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Abstract: This paper studies the time-varying formation-containment tracking control problems for unmanned
aerial vehicle (UAV) swarm systems with switching topologies and a non-cooperative target, where the UAV swarm
systems consist of one tracking-leader, several formation-leaders, and followers. The formation-leaders are required
to accomplish a predefined time-varying formation and track the desired trajectory of the tracking-leader, and
the states of the followers should converge to the convex hull spanned by those of the formation-leaders. First, a
formation-containment tracking protocol is proposed with the neighboring relative information, and the feasibility
condition for formation-containment tracking and the algebraic Riccati equation are given. Then, the stability of
the control system with the designed control protocol is proved by constructing a reasonable Lyapunov function.
Finally, the simulation examples are applied to verify the effectiveness of the theoretical results. The simulation
results show that both the formation tracking error and the containment error are convergent, so the system can
complete the formation containment tracking control well. In the actual battlefield, combat UAVs need to chase
and attack hostile UAVs, but sometimes when multiple UAVs work together for military interception, formation-
containment tracking control will occur.
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0 Introduction

Cooperative control of unmanned aerial vehicle
(UAV) swarm systems has been attracted attention
because it can be widely used in many fields, such
as surveillance[1], source seeking[2], drag reduction[3],
load transportation[4], and collaborative localization[5].
One of the most important research topics in cooper-
ative control of multi-UAV systems is formation con-
trol, which requires all UAVs to accomplish the de-
sired time-varying formation. There are many classical
control strategies that can be used to solve the forma-
tion control problem of UAV swarm systems, including
leader-follower[6], virtual structure[7], artificial poten-
tial energy[8], and behavior-based strategy[9]. In recent
years, consensus approaches have been widely applied
to study the formation control problems with the devel-
opment of consensus control theory[10]. How to design
a distributed controller with neighboring information
to solve the formation control problem is a hot issue in
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current research.
Based on consensus control strategies, a completely

distributed formation control protocol has been de-
signed to solve the formation control problem of ver-
tical take-off and landing (VTOL) UAVs with commu-
nication delays in Ref. [11]. Reference [12] has studied
distributed finite-time formation control problems for
multiple UAVs helicopter system with disturbances us-
ing consensus-based protocols. Based on the consen-
sus strategy, a formation stabilization control prob-
lem for second-order multi-agent systems with actu-
ator faults and directed topologies has been inves-
tigated in Ref. [13]. Reference [14] has proposed
the consensus control protocols for the hybrid multi-
agent systems to address the problem of formation
control by using the matrix theory. Reference [15]
has designed a distributed predictive formation con-
troller of networked mobile robots with communication
delay.

Besides formation control[16], another hot research
topic in cooperative control of UAV swarm systems is
containment[17], which is that the states of followers
are required to converge to the convex hull spanned
by the formation-leaders. Reference [18] has presented
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the sufficient conditions for second-order multi-agent
systems with inherent nonlinear dynamics to achieve
containment control. The event-triggered adaptive con-
tainment control for the second-order linear multi-agent
systems with time-varying input delays has been stud-
ied in Ref. [19]. Reference [20] has discussed contain-
ment problems for high-order multi-agent swarm sys-
tems with directed interaction topologies. The contain-
ment control problem for multi-agent systems with mul-
tiple leaders which have non-zero control inputs and in-
put saturation has been investigated in Ref. [21]. Ref-
erence [22] has presented the necessary and sufficient
conditions for multi-UAV systems with multiple sta-
tionary leaders to achieve containment. However, the
defect of not being able to control the whole macro-
scopic movement of the swarm system effectively has
existed in the containment control[17-21].

Based on the formation control and the containment
control, more and more researchers realize that a more
significant problem is formation-containment control,
where the leaders need to accomplish a desired forma-
tion, and the followers need to converge to the convex
hull spanned by the leaders at the same time. Ref-
erence [23] has studied formation-containment control
problems for multiple multirotor UAV systems with
directed topologies. The formation-containment con-
trol of second-order nonlinear multi-agent systems with
communication delays has been addressed in Ref. [24].
Reference [25] has discussed the formation-containment
control problems for high-order linear time-invariant
multi-agent systems. The formation containment con-
trol under sampling and time delays for multi-agent
systems has been studied in Ref. [26]. Reference [27]
has designed the control algorithm using output feed-
back control strategy and observer-based to address the
time-varying output formation-containment problem of
multi-agent systems.

However, in many practical applications, accomplish-
ing the time-varying formation containment is only the
first step to complete target transport work in a com-
plex environment. The multi-UAV systems should also
track the target’s trajectory such that all the UAVs
can reach the desired destination safely. Therefore, the
problem of time-varying formation-containment track-
ing control of multi-UAV swarm systems has been stud-
ied in Refs. [28-35]. References [28-29] have investigated
the distributed formation-containment tracking issue
for heterogeneous linear multi-agent systems and au-
tonomous underwater vehicles (AUVs) respectively, but
the tracking-leader with control input was not consid-
ered. In fact, the tracking-leader with unknown control
input can regulate the expected trajectory such that
they can avoid obstacles effectively, so it is meaningful
to study the problem of formation-containment track-
ing of multi-agent systems with a tracking-leader of un-
known control input. To solve the aforementioned prob-

lem, the time-varying formation-containment tracking
control with unknown control input has been devel-
oped in Refs. [30-34]. References [30-33] have designed
a formation-containment tracking protocol using the
neighboring relative information for general multi-agent
systems with unknown control input. Reference [34]
has solved the problem of the predefined-time time-
varying formation-containment tracking for the multi-
ple Euler-Lagrange systems, where the external distur-
bances are taken into consideration. Nevertheless, note
that the switching topologies have not been discussed in
the above-mentioned research results. In practice, the
topology structure among UAVs may cause the fail-
ure of the communication link and the creation of a
new communication link due to the limitation of the
communication distance. Therefore, it is meaningful to
investigate the formation-containment tracking prob-
lems for multi-UAV systems with a tracking-leader of
unknown control input and switching topologies. At
present, the research on formation-containment track-
ing control for unmanned aerial vehicle swarm systems
with a tracking-leader of unknown control input and
switching topologies is still in its infancy, and there are
few related research results[35].

Motivated by the above observations, this paper in-
vestigates the formation-containment tracking control
for multi-UAV systems with switching topologies and
unknown control inputs. Compared with the exist-
ing research results, the main contributions of this pa-
per are threefold. First, the states of the formation-
leaders are not only required to achieve the predefined
time-varying formation but also need to track the state
of the tracking-leader, and the followers need to con-
verge to the convex hull spanned by the formation-
leaders, which can control the macroscopic movement
of the entire multi-UAV swarm system efficiently. Sec-
ond, the interaction topology among the UAVs can
be switched, which improves the practical application
of multi-UAV swarm system. Third, a time-varying
formation-containment tracking control protocol is pro-
posed to compensate for the leader’s unknown control
input, and the feasible conditions given in this paper
are more general.

The rest of this paper is organized as follows. Ba-
sic graph theory and problem description are given
in Section 1. In Section 2, the main results are pre-
sented. In Section 3, the numerical simulation re-
sults are given. Conclusions are proposed in Section
4.

Notations: RN stands for the N -dimension real col-
umn vector space and RN×N denotes the set of N ×N
dimensional real matrices. Let 1N be a column vector
consisting of 1 with size N . IN stands for an identity
matrix with dimension N . ⊗ is the Kronecker product.
Let diag(·) represent a diagonal matrix and ‖ · ‖ stand
for the 2-norm of a vector.
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1 Preliminaries and Problem Descrip-
tion

1.1 Basic Graph Theory
Let G = (v, e,w) be a directed graph with N nodes,

where v = {v1, v2, · · · , vN} represents the node set,
the edge set is denoted by e ⊆ {(vi, vj) : vi, vj ∈
v(G); i �= j} and the weighted adjacency matrix is
w = [wij ] ∈ RN×N . For ∀i, j ∈ {1, 2, · · · , N}, wij > 0
if and only if (vi, vj) ∈ e and wij = 0 otherwise. The

in-degree of node vi is denoted by degin(vi) =
N∑

j=1

wij .

The degree matrix of G is represented by D(G) =
diag{degin(v1), degin(v2), · · · , degin(vN )}. The Lapla-
cian matrix is L = D − w. And the neighbor set of
vertex vi is denoted by Ni = {vj ∈ v : (vi, vj) ∈ e}. If
a graph G has at least one root vertex and this vertex
has a path with all other vertices, it is called a spanning
tree.

Herein, the topologies among UAVs can be switched.
All possible communication topologies of this system
can be denoted by Γ , and the topological index set can
be written as Δ ⊂ {1, 2, · · · , N}. Let σ(t) : [0,∞) → Δ
be a switching signal and its value is the index of the
topology at t. The graph and Laplacian matrix at t can
be represented by Ḡσ(t) and Lσ(t). Let N i

σ(t) be the
neighboring set of the UAV i at σ(t). The interaction
strength related to the edge from vj to vi is wij . And
it is supposed that the admissible switching signal has
a dwell time Td > 0.

Remark 1 Time-varying formation-containment
tracking control problem for UAV swarm systems with
switching interaction topologies is studied in this pa-
per. These studies in Refs. [28-34] do not consider the
switching topologies; however, in the actual flight pro-
cess, the topology between UAVs is limited by the
communication distance and the complex terrain en-
vironment, which may lead to the failure of commu-
nication links and the generation of new communica-
tion links, and then change the connectivity of the
UAV swarm systems and the interaction relationship
between the UAVs. In addition, the cooperative con-
trol problems for multi-agent systems with switching
topologies are more complicated and challenging than
the fixed cases[36]. Therefore, it is necessary to consider
the condition of switching topologies in time-varying
formation-containment tracking control.
1.2 Problem Description

Consider a UAV swarm system consisting of N +M +
1 UAVs, where the tracking-leader is labeled by i = 0,
the formation-leaders are denoted by i = 1, 2, · · · , N ,
and the followers are represented by i = N + 1, N +
2, · · · , N + M .

Remark 2 According to the collaborative task
requirements, the UAVs are divided into tracking-

leader, formation-leaders and followers. The formation-
leaders are required to accomplish a predefined time-
varying formation and track the desired trajectory of
the tracking-leader, and the states of followers should
converge to the convex hull spanned by those of the
formation-leaders. Furthermore, the tracking-leader
does not have a neighbor, and a formation-leader only
has followers as its neighbors. The neighbor of followers
only has formation-leaders or other followers.

Assumption 1 The directed graph Ḡσ(t) among
the tracking-leader and formation-leaders has a span-
ning tree, and takes the tracking-leader as the root
node.

Assumption 2 For each follower, there exists at
least one formation-leader which has a directed path to
it.

If Assumption 1 is satisfied, the Laplacian matrix
Lσ(t) ∈ R(N+M+1)×(N+M+1) has the following form:

Lσ(t) =

⎡

⎢⎢⎣

0 01×N 01×M

L12 L11 0N×M

0M×1 L2 L3

⎤

⎥⎥⎦, where L12 ∈ RN×1

denotes the Laplacian matrix among the formation-
leaders and tracking-leader, L11 ∈ RN×N represents
the Laplacian matrix among formation-leaders and
formation-leaders, L2 ∈ RM×N denotes the Laplacian
matrix among the followers and formation-leaders, and
L3 ∈ RM×M represents the Laplacian matrix among
followers and followers.

Based on Assumptions 1 and 2, the following lemmas
are given.

Lemma 1[32] Under Assumption 1, all eigenvalues
of L11 have positive real parts.

Lemma 2[33] Under Assumption 2, all eigenvalues
ofL3 have positive real parts and each entry of −L−1

3 L2

is nonnegative. Moreover, each row of −L−1
3 L2 has a

sum equal to one.
Lemma 3[34] Under Assumptions 1 and 2, there

is a diagonal matrix DL = diag(d1, d2, · · · , dN ) with
di > 0 (i = 1, 2, · · · , N) such that ΞL = DLL11 +
LT

11DL > 0, and there exists a diagonal matrix Gf =
diag(g1, g2, · · · , gM ) with gj > 0 (j = 1, 2, · · · , M) such
thatΦf = GfL3+LT

3Gf > 0. Feasible matricesDL and
Gf can be calculated by (d1, d2, · · · , dN )T = (LT

11)−11N

and (g1, g2, · · · , gM )T = (LT
3 )−11M .

The dynamics of the UAV swarm system can be de-
coupled into the position subsystem and the attitude
subsystem, where the time constants for the position
subsystem are much larger than the ones for the atti-
tude subsystem. Therefore, the formation-containment
tracking control for multi-UAV swarm systems can be
classified into inner-loop control and outer-loop con-
trol, where the inner-loop controller is used to stabilize
the attitude and the outer-loop controller is used to
drive the UAV toward the desired position. This paper
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mainly considers the formation-containment tracking
control for the outer-loop of UAV swarm system, and
the position and velocity dynamics of the leaders and
the followers in the outer loop can be approximately
modelled, which will be given as follows.

The tracking-leader has a control input and the in-
formation of control input is unavailable to all the
formation-leaders and followers. The dynamics of the
tracking-leader can be written as

ẋ0(t) = v0(t)
v̇0(t) = u0(t)

}
, (1)

where x0(t) ∈ Rn is the position vector, v0(t) ∈ Rn

denotes the velocity vector, and u0(t) ∈ Rn repre-
sents the control input vector of the tracking-leader.
The unknown control input u0(t) satisfies the following
bounded assumption.

Assumption 3 The unknown control input u0(t)
is bounded, and there exists an unknown positive con-
stant μ such that ‖u0(t)‖ � μ.

The dynamics of the formation-leaders and followers
of i (i = 1, 2, · · · , N + M) can be represented by

ẋi(t) = vi(t)
v̇i(t) = ui(t)

}
, (2)

where xi(t) ∈ Rn, vi(t) ∈ Rn and ui(t) ∈ Rn are the
position, velocity and control input respectively. Based
on the Kronecker product, the results can also be ex-
tended to the high-dimensional situations.

The desired time-varying formation of the formation-
leaders can be denoted by hL(t) = (hT

1 (t),hT
2 (t), · · · ,

hT
N (t))T, where hi(t) = (hix(t),hiv(t))T, i ∈ {1,

2, · · · , N} are piecewise continuously differentiable vec-
tors, and hix(t), hiv(t) are the position and velocity
components of hi(t), respectively.

Remark 3 This paper considers the formation-
containment tracking control problem when the
formation-leaders have unknown control input. Com-
pared with Ref. [28], the formation-leaders with un-
known control input can complete the more complex
task and cannot limit the type of reference signals gen-
erated by the tracking-leader, such as enclosing the
target using a group of mobile robots in Ref. [37].
Furthermore, these works in Refs. [30-34] have intro-
duced the formation-containment tracking control for
general multi-agent systems with unknown control in-
put, but the design of the formation-containment track-
ing feasible constraint is more complex. In this pa-
per, based on the relative information of the neigh-
boring UAVs and feasibility conditions, a distributed
formation-containment tracking control protocol is de-
signed, which can effectively make the design of the
control protocol not rely on the boundary information
of control input.

Let ξk(t) = (xk(t),vk(t))T(k = 0, 1, · · · , N + M).
Then the multi-UAV systems formed by Eqs. (1) and
(2) can be written as

ξ̇0(t) = Aξ0(t) +Bu0(t)

ξ̇i(t) = Aξi(t) +Bui(t)

}
, (3)

where A =

[
0n×n In×n

0n×n 0n×n

]
and B =

[
0n×n

In×n

]
.

Definition 1 For any given initial states,

lim
t→∞(ξi(t) − hi(t) − ξ0(t)) = 0, (4)

i = 1, 2, · · · , N,

then the UAV swarm system (3) can achieve the time-
varying formation tracking performance.

Definition 2 For the follower c (c ∈ {N + 1, N +
2, · · · , N + M}) and any bounded initial states, there
exists a nonnegative constant ι0. If there exist nonnega-

tive constants acj (j = 1, 2, · · · , N) satisfying
N∑

j=1

acj =

1, such that

lim
t→∞

∣∣∣∣∣∣
ξc(t) −

N∑

j=1

acjξj(t)

∣∣∣∣∣∣
= ι0, (5)

c = N + 1, N + 2, · · · , N + M,

then the multi-UAV system is said to accomplish the
containment.

Definition 3 For any bounded initial states, if (4)
and (5) hold simultaneously for each formation-leader
i (i ∈ {1, 2, · · · , N}) and follower c (c ∈ {N + 1, N +
2, · · · , N + M}), then the UAV swarm system is said
to accomplish formation-containment tracking.

2 Main Results

In this section, the time-varying formation-
containment tracking control protocol and the
feasibility condition are proposed. And the proof will
be given based on Lyapunov stability theory.

The local error of time-varying formation tracking for
the formation-leader i ∈ {1, 2, · · · , N} can be written
as

si(t) =wi0(ξi(t) − hi(t) − ξ0(t))+
N∑

j=1

wij((ξi(t) − hi(t)) − (ξj(t) − hj(t))). (6)

The weight wi0 > 0 if the formation-leader i contains
the tracking-leader, and wi0 = 0 otherwise. In addition,
the containment local error for the follower c (c ∈ {N +
1, N + 2, · · · , N + M}) can be written as

ςi(t) =
N+M∑

j=1

wcj(ξc(t) − ξj(t)), (7)
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where wi0 represents the information between the
tracking-leader and the formation-leaders, wij repre-
sents the information between the formation-leaders
and the formation-leaders, and wcj represents the infor-
mation between the followers and the formation-leaders
and other followers.

According to the local error of time-varying forma-
tion tracking and the containment local error in (6) and
(7), the time-varying formation-containment tracking
control protocols can be given by

ui(t) = − ηgi(si(t)) − ‖ḣiv(t)‖gi(si(t))−
α1B

TPsi(t), (8)
i ∈ {1, 2, · · · , N},

ui(t) = − α2B
TPςi(t) − ωgi(ςi(t)), (9)

i ∈ {N + 1, N + 2, · · · , N + M},

where η and ω are the positive constants, gi(si(t)) and
gi(ςi(t)) denote the nonlinear functions, the positive

constant α1 � λmax(DL)
λmin(ΞL)

, and α2 � λmax(Gf)
λmin(Φf)

. In ad-

dition, positive definite matrix P satisfies the following
algebraic Riccati equation:

ATP + PA− PBBTP + I � 0. (10)

The non-linear functions gi(si(t)) and gi(ςi(t)) are
written as

gi(si(t)) =

⎧
⎪⎨

⎪⎩

BTPsi(t)
‖BTPsi(t)‖ , ‖BTPsi(t)‖ �= 0

0, ‖BTPsi(t)‖ = 0
, (11)

gi(ςi(t)) =

⎧
⎪⎨

⎪⎩

BTPςi(t)
‖BTPςi(t)‖ , ‖BTPςi(t)‖ �= 0

0, ‖BTPςi(t)‖ = 0
. (12)

Theorem 1 For the UAV swarm system (3), if As-
sumptions 1—3 hold and the time-varying formation
hL(t) meets the feasibility condition ḣix(t)−hiv(t) = 0,
i ∈ {1, 2, · · · , N}, and the positive definite matrix P
satisfies Inequality (10), the time-varying formation-
containment tracking performance defined by (4) and
(5) for the multi-UAV system (3) with the tracking-
leader’s unknown control input can be achieved by us-
ing the control protocols (8) and (9).

Proof By substituting the control protocols (8)
and (9) into the multi-UAV systems (3), then one can
get the following compact forms:

ξ̇L(t) = (IN ⊗A)ξL(t) − η(IN ⊗B)G(s(t))−
(Π ⊗B)G(s(t)) − α1(IN ⊗BBTP )s(t), (13)

ξ̇F(t) = (IM ⊗A)ξF(t) − α2(IM ⊗BBTP )ς(t)−
ω(IM ⊗B)G(ς(t)), (14)

where ξL(t) = (ξT
1 (t), ξT

2 (t), · · · , ξT
N (t))T,

ξF(t) = (ξT
N+1(t), ξ

T
N+2(t), · · · , ξT

N+M (t))T, s(t) =
(sT

1 (t), sT
2 (t), · · · , sT

N (t))T and ς(t) = (ςTN+1(t),
ςTN+2(t), · · · , ςTN+M (t))T, Π(t) = diag(‖ḣ1v(t)‖,
‖ḣ2v(t)‖, · · · , ‖ḣNv(t)‖)T, G(s(t)) = (gT

1 (s1(t)),
gT
2 (s2(t)), · · · , gT

N (sN (t)))T, G(ς(t)) = (gT
N+1(ςN+1(t)),

gT
N+2(ςN+2(t)), · · · , gT

N+M (ςN+M (t)))T.
The time-varying formation tracking error of the

formation-leader i (i = 1, 2, · · · , N) can be expressed by
ψi(t) = ξi(t)−hi(t)−ξ0(t). By taking the derivative of
ψi(t) along the trajectory of system (3) and considering
the control protocol (8),

ψ̇i(t) = ξ̇i(t) − ḣi(t) − ξ̇0(t) =

Aξi(t) +Bui(t) − ḣi(t) −Aξ0(t) −Bu0(t) =
Aξi(t) +B(−ηgi(si(t))−
‖ḣiv(t)‖gi(si(t)) − α1B

TPsi(t))−
ḣi(t) −Aξ0(t) −Bu0(t) −Ahi(t) +Ahi(t) =

Aψi(t) −Bηgi(si(t)) −B‖ḣiv(t)‖gi(si(t))−
α1BB

TPsi(t) − ḣi(t) +Ahi(t). (15)

According to the fact that the given time-varying
formation meets the feasibility condition: ḣix(t) −
hiv(t) = 0, let ψ(t) = (ψT

1 (t),ψT
2 (t), · · · ,ψT

N (t))T,
hv(t) = (h1v(t),h2v(t), · · · ,hNv(t))T, Π(t) =
diag(‖ḣ1v(t)‖, ‖ḣ2v(t)‖, · · · , ‖ḣNv(t)‖)T. Then the
UAV swarm system can be written by

ψ̇(t) = (IN ⊗A)ψ(t) − (IN ⊗B)ḣv(t)−
η(IN ⊗B)G(s(t)) − (Π ⊗B)G(s(t))−
α1(IN ⊗BBTP )s(t) − (IN ⊗B)u0(t). (16)

The neighbor errors s(t) and ς(t) can described by
s(t) = (L11 ⊗ I2)ψ(t) and ς(t) = (L3 ⊗ In)(ξF(t) −
(−L−1

3 L2⊗In)ξL(t)). Then one gets the following com-
pact form:

ṡ(t) = (IN ⊗A)s(t) − (L11 ⊗B)ḣv(t)−
η(L11 ⊗B)G(s(t)) − (L11Π ⊗B)G(s(t))−
α1(L11 ⊗BBTP )s(t) − (L11 ⊗B)u0(t). (17)

Considering the following Lyapunov function:

V1(t) = sT(t)(DL ⊗ P )s(t), (18)

where DL is a positive diagonal matrix defined in
Lemma 3, then the derivative of V1(t) yields

V̇1(t) = sT(t)(DL ⊗ (PA+ATP ))s(t)−
2sT(t)(DLL11 ⊗ PB)ḣv(t)−
2ηsT(t)(DLL11 ⊗ PB)G(s(t))−
2sT(t)(DLL11Π ⊗ PB)G(s(t))−
α1s

T(t)(ΞL ⊗ PBBTP )s(t)−
2sT(t)(DLL11 ⊗ PB)u0(t), (19)



694 J. Shanghai Jiao Tong Univ. (Sci.), 2024, 29(4): 689-701

where ΞL =DLL11 +LT
11DL > 0.

− 2sT(t)(DLL11 ⊗ PB)ḣv(t) =

− 2
N∑

i=1

diwi0s
T
i PBḣiv �

2
N∑

i=1

diwi0‖BTPsi‖‖ḣiv‖, (20)

− 2ηsT(t)(DLL11 ⊗ PB)G(s(t)) =

− 2η

N∑

i=1

dis
T
i PB

( N∑

j=1

wij(g(si) − g(sj))+

wi0g(si)
)

� −2η
N∑

i=1

diwi0‖BTPsi‖, (21)

− 2sT(t)(DLL11Π ⊗ PB)G(s(t)) =

− 2
N∑

i=1

dis
T
i PB‖ḣiv‖

( N∑

j=1

wij(g(si)−

g(sj)) + wi0g(si)
)

�

− 2
N∑

i=1

diwi0‖ḣiv‖‖BTPsi‖, (22)

− 2sT(t)(DLL11 ⊗ PB)u0(t) =

− 2
N∑

i=1

diwi0s
T
i PBu0 �

2
N∑

i=1

diwi0‖BTPsi‖‖u0‖ �

2μ

N∑

i=1

diwi0‖BTPsi‖. (23)

Substituting (20)—(23) into (19) yields

V̇1(t) � sT(t)(DL ⊗ (PA+ATP ))s(t)−
α1s

T(t)(ΞL ⊗ PBBTP )s(t)+

2
N∑

i=1

diwi0‖BTPsi‖‖ḣiv‖−

2η

N∑

i=1

diwi0‖BTPsi‖−

2
N∑

i=1

diwi0‖ḣiv‖‖BTPsi‖+

2μ

N∑

i=1

diwi0‖BTPsi‖ �

sT(t)(DL ⊗ (PA+ATP ))s(t)−
α1s

T(t)(ΞL ⊗ PBBTP )s(t)−

2(η − μ)
N∑

i=1

diwi0‖BTPsi‖. (24)

Choose α1 � λmax(DL)
λmin(ΞL)

and η � μ. Then it holds

from (24) that

V̇1(t) � sT(t)(DL⊗
(PA+ATP − PBBTP ))s(t). (25)

If inequality PA+ATP −PBBTP + I � 0 holds,
then it can be verified that

V̇1 � −
N∑

i=1

dis
T
i (t)si(t) � 0. (26)

Therefore, the Lyapunov function V1(t) is asymptot-
ically stable according to LaSalle’s invariance princi-
ple. It can be obtained that lim

t→∞ si(t) = 0, because of

s(t) = (L11 ⊗ I2)ψ(t), then one gets lim
t→∞ψi(t) = 0.

Based on above analyses, the UAV swarm system (3)
can achieve the desired time-varying formation tracking
under the control protocol (8) based on Definition 1.

According to the neighbor error ς(t) = (L3 ⊗
In)(ξF(t) − (−L−1

3 L2 ⊗ In)ξL(t)), one can obtain

ς̇(t) = (L3 ⊗ In)(ξ̇F(t) − (−L−1
3 L2 ⊗ In)ξ̇L(t)) =

(L3 ⊗ In)[(IM ⊗A)ξF(t) − α2(IM⊗
BBTP )ς(t) − ω(IM ⊗B)G(ς(t))] + (L2 ⊗ In)
[(IN ⊗A)ξL(t) − η(IN ⊗B)G(s(t))−
(INΠ ⊗B)G(s(t)) − α1(IN ⊗BBTP )s(t)] =

(IM ⊗A)ς(t) − α2(L3 ⊗BBTP )ς(t)−
ω(L3 ⊗B)G(ς(t)) − η(L2 ⊗B)G(s(t))−
(L2Π ⊗B)G(s(t)) − α1(L2 ⊗BBTP )s(t). (27)

Herein, the following Lyapunov function candidate is
considered:

V2(t) = ςT(t)(Gf ⊗ P )ς(t). (28)

Then the time derivative of V2(t) is described by

V̇2(t) = ςT(t)(Gf ⊗ (PA +ATP ))ς(t)−
α2ς

T(t)(Φf ⊗ PBBTP )ς(t)−
2ωςT(t)(GfL3 ⊗ PB)G(ς(t))−
2ηςT(t)(GfL2 ⊗ PB)G(s(t))−
2ςT(t)(GfL2Π ⊗ PB)G(s(t))−
2α1ς

T(t)(GfL2 ⊗ PBBTP )s(t), (29)
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where Φf = GfL3 +LT
3Gf > 0.

− 2ωςT(t)(GfL3 ⊗ PB)G(ς(t)) =

− 2ω

N+M∑

i=N+1

giς
T
i PB

( N+M∑

j=N+1

wij(g(ςi)−

g(ςj)) +
N∑

k=1

wikg(ςi)
)

�

− 2ω

N+M∑

i=N+1

gi‖BTPςi‖
N∑

k=1

wik. (30)

Let E(t) = (ET
1 (t),ET

2 (t), · · · ,ET
N (t))T and Ei(t) =

ηG(si(t))+ ‖ḣiv(t)‖G(sι(t)) (i ∈ 1, 2, · · · , N). As hi(t)
and ḣi(t) are bounded, one can obtain that there are
positive constants εi such that ‖ḣiv(t)‖ � εi (i =
1, 2, · · · , N). And given ‖G(si(t))‖ � 1, it leads to
‖Ei(t)‖ � εi + η. Then one gets

−2ηςT (t)(GfL2 ⊗ PB)G(s(t))−
2ςT(t)(GfL2Π ⊗ PB)G(s(t)) =

− 2ςT(t)(GfL2 ⊗ PB)(ηG(s(t))+

‖ḣv(t)‖G(s(t))) =

2
N+M∑

i=N+1

giς
T
i PB

N∑

k=1

wikEk(t) �

2
N+M∑

i=N+1

gi‖BTPςi‖
N∑

k=1

wik‖Ek(t)‖ �

2γ

N+M∑

i=N+1

gi‖BTPςi‖
N∑

k=1

wik, (31)

where γ = max{ε1, ε2, · · · , εN} + η.
Substituting (30) and (31) into (29) leads to

V̇2(t) = ςT(t)(Gf ⊗ (PA+ATP ))ς(t)−
α2ς

T(t)(Φf ⊗ PBBTP )ς(t)−

2ω

N+M∑

i=N+1

gi‖BTPςi‖
N∑

k=1

wik+

2γ
N+M∑

i=N+1

gi‖BTPςi‖
N∑

k=1

wik−

2α1ς
T(t)(GfL2 ⊗ PBBTP )s(t) =

ςT(t)(Gf ⊗ (PA+ATP ))ς(t)−
α2ς

T(t)(Φf ⊗ PBBTP )ς(t)−

2(ω − γ)
N+M∑

i=N+1

gi‖BTPςi‖
N∑

k=1

wik−

2α1ς
T(t)(GfL2 ⊗ PBBTP )s(t). (32)

Let α2 � λmax(Gf)
λmin(Φf)

and ω � γ. Then it can follow

from (32) that

V̇2(t) � ςT(t)(Gf ⊗ (PA+ATP − PBBTP ))ς(t)−
2α1ς

T(t)(GfL2 ⊗ PBBTP )s(t). (33)

When the desired formation tracking is accomplished
by the formation-leaders, one can get that lim

t→∞ψi(t) =

0. Let φ(t) = (
√
GfL2 ⊗ −α1PBB

TP )s(t). In light
of the Young’s inequality, one can obtain that

− 2α1ς
T(t)(GfL2 ⊗ PBBTP )s(t) =

2ςT(t)(
√
Gf ⊗ IM )φ(t) �

(1 − a)ςT(t)(Gf ⊗ IM )ς(t) +
1

1 − a
‖φ(t)‖2, (34)

where a is a positive constant satisfying 0 < a < 1. It
follows from Eqs. (33) and (34) that

V̇2(t) � ςT(t)(Gf ⊗ (PA+ATP − PBBTP+

(1 − a)IM ))ς(t) +
1

1 − a
‖φ(t)‖2 �

− aςT(t)(Gf ⊗ IM )ς(t) +
1

1 − a
‖φ(t)‖2 �

− a

λmax(P )
V2 +

1
1 − a

‖φ(t)‖2. (35)

Note that ‖φ(t)‖2 is bounded and a positive constant
a can be designed to be arbitrarily small to ensure that

1
1 − a

‖φ(t)‖2 is small enough. Therefore, the Lyapunov

function V2(t) is uniformly ultimately bounded stable.
And the UAV swarm system (3) can achieve the con-
tainment control under the control protocol (9) based
on Definition 2.

Based on the above analyses, since ψi(t) is asymp-
totically stable and ςi(t) is ultimately bounded sta-
ble, the UAV swarm system can accomplish formation-
containment tracking by using the control protocols (8)
and (9) based on Definition 3. This completes the proof
of the Theorem 1.

3 Numerical Simulation

A multi-UAV system with ten UAVs is considered,
where the tracking-leader is denoted by i = 0, the
formation-leaders are labeled by i = 1, 2, · · · , 5, and
the followers are represented by i = 6, 7, · · · , 9. The
formation-leaders are required to accomplish a de-
sired time-varying formation configuration and track
the state trajectory of the tracking-leader simultane-
ously, while the followers need to converge to the con-
vex hull formed by the formation-leaders in the XY
plane. The switching topologies of the multi-UAV sys-
tem are shown in Fig. 1. This paper supposes that
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Fig. 1 Switching topologies. (a) Q1; (b) Q2; (c) Q3.

the weight of the switching topologies is 0 or 1. Ad-
ditionally, the interaction topology switching signal is
displayed in Fig. 2. It is aperiodic. When σ(t) = 1,
the interaction topology is represented by Q1; when
σ(t) = 2, the interaction topology is represented by Q2;
when σ(t) = 3, the interaction topology is represented
by Q3.

0 6 12

σ(
t)

18 24 30
t/s

1

2

3

Fig. 2 Interaction topology switching signal.

The dynamics of the UAVs is denoted by
(1) and (2), where xi(t) = (xiX(t),xiY (t))T,
vi(t) = (viX(t),viY (t))T, ui(t) = (uiX(t),uiY (t))T,
ψi(t) = (ψxiX (t),ψxiY (t),ψviX (t),ψviY (t))T, ςi(t) =
(ςxiX (t), ςxiY (t), ςviX (t), ςviY (t))T (i = 0, 1, · · · , 9).
ψxiX (t) = ξxiX (t) − hxiX (t) − ξx0X (t), ψxiY (t) =
ξxiY (t)−hxiY (t)−ξx0Y (t), ψviX (t) = ξviX (t)−hviX (t)−
ξv0X (t), ψviY (t) = ξviY (t)−hviY (t)−ξv0Y (t), ςxiX (t) =
(L3 ⊗ In)(ξxiX (t) − (−L−1

3 L2 ⊗ In)ξx0X (t)), ςxiY (t) =
(L3 ⊗ In)(ξxiY (t) − (−L−1

3 L2 ⊗ In)ξx0Y (t)), ςviX (t) =
(L3 ⊗ In)(ξviX (t) − (−L−1

3 L2 ⊗ In)ξv0X (t)), ςviY (t) =
(L3 ⊗ In)(ξviY (t) − (−L−1

3 L2 ⊗ In)ξv0Y (t)). The un-
known control input of the tracking-leader is described
by u0(t) = (1 + cos(t), 1 + sin(t)), which can satisfy
Assumption 3. The desired time-varying formation for
the formation-leaders is as follows:

hi(t) =

⎡

⎢⎢⎢⎢⎣

60 cos(t + 2(i − 1)π/5)

60 sin(t + 2(i − 1)π/5)

−60 sin(t + 2(i − 1)π/5)

60 cos(t + 2(i − 1)π/5)

⎤

⎥⎥⎥⎥⎦
,

i = 1, 2, · · · , 5.

If the desired formation hi(t) is realized, then the tra-
jectories of the five formation-leaders will form a regu-
lar pentagon and rotate around the tracking-leader. By
solving the inequality (10), it can get positive matrix

P =

[
1.732 1I2×2 I2×2

I2×2 1.732 1I2×2

]
. Based on Lemma

3, the positive definite matrices DL, ΞL, Φf , and Gf

can be constructed, then one can obtain α1 � 0.102 2
and α2 � 2.074 8, so choose α1 = 5 and α2 = 10.
The positive constants η and ω are set to be η = 5
and ω = 5. The initial states of the tracking-leader
are x0(t) = (1, 1.2)T, v0(t) = (0, 1)T. Also, the
initial states of the formation-leaders are set to be
x1(t) = (2.0, 1.6)T, v1(t) = (1, 2)T, x2(t) = (1.3, 2.5)T,
v2(t) = (0.5, 2.0)T, x3(t) = (1, 1)T, v3(t) = (0, 1)T,
x4(t) = (1.5, 1.0)T, v4(t) = (1.0, 0.8)T, x5(t) = (2, 1)T,
v5(t) = (0, 2)T. The initial states of the followers
are described by x6(t) = (5, 0)T, v6(t) = (2.6, 0.8)T,
x7(t) = (1.5, 0.5)T, v7(t) = (0.6, 0.6)T, x8(t) =
(0.2, 0.5)T, v8(t) = (0.8, 1.6)T, x9(t) = (1.2, 1.5)T,
v9(t) = (1.8, 1.6)T.

The time-varying formation tracking errorsψi(t) and
the containment errors of ζi(t) in X and Y directions
are given in Figs. 3 and 4, respectively. From these
two figures, it can be seen that the formation track-
ing errors are asymptotically stable and the contain-
ment errors are uniformly ultimately bounded stable.
Therefore, one can obtain that the UAV swarm system
(3) can achieve the time-varying formation-containment
tracking performance. The effectiveness of the control
method in this paper is validated.

Figures 5 and 6 show the position and velocity snap-
shots of the multi-UAV systems at different instants
t = 0, 10, 11.57, 13.14, 14.71, 16.28, 17.85, 19.43, 21,
22.57 s. As can be seen from the figure, it is periodic,
and it has two cycles.

From Figs. 5 and 6, one can see that the formation-
leaders realize a pentagon shape while tracking the tra-
jectory generated by the tracking-leader. At the ini-
tial time t = 0, the agents are randomly distributed in
the space. The formation-leaders begin to form a con-
vex envelope after 1 s. At t = 10 s, the followers enter
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Fig. 3 Curves of the formation tracking errors. (a) Position error ψxiX in the X direction; (b) Position error ψxiY in the
Y direction; (c) Velocity error ψviX in the X direction; (d) Velocity error ψviY in the Y direction.
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Fig. 5 Position snapshots for the UAVs.

into the convex envelope generated by the formation-
leaders. Different snapshots at t = 11.57, 13.14, 16.28,
17.85, 19.43, 21, 22.57 s show that the formation-leaders
have formed a pentagon shape, the center of which is
the tracking-leader, and the followers maintain in the

pentagon spanned by the formation-leaders. One can
also see that the formation-leaders rotate around the
tracking-leader, which implies that the achieved forma-
tion is time-varying. Since the formation tracking error
tends to zero in finite time, the accomplished formation
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Fig. 6 Velocity snapshots for the UAVs.

configuration is the predefined formation shape. There-
fore, under the protocols (8) and (9), the multi-UAV
systems can realize finite-time formation-containment
tracking.

4 Conclusion

The time-varying formation-containment tracking
problem for multi-UAV systems with switching
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topologies and unknown control input is investigated.
Based on the consensus control theory, the designed
control protocol only depends on the part of the infor-
mation of neighboring UAVs. Moreover, the limitation
of knowing the boundary information of the tracking-
leader’s control input is removed and the high gain is
avoided. Based on the Lyapunov stability theory, the
stability of the multi-UAV systems and the effective-
ness of the control protocol are proved. The formation-
leaders can accomplish the desired time-varying forma-
tion and track the trajectory of the tracking-leader, and
the states of followers can converge to the convex hull
spanned by those of the formation-leaders. An interest-
ing topic for future research is to deal with the fault-
tolerant time-varying formation-containment tracking
control problems for multi-UAV systems with switch-
ing topologies and actuator faults.
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