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Abstract: This paper describes a speaker-attributed automatic speech recognition (SA-ASR) system submitted
to the multi-channel multi-party meeting transcription challenge, which aims to address the “who spoke what”
problem. We align the serialized output training-based multi-speaker ASR hypotheses and speaker diarization
(SD) results to obtain speaker-attributed transcriptions. We use a pre-trained multi-frame cross-channel attention
(MFCCA) model as the ASR module. We build a cascade system which includes a pre-trained speaker overlap-
aware neural diarization and target-speaker voice activity detection model as the SD module. Decoding and
alignment strategies are further used to improve the SA-ASR performance. Our proposed system outperforms the
baseline with a relative improvement of 40.3% in terms of concatenated minimum-permutation character error
rate on the AliMeeting dataset, which ranks top-3 on the fixed sub-track.
Keywords: multi-channel multi-party meeting transcription, speaker-attributed automatic speech recognition
(SA-ASR), serialized output training, speaker diarization, concatenated minimum-permutation character error
rate
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0 Introduction

Speaker-attributed automatic speech recognition
(SA-ASR) is dedicated to answering the question “who
spoke what” in multi-party meeting scenarios[1]. It is
expected by SA-ASR to transcribe the recorded speech
signal, which might contain multiple speakers with
overlapping segments, as well as to assign the speaker
labels to each recognized word with an unknown num-
ber of speakers. Compared to the independent multi-
speaker ASR[2] and speaker diarization (SD), SA-ASR
is more natural to be applied in real-world multi-
speaker environments[3]. Permutation invariant train-
ing (PIT) is a typical method for the end-to-end SA-
ASR system[4]. However, the maximum number of
speakers that the model can handle is constrained by
the number of decoders. Besides, duplicated hypothe-
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ses in the different outputs might occur, as the outputs
are independent in PIT.

In order to overcome these drawbacks, serialized out-
put training (SOT) was proposed in Ref. [5], which
introduces a special symbol to indicate the speaker
change, allowing SOT-based models to have no limita-
tions on the maximum number of speakers and avoid-
ing the duplicated hypotheses. SOT has been success-
fully applied to multi-speaker ASR tasks in multi-party
scenarios[6-7]. In Ref. [8], frame-level diarization with
serialized output training (FD-SOT) which combines
the SOT-based ASR and frame-level SD, was proposed
by using the aligned timestamps to obtain speaker-
attributed transcriptions. The FD-SOT method forms
the basis of the proposed system, where we further in-
vestigate the impact of the involved multi-speaker ASR
and diarization models as well as the post-processing
step in this work.

To advance the current state-of-the-art in multi-
talker ASR, the multi-channel multi-party meet-
ing transcription (M2MeT2.0) challenge proposes a
speaker-attributed ASR task, comprising two sub-
tracks: fixed and open training conditions. The focus of
this work is on the former sub-track, where participants
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are required to use only the fixed-constrained data
(i.e., AliMeeting[6], AISHELL-4[9] and CN-Celeb[10])
for system development. The usage of any additional
data is strictly prohibited. However, participants can
use open-source pre-trained models from third-party
sources, such as Hugging Face and ModelScope, pro-
vided that the utilized models have to be clearly ex-
plained. Furthermore, a new test2023 set comprising
around 10 hours of meeting data is used for scoring
and ranking in the challenge. Near-field audio, tran-
scriptions and oracle timestamps of this test set are
not given, so there is no oracle speaker profile for the
test2023 dataset.

In order to improve the transcription performance, in
this work we employ a pre-trained multi-frame cross-
channel attention (MFCCA) model 1○ based on SOT,
to improve the performance of the multi-speaker ASR.
For SD, we train a target-speaker voice activity de-
tection (TS-VAD) model[11] to cope with the issue of
unknown speaker numbers and apply post-processing
techniques in the decoding stage. We further employ
a pre-trained speaker overlap-aware neural diarization
(SOND) model 2○ to obtain initial diarization results
prior to iterating the TS-VAD model to achieve better
diarization solutions[12]. The transcriptions obtained
by multi-speaker ASR decoding are aligned with the

diarization results based on timestamps. Experimental
results show that the proposed system can achieve a
minimum-permutation character error rate (cpCER) of
24.82% on the test2023 dataset of the fixed sub-track.
The achieved cpCER ranks top-3 on the fixed sub-track
of this M2MeT2.0 challenge.

The rest of this paper is organized as follows. Sec-
tion 1 presents the detailed description of the submitted
system. Section 2 introduces the experimental setup,
followed by results in Section 3. Finally, Section 4 con-
cludes this work.

1 System Description

Figure 1 illustrates the overall submitted SA-ASR
system for the fixed sub-track of the M2MeT2.0 chal-
lenge from our team. Proposed SA-ASR system is
based on the combination of SD results and SOT-based
ASR transcriptions via the alignment of timestamps,
which is referred to as FD-SOT. We utilize a pre-trained
MFCCA model as the recipe for multi-channel multi-
talker ASR. As for the SD module, a cascade pipeline
is built, which is composed of clustering-based SD, the
pre-trained SOND model, a TS-VAD model, and a
post-processing strategy. Next, we will explain each
component in detail.
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Fig. 1 Proposed multi-channel SA-ASR system for M2MeT2.0 challenge, which includes the MFCCA-based ASR, SOND
and TS-VAD-based SD, and the alignment-based decoding components.

1.1 SOT
In order to guide the reader, we first introduce the

SOT method[4] in this section. The SOT technique is
able to overcome the limitation of the maximum num-
ber of speakers by modeling the dependencies between
different speaker output sequences in an efficient and
straightforward style[5]. During training, in order to

1○https://www.modelscope.cn/models/NPU-
ASLP/speech mfcca asr-zh-cn-16k-alimeeting-vocab4950

2○https://www.modelscope.cn/models/damo/speech
diarization sond-zh-cn-alimeeting-16k-n16k4-pytorch

recognize multiple utterances from different speakers,
the SOT serializes the recognition results of different
speakers into a long sequence, where a special token
〈sc〉 is inserted as a delimiter between different sen-
tences to concatenate the transcriptions of different
utterances. Note that the SOT also sorts the refer-
ence labels according to their start times, which means
“first-in, first-out” (FIFO). The experiments show that
the FIFO-based SOT scheme achieves a better CER
than the PIT, which depends on the calculations of
all permutations[5]. Therefore, the SOT is used as the
training strategy in the multi-speaker ASR module of
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our proposed system.
1.2 FD-SOT Framework

By integrating the multi-speaker hypotheses of SOT-
based ASR model and the SD results, we propose to
adopt FD-SOT system[8] as our basic framework, which
aims to obtain transcriptions with speaker attributes by
aligning the timestamps. First, based on the output of
SD, the number of utterances is estimated using audio
sentence segmentation, denoted as a. Let the number
of speech segments in the SOT-based ASR output be
denoted as b. In the case a = b, the alignment is per-
formed directly based on the sequential order of the
segments. In the case a > b, we discard the a − b seg-
ments with the shortest durations from the TS-VAD
output and then proceed with alignment. Conversely,
in the case a < b, we discard the b − a shortest tran-
scription texts from ASR model and align the remain-
ing segments. Finally, the speakers from SD and the
transcriptions from SOT-based ASR are matched in a
chronological order[13]. The benefit of this framework
is that it enables a comprehensive and synchronized au-
dio representation with both speaker identification and
speech content information being taken into account.
1.3 MFCCA Model

In the proposed FD-SOT system, the multi-speaker
ASR module is specifically a pre-trained MFCCA
model[14]. For multi-channel ASR, the previously pro-
posed cross-channel attention mechanisms have some
problems, such as limited ability to extract fine-grained
channel information[15] or only considering channel in-
formation for the current time step[16]. To overcome
these limitations, we use the MFCCA-based conformer
model for our SOT-based ASR system.

MFCCA effectively incorporates the channel context
between adjacent frames to improve the modeling ca-
pacity for both frame-level and channel-level contextual
information, e.g., see Fig. 2. The ith head of MFCCA
is calculated as follows:
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i + (bq

i )
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Ki = X̄ccW
k
i + (bk
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where, Qi, Ki and Vi denotes the query, key and value
matrices for the ith head; Hi is the scaled dot-produce
attention which is applied to the query, key and value;
W ∗ and b∗ (∗ = q, k, v) are learnable parameters; T ,
C and D stand for time, channel and feature dimen-
sions, respectively; F is the number of local context
frames to be concatenated at each time step. A sin-
gle channel feature input is X̄, so a C-channel input
can be defined as X̄ = (X̄0, X̄1, · · · , X̄C−1). X̄cc =
(X̄0

cc, X̄
1
cc, · · · , X̄T

cc), where X̄t
cc (t = 1, 2, · · · , T ) is the

concatenation of the context frames at time step t, given
by X̄t
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Fig. 2 Structure of the MFCCA procedure.

The MFCCA-based ASR model follows the typi-
cal conformer structure, including the MFCCA, multi-
headed self-attention (MHSA), convolution (CONV)
and feed forward network (FFN) modules. The MFCCA
module takes multi-channel feature information as in-
put and concatenates the channel information from sev-
eral preceding and subsequent frames. The number of
the concatenated frames F at each time step is a pa-
rameter which can balance the model performance and
computational cost[14]. To better integrate the high-
dimensional representations from the encoder output
and reduce the potential loss of channel-specific infor-
mation caused by directly reducing the channel dimen-
sions, multi-layer convolution module is employed to
gradually decrease the number of channels. Considering
the number of channels and microphone array geome-
try, the MFCCA-based ASR model employs a channel
masking strategy[14], where the multi-channel inputs
are randomly masked to improve the model robustness.
1.4 Speaker Diarization

We employ the clustering-based SD to resolve the
initial results. As for the speaker profile preparation
phase, we first utilize a pre-trained x-vector speaker
verification model 3○ on speech segments with a fixed
window length and window shift to extract speaker
embeddings[12]. The speaker verification model consists
of a ResNet34 backbone network for frame-level speaker
feature extraction, global statistic pooling and multi-
ple fully connected layers. Subsequently, spectral clus-
tering is then utilized to classify the extracted embed-
ding vectors, and the embeddings within the same clus-
ter are averaged to obtain the profile of each speaker.
As clustering-based SD techniques are unable to han-
dle overlapping speech and do not directly minimize
speaker identification errors, hybrid systems were pro-
posed to combine clustering algorithms with neural
network-based SD models, such as the typical TS-VAD
model[17] and SOND model[12]. Likewise, we then
consider to use the speaker profiles generated by the
clustering-based SD model and speech features (e.g.,

3○https://modelscope.cn/models/damo/speech xvector
sv-zh-cn-cnceleb-16k-spk3465-pytorch
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MFCC and Fbank) to predict the activity probability
of each speaker in this work.

The SOND model uses a power-set encoding
approach[12] to model SD as a single-label classifica-
tion (SLC) task, which consists of a speech encoder,
speaker encoder, context-dependent scorer, context-
independent scorer and a speaker combination network
for predicting power-set encodings. In SLC, different
combinations of speakers are represented by unique
power-set encodings, and the prediction of these en-
codings is used to explicitly model the inter-speaker
correlations and overlapping speech. Hence, the SOND
model allows for a better correlation between speakers
as well as explicitly modeling overlapping speech. In
the proposed cascade SD system, the SOND model is
thus used as the first-stage diarization component prior
to the TS-VAD model, such that the inter-speaker cor-
relations and an explicit modeling of overlapping speech
are both incorporated.

We then employ the TS-VAD model 4○ to tackle the
unknown number of speakers[11]. The TS-VAD mod-
ule in the SD system performs individual detection
of speech activity for each speaker, implicitly address-
ing the issue of speech overlaps. The TS-VAD model
uses multi-channel information. It capitalizes on results
from multiple channels (8 channels are treated as 8 sys-
tems), which are then fused via DOVER-Lap[11]. Con-
sidering that the number of speakers is varying[18], the
number of output nodes M is selected as the maximum
number of speakers in any recording in the training set.
In our system, the number of output nodes M is empir-
ically set to be 4. Based on the oracle profiles during
training and the clustering-based diarization during de-
coding, the number of existing speakers in each speech
segment is estimated, say M̂ . Similarly to Ref. [18], we
can then perform:

(1) If M̂ = M , the trained TS-VAD model can be
directly applied to the recordings.

(2) If M̂ > M , M speakers who have the longest non-
overlapping speaking duration are chosen from M̂ in the
initial diarization output, and the remaining speakers
are discarded.

(3) If M̂ < M , M̂ output nodes are assigned to the
“test” speakers, while M − M̂ nodes are assigned to
dummy speakers chosen randomly from the training set.
These dummy speakers are abandoned when generating
the final diarization output.

4○The TS-VAD model mainly includes a speaker detection
component comprising a two-layer bidirectional LSTM with
projection (BLSTMP) splices acoustic features which are
extracted by 4 convolutional layers from raw Fbanks along
with the i-vectors, and produces M spliced outputs. These
outputs are then passed through a one-layer BLSTMP, to
produce M 2-class outputs corresponding to the speech and
silence probabilities.

As such, the number of speakers in the input can be
fixed during the training and decoding steps.
1.5 Decoding Procedure

The decoding process can be summarized as follow-
ing steps. First, the long waveform is segmented into
speech segments by the VAD provided by the organizer,
and then we send the x-vectors and speech segments
to the SOND model to produce more reliable diariza-
tion results. In order to achieve a better performance,
we regenerate more accurate speaker embeddings us-
ing single-speaker speech segments from diarization and
send them to the TS-VAD model for 3 additional iter-
ations to obtain the final diarization results. Finally,
the short-duration diarization utterances are removed
before being integrated with the SOT-based ASR hy-
potheses for refinement. The effectiveness of such oper-
ations for post-processing will be analyzed in Section 3.

2 Experimental Setup

2.1 Data Preparation
ASR The pre-trained MFCCA-based multi-

channel multi-talker ASR model is trained on
AliMeeting, AISHELL-4, and Ali-simu. The AliMeet-
ing dataset is a challenging Mandarin dataset, which
consists of 104.75 h for training (Train), 4 h for
evaluation (Eval), and 10 h as test set (Test). Each
session was recorded by an 8-channel annular micro-
phone array (Ali-far) and a single-channel headset
microphone (Ali-near), lasting 15 to 30 min with 2 to 4
speakers. AISHELL-4 is also a Mandarin speech corpus
recorded by an 8-channel annular microphone array,
but each session contains 4 to 8 speakers. Ali-simu is a
simulated training dataset using Ali-near and consists
of 600 h recordings. Each utterance covers 2 to 4
speakers with an overlapping ratio ranging from 15%
to 40%.

SOND The speaker embedding extractor of SOND
model is pre-trained on the CN-Celeb corpus, which
is a sizable speaker recognition dataset. Volume am-
plification, tempo perturbation, noise addition (from
the MUSAN dataset[19]), and reverberation simulation
are performed to augment the training samples. After
pre-training, the embedding extractor is fine-tuned on
AliMeeting. The SOND model is first pre-trained with
a simulated dataset created from AliMeeting and then
fine-tuned on real segments.

TS-VAD Our TS-VAD model is trained on
AliMeeting Train RAW, AliMeeting Train WPE, CN-
Celeb simu and AISHELL-4. AliMeeting Train RAW
contains real meeting data from Ali-far. Instead of
directly employing the manual label from the tran-
scription as the final training label, we use the force
alignment technique, which ensures more precise frame-
level training targets and eliminates the silence of
manual label segments brought by small pauses in
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the speakers. We obtain targets by a Gaussian mix-
ture model (GMM) with tri3 (LDA+MLLT) alignment.
AliMeeting Train WPE is a dereverberated version of
Ali-far by utilizing the WPE[20] acoustic reflections al-
gorithm. Also, the force alignment targets are taken as
training labels therein. CN-Celeb simu is a simulated
data from CN-Celeb. In each session, 2 to 4 speakers
from CN-Celeb are randomly selected and their sen-
tences are combined at a 0—40% overlapping ratio.
Then we add simulated reverberation and noise from
MUSAN for data augmentation. Reliable training la-
bels are obtained by the VAD module. For AISHELL-4,
we directly use the given targets for training, since it
does not provide near-field data or force alignment on
far-field data (i.e., resulting in unreliable targets). Ta-
ble 1 summarizes the details of all those training data
used in our system. Notice that the ASR and SOND
models are existing pre-trained models, but the TS-
VAD is the model we trained using the data in Table 1.

Table 1 Modules and data summary of the pro-
posed SA-ASR system

Sub-system
Pre-trained

model
Data

ASR
√

AliMeeting

AISHELL-4

Ali-simu

SOND
√

CN-Celeb

AliMeeting

(with simulated data)

TS-VAD × AliMeeting Train RAW/WPE

CN-Celeb simu

AISHELL-4

Implementation Our SA-ASR system is imple-
mented using PyTorch and the experiments are con-
ducted using the FunASR toolkit. During the training
phase of the TS-VAD model, each session is segmented
into short segments with a window length of 8 s and a
window shift of 6 s. Mixup[21] is performed within each
session. The Adam optimizer[22] is used to update the
model parameters with a learning rate of 0.000 1. The
TS-VAD model is trained using 8 GeForce RTX3090
GPUs.

3 Experimental Results

Table 2 shows the ASR performance on the AliMeet-
ing evaluation set in terms of speaker independent-
character error rate (SI-CER)[8]. As the proposed
SA-ASR system depends on the pre-trained MFCCA
model, we compare the ASR performance under
different decoding strategies. The integration of a
transformer-based language model (LM) in the decod-
ing phase for the pre-trained MFCCA model can lead

to a certain degree of performance improvement. It is
clear that setting the beam size to 20 outperforms the
case when the beam size is 10. Therefore, we adopt the
MFCCA model with a beam size of 20 in combination
with the LM during decoding in the sequel. Compared
to the ASR module in the baseline FD-SOT[8], the pro-
posed approach can achieve a relative reduction of up
to 45.3% in SI-CER.

Table 2 SI-CER performance comparison on the
AliMeeting Eval set using different decod-
ing processes

Decoding configuration
SI-CER/%

Beam size LM

10 × 16.51

10
√

16.30

20 × 16.47

20
√

16.25

The comparison of diarization results is shown in Ta-
ble 3. We use the oracle speaker profiles as inputs to the
diarization model. By employing our SOND+TS-VAD
system, it is clear that a noticeable reduction in the
diarization error rate (DER)[23] can be achieved com-
pared to using only the SOND model as the diariza-
tion component. In the case of using speaker embed-
dings generated by spectral clustering as inputs to the
diarization model, it can be observed that the DER
obtained from the TS-VAD model is significantly bet-
ter than that using only the SOND model. We also
evaluate the diarization results obtained by using our
SOND+TS-VAD system, leading to a further reduction
in the DER compared to the cluster+TS-VAD model.
Compared to the SOND model, SOND+TS-VAD can
decrease the DER from 16.78% to 11.06%. As a re-
sult, we see that the TS-VAD contributes more to SD
in this context. For completeness, we additionally com-
pare the cascade choice of TS-VAD+SOND, it is clear
that the TS-VAD+SOND performs much worse than
SOND+TS-VAD, implying the importance of the cas-
cading rule. Therefore, we will choose SOND+TS-VAD
as the SD module in the sequel.

Table 3 DER and cpCER performance on the Al-
imeeting Eval set using different diariza-
tion systems

Diarization system DER/% cpCER/%

Oracle+SOND 14.98 42.74

Oracle+SOND+TS-VAD 9.60 38.56

Cluster+SOND 16.78 43.77

Cluster+TS-VAD 12.68 42.65

Cluster+SOND+TS-VAD 11.06 39.77

Cluster+TS-VAD+SOND 18.90 46.66
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We also demonstrate the SA-ASR performance with
different diarization systems in Table 3. It can be seen
that the cpCER is closely related to the diarization per-
formance. The TS-VAD model is better than the SOND
when no short-duration diarization results are deleted.
In the case of using spectral clustering, the proposed
combination of SOND+TS-VAD not only obtains the
lowest DER, but also leads to the best ASR accuracy.

As in the proposed FD-SOT system, the transcrip-
tions obtained from the multi-speaker ASR model have
to be aligned with the timestamps of the SD results. We
found that some interfering speech might be recognized
by analyzing the decoding results when target-speaker
speech duration is too short, resulting in a lot of inser-
tion errors. Compared with the insertion errors caused
by oracle speaker labels that cover all speaker’s speech,
there are relatively fewer deletion errors resulting from

the SD results (i.e., ignoring short speaker utterances).
Based on this, we further show the impact of minimum
time 5○ of diarization utterances in Table 4, where the
cpCER results of different diarization systems on the
AliMeeting Eval set are included. When the minimum
time is greater than 0 s, the SOND model performs bet-
ter than the TS-VAD. The combination of SOND and
TS-VAD outperforms the individual utilization of these
two models for almost all values of minimum time. It is
clear that the SOND+TS-VAD system performs better
than the TS-VAD+SOND in most cases. Furthermore,
we can see that all the models achieve the best results
around a rough minimum time of 1.3 s. For different
diarization systems, the post-processing strategy can
bring an absolute cpCER reduction ranging from 9.06%
to 12.99% on the Eval set compared with the cases of
preserving all short speaker speech.

Table 4 Comparison of cpCER on the AliMeeting Eval using different diarization systems with the different
minimum time of diarization utterances

Diarization

system

cpCER/%

0 s 0.3 s 0.5 s 0.7 s 0.9 s 1.1 s 1.3 s 1.5 s

Oracle+SOND 42.74 38.05 35.68 33.75 32.23 30.99 29.75 30.06

Oracle+SOND+TS-VAD 38.56 37.95 35.65 33.28 30.86 29.00 28.91 29.27

Cluster+SOND 43.77 38.61 37.13 34.51 32.54 31.63 31.11 31.27

Cluster+TS-VAD 42.65 41.65 39.26 36.49 34.52 33.45 33.10 33.35

Cluster+SOND+TS-VAD 39.77 38.93 35.90 33.65 31.64 30.71 30.75 30.90

Cluster+TS-VAD+SOND 46.66 42.36 39.64 37.18 35.69 34.58 33.82 33.84

Table 5 shows the final results of our system on both
Eval and Test2023 datasets. We find that on Test2023

Table 5 Comparison of cpCER on the AliMeet-
ing Eval and Test2023 datasets based on
the different minimum time of diarization
utterances

System
Minimum

time/s

cpCER/%

Eval Test2023

Baseline — 53.76 41.55

Ours

0 39.77 26.50

0.5 35.90 24.88

0.6 34.77 24.86

0.7 33.65 24.82

0.8 32.37 25.08

1.1 30.71 —

5○The minimum time controls the amount of short speaker
durations. In experiments, we discard the diarization results
whose duration is smaller than the minimum time. The
minimum time of 0 s means that all diarization results are
preserved.

the performance first improves with an increase in the
duration but then decreases as we have explained in
Table 4. The best cpCER is roughly obtained when the
minimum time is around 0.7 s. More importantly, the
proposed system is far better than the official baseline
on both Eval and Test2023 sets.

4 Conclusion

In this work, we presented an improved FD-SOT sys-
tem, which was submitted to the SA-ASR fixed sub-
track of the M2Met2.0 challenge. The ASR component
utilizes a pre-trained MFCCA model, while the SD part
incorporates the SOND and TS-VAD models given the
unknown number of speakers. Decoding strategy for
SD and the post-processing technique for frame-level
alignment between the SOT-based ASR and diariza-
tion results were employed, and the corresponding effi-
cacy was shown experimentally. It was also shown that
in the context of multi-speaker ASR, the transcribing
accuracy is positively related to the diarization perfor-
mance. Therefore, it might be possible to improve the
SA-ASR performance from these two perspective. In
the future, we will dedicate to reducing the decoding
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complexity in order to fulfill real-time requirements.
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