the values of ds1 and ds2 are both 1. �
is element-wise substraction operation.

Using the TSVAD decision, we can get the single-
talker audio segments as the reference speech for each
speaker. The scheme of obtaining single-talker seg-
ments in Fig. 2 is organized as follows. We use m ∈
R

1×T indicating the input sequence; s1 and s2 indicat-
ing two different speakers in the mixture. First, the
TSVAD decision is passed through a threshold mech-
anism and produces the binarized results ds1 and ds2

whose values consist of 0 and 1. Then, the reference
speech can be formulated as follows:

auxs1 = m ⊗ d̃s1 , (2)

d̃s = ds1 − ds1 ⊗ ds2 , (3)

auxs2 = m ⊗ d̃s2 , (4)

d̃s2 = ds2 − ds1 ⊗ ds2 , (5)

where, d̃s1 and d̃s2 indicate the mono-speaker activity
parts of ds1 and ds2 , respectively; ds1 , ds2 ∈ R

1×T ;
⊗ indicates the element-wise product. Selected contin-
uous audio segments of auxs1 and auxs2 will be fed
into the MTSS module as the reference speech for the
subsequent separation task.
1.3 Speaker Diarization Module

The SD module in this work consists of a clustering-
based module for target speaker embedding extrac-
tion and a TSVAD system for diarization results
refinement[14].
1.3.1 Clustering-Based Module

The affinity matrix extraction model of TSVAD
is based on the neural network in Ref. [19], using

an LSTM-based model in similarity measurement for
speaker diarization. It consists of two bidirectional long
short-term memory network (Bi-LSTM) layers and two
fully connected layers. The LSTM-based model first
splits the entire audio into short speech clips and ex-
tracts the speaker embedding of all segments. Then,
it takes these segments as inputs and produces the
initialized diarization result through adopting spectral
clustering.
1.3.2 TSVAD System

The architecture of the TSVAD[14] system is shown
in Fig. 3, which consists of three parts.
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Fig. 3 Structure of the TSVAD system. The front-end
shares the same architecture with the pre-trained
speaker embedding model. The target speaker em-
bedding concatenates with the frame-level speaker
embedding repeatedly and then is fed into the back-
end.

(1) A pre-trained speaker embedding model
ResNet+[20] based on ArcFace[21] and cosine similarity
scoring. The dimension of the speaker embedding layer
is 128, and the margin and softmax prescaling of the
ArcFace are 0.2 and 32 respectively.

(2) A front-end model with the same architecture as
the pre-trained model is used to extract the frame-level
speaker embedding.

(3) A back-end model consists of an encoder layer, a
Bi-LSTM layer, a linear layer, and a sigmoid function.

First, the pre-trained speaker embedding model
extracts the target speaker embeddings. Meanwhile,
the front-end network loads its parameters to ex-
tract the frame-level speaker embeddings. The target
speaker embeddings are repeatedly concatenated with
the frame-level speaker embeddings and then fed into
the back-end. Next, the encoder layer of the back-end
model produces each target speaker’s detection state.
The Bi-LSTM layer inputs these detection states and
models the relationship between speakers. Finally, the
linear layer coupled with a sigmoid function gener-
ates each speaker’s final decision, i.e., TSVAD decision.



J. Shanghai Jiao Tong Univ. (Sci.), 2024

More details can be found in Ref. [14].

2 Experiment Setup

2.1 Dataset

Datasets for MTSS Model We simulated a com-
monly used two-speakers mixture datasets WSJ0-2mix-
extr 1○ (20 000 utterances in training set, 5 000 utter-
ances in validation set, and 3 000 utterances in test
set, respectively), the sampling rate of which is 8 kHz.
The simulation process is the same as SpEx+[17], and
the only difference is that we produce a couple of
target speakers speech (tgss1 , tgts2) and reference
speech (auxs1 , auxs2) for each mixture utterance,
while SpEx+[17] only selects the first talker as the tar-
get speaker. The utterances from tgts1

and tgts2 are
set in a relative signal-to-distortion ratio between 0
to 5 dB. The average scale-invariant signal-to-distortion
ratio (SISDR) of mixed speech is 2.50 dB and −2.50dB
when it takes tgts1 and tgts2 as the reference.

Datasets for SD-MTSS Model For the SD mod-
ule, we use the training set of Alimeeting[15] to train
the clustering-based affinity matrix extraction neural
network. Alimeeting contains 118.75h of speech data,
including 104.75h (426 speakers) of the training set, 4 h
(25 speakers) of the validation set, and 10 h of the test
set. For the TSVAD model in the SD module, we cre-
ate simulated datasets based on the Alimeeting training
set. The simulation scheme is the same as Ref. [14]. For
MTSS module, we use the Libri-2mix[22] as the train-
ing set, with a sampling rate of 16 kHz. We select the
signal channel signal on channel 0 of the two-speakers
samples from the Eval-Ali-far and Test-Ali-far subsets
of Alimeeting to evaluate the performance of SD-MTSS
model.

2.2 Implementation Details

To compare with the baseline, the hyperparameters
and learning schedule of MTSS module are set the same
as SpEx+[17]. The number of filters in the encoder is
256, the number of convolutional blocks in each repeat
is 8, the number of repeat is 4, the number of channels
in the convolutional blocks is 512, and the kernel size
of the convolutional blocks is 3. The hyperparameters
of the network are shown in Table 1.

The initial learning rate is 1 × 10−3 and decays by
0.5 if the accuracy of validation set is not improved in
2 epochs. Early stopping is applied if the accuracy of
validation set has not improved after 6 epochs. Like
that in SpEx+[17], we use the multi-task learning im-
plementation for training with two objectives. We use
the SISDR[23] as the loss of output speech quality and

1○https://github.com/xuchenglin28/speaker extraction

a CE loss for speaker classification:
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∥
∥
∥
∥

2 , (6)

ŝ = etarget + eres, (7)
LSISDR = −[(1 − α − β)SISDRl1+

αSISDRl2 + βSISDRl3 ], (8)

LCE = −
Ns∑

i=1

Ii log σi(W · v), (9)

where, s and ŝ represent the label and estimated
speeches, respectively; SISDRl1 , SISDRl2 and SISDRl3

represent three different multi-scale estimations; α and
β are the weights to different scales; etarget and eres

indicate the estimated speech’s orthogonal projection
and residual w.r.t. the reference speech, respectively;
Ns is the number of speakers in the training datasets; Ii

represents the class label of the ith speaker; W repre-
sents a weight matrix; v represents the speaker encoder
output of the reference speech (auxs2 ); σ(·) represents
a softmax function. The multi-task objective function
for single speaker is

Lmulti = LSISDR + LCE. (10)

The overall objective function for our MTSS model is

L(θ|m, auxs1,2 , spk1,2, Is1,2) =

λ1Lmultispk1
+ λ2Lmultispk2

, (11)

where m is the input sequence, auxs1,2 are the reference
speeches of two speakers, spk1 and spk2 are the target
speeches of two speakers, Is1,2 are the speaker class la-
bels of two speakers, and λ1 and λ2 are the weights of
SISDR loss and CE loss, respectively. Herein, we set
λ1 = 0.5 and λ2 = 0.25 as the default values.

The SD module chooses the Adam and binary cross-
entropy loss as the optimizer. The input chunk size
is 16 s, and the acoustic feature is 80-dimensional log
Mel-filterbank energy with a frame length of 25ms and
a frame shift of 10ms. The training details can be found
in Ref. [24].

The training steps of the SD modules are as follows:
(1) Transfer the pre-trained speaker embedding

model’s parameters to the front-end model in the
TSVAD model. Maintain the front-end model in a fixed
state while focusing our training efforts on the back-end
model.

(2) Subsequently, once the back-end model reaches
convergence, we proceed to unfreeze the front-end
model and embark on a joint training phase for the
entire model, spanning an additional 10 epochs.
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Table 1 Hyperparameters of the MTSS module

Symbol Setting Description

L1, L2, L3 20, 80, 160 Lengths of the encoder filter

N 256 Number of filters in encoder

X 8 Number of convolutional blocks

B 256 Number of channels in bottleneck conv blocks

H 512 Number of channels in convolutional blocks

P 3 Kernel size in convolutional blocks

Spk emb dim 256 Dimension of the speaker embedding

(3) In the final stage, we initiate fine-tuning of the
model using the Alimeeting training set, extending this
process over 200 epochs while employing a learning rate
of 1 × 10−5.

The diarization error rates (DERs) of the single-
channel SD module[18] on the test set of Alimeeting
are shown in Table 2. We use the offline model as a
SD system in our proposed SD-MTSS model. The SD
module has a 4.12% DER on the evaluation set of the
Alimeeting dataset.

Table 2 DERs of the single-channel offline and on-
line SD systems on AliMeeting Eval set

%

Model 2-spk 3-spk 4-spk Total

Offline 0.89 6.63 5.47 4.12

Online 1.90 8.36 12.12 8.14

We evaluate our proposed models for two steps: �
Examine the performance of MTSS on WSJ0-2mix-extr
dataset. We train the MTSS model with a pre-trained
model on the training set of WSJ0-2mix-extr. Then, we
compare MTSS-Softmax and MTSS-ReeLU in terms of
signal-to-distortion ratio (SDR), scale-invariant signal-
to-distortion ratio (SISDR), and perceptual evaluation
of speech quality (PESQ). � Examine the perfor-
mance of SD-MTSS system on Alimeeting. We compare
SpEx+ 2○ (implemented by ourselves with using Libri-
2mix dataset as training set) and SD-MTSS model
in terms of speaker dependent character error rate
(CER)[25].

3 Results and Discussion

3.1 Results on WSJ0-2mix-extr
The results of our proposed MTSS model and the

baseline system are shown in Table 3. Since we used the
same simulation test set as SpEx+[17], we directly use
the evaluation results of SpeakerBeam, SBF-MTSAL-
Concat, TseNet, SpEx, and SpEx+[17]. As shown in
Table 3, SpEx+[17] is the baseline that we implemented,

2○https://github.com/gemengtju/SpEx Plus

and MTSS is the model we proposed. Our proposed
MTSS model achieves significantly better results across
all the metrics. The samples of separated audio are
available at this link 3○.

Specifically, MTSS-Softmax outperforms SpEx+
with relative improvements of 7.4% in terms of SDR,
7.3% in terms of SISDR, and 3.2% in terms of PESQ,
separately. In addition, we can get better improvement
on each speaker s1 and s2 while extracting their tar-
get speech simultaneously. Comparing the results of
MTSS-ReLU and MTSS-Softmax, we can conclude that
setting the constraint for each speaker’s mask mainly
contributs to the improvements, and the interrelation-
ship between different speakers at each frame benefits
the model to extract the target source.
3.2 Results on Alimeeting

The speech recognition results of our proposed SD-
MTSS system are shown in Table 4. Here, we re-
port the average speaker independent CER results on
the Eval Ali far and Test Ali far subsets of Alimeet-
ing. It is important to note that we have adopted
minimum variance distortionless response 4○ (MVDR)
beamformer on the mixture in advance. Due to multi-
speaker interference, many insertion errors are gener-
ated in recognizing the mixed speech. The difference
between SpEx+ and our proposed SD-MTSS system
is that the SD-MTSS can extract the speech of each
speaker simultaneously in one inference and does not
need an enrollment wave in advance. Compared with
the SpEx+ model, the SD-MTSS model achieves 21.4%
and 18.3% relative average speaker dependent CER re-
ductions on Eval Ali far and Test Ali far subsets of the
Alimeeting, respectively. Since we only need to eval-
uate the effectiveness of SD-MTSS model, we did not
train the recognition and separation models jointly. As
far as we know, joint training and fine-tuning with
Alimeeting datasets can improve the final recognition
performance[25]. The results of our proposed SD-MTSS
system are shown in Table 4. Since we evaluate the
system on the far-field data and use the correspond-
ing close-talking data as the ground truth, the model

3○https://github.com/ZBang/SD-MTSS
4○https://github.com/funcwj/setk
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Table 3 SDR, SISDR, and PESQ of separated speech using the MTSS method on the WSJ0-2mix-extr
dataset

Method N
SDR/dB SISDR/dB PESQ

s1 s2 s1 s2 s1 s2

Mixture — 2.60 −2.14 2.50 −2.50 2.31 1.86

SpeakerBeam[26] 1 9.62 — 9.22 — 2.64 —

SBF-MTSAL-Concat[27] 1 11.39 — 10.60 — 2.77 —

TseNet[28] 1 15.24 — 14.73 — 3.14 —

SpEx[29] 1 17.15 — 16.68 — 3.36 —

SpEx+[17] 1 18.54 — 18.20 — 3.49 —

Pre-trained 1 18.15 16.42 17.55 15.89 3.44 3.28

MTSS-ReLU 2 19.18 17.29 18.72 16.84 3.56 3.39

MTSS-Softmax 2 19.92 17.42 19.54 16.99 3.62 3.41

Note: N indicates the number of outputs per inference. s1 and s2 indicate the different speaker of the mixture. MTSS-ReLU: Using
ReLU as the activation function and do not impose constraints on masks. MTSS-Softmax: Using softmax function to limit the sum
of masks to 1.

does not performance well in terms of SDR and SISDR
improvements. Nevertheless, from Table 4, we can con-
clude that our proposed multiple target speech sepa-
ration model surpasses the pre-trained model (SpEx+)
with a large margin in terms of SISDR improvement.

Table 4 Average speaker dependent CERs re-
sults of SD-MTSS on Eval Ali far and
Test Ali far sets %

Method N Eval Test Avg

Mixture — 96.70 95.51 95.83

SpEx+ (Re) 1 45.80 43.79 44.34

SD-MTSS 2 35.97 35.78 35.83

Note: N indicates the number of outputs per inference. Re
indicates that the model is implemented by ourselves. We
use MTSS-Softmax model as the MTSS module of the SD-
MTSS system. We use WeNet[30] as the speech recognition
model in this experiments. The WeNet model is trained by
WeNetSpeech[31] and our inhouse data together with approxi-
mately 1.5 × 104 hours.

4 Conclusion

We propose a multiple target speech separation
(MTSS) model which can simultaneously extract each
speaker’s voice from the mixed speech. To establish a
relationship between different speakers in each frame,
we constrain the sum of each speaker’s estimated mask
to 1 when extracting their speeches simultaneously.
Moreover, we propose a speaker diarization multiple
target speech separation system (SD-MTSS). By associ-
ating the speaker diarization task and the target speech
separation task together, we do not require the addi-
tional reference speech for enrollment. The experimen-
tal results show that our proposed MTSS model signif-
icantly improves the separation performance on WSJ0-
2mix-extr datasets. In addition, the SD-MTSS model

outperforms the baseline by a large margin in terms of
speaker independent CER on the Alimeeting datasets.
For future work, we will implement our method with
different state-of-the-art networks and improve the sys-
tem’s performance in the far-field scenarios.
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