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Abstract: To address fixed-time consensus problems of a class of leader-follower second-order nonlinear multi-
agent systems with uncertain external disturbances, the event-triggered fixed-time consensus protocol is proposed.
First, the virtual velocity is designed based on the backstepping control method to achieve the system consen-
sus and the bound on convergence time only depending on the system parameters. Second, an event-triggered
mechanism is presented to solve the problem of frequent communication between agents, and triggered condition
based on state information is given for each follower. It is available to save communication resources, and the
Zeno behaviors are excluded. Then, the delay and switching topologies of the system are also discussed. Next, the
system stabilization is analyzed by Lyapunov stability theory. Finally, simulation results demonstrate the validity
of the presented method.
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0 Introduction

Multi-agent systems (MASs) are the systems in which
a number of agents complete large and complex tasks
through limited local information exchange and coor-
dination. In the last few years, the consensus prob-
lems of MASs are investigated in formation of multiple
robots[1-2], track control of satellites[3-4] and distributed
sensor networks[5-6]. One of the important issues is how
to design an effective controller based on the informa-
tion exchange among the agents. Some first-order fixed-
time consensus results are obtained by researchers[7-8].
However, second-order and higher-order systems are
common in practice. Unlike the first-order MASs, the
consensus problems for second-order MASs are more
challenging as the consensus of position and velocity
are required simultaneously[9].

The convergence rate is a key performance index
to evaluate the MASs consensus protocol. Compared
with the control methods of traditional asymptotic con-
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vergence and finite-time convergence[10-11], the fixed-
time consensus algorithms are more effective for solving
the disadvantages of convergence time tending to infin-
ity and dependence on the initial value. In Refs. [12-
14], the consensus control algorithms are designed to
achieve the fixed-time convergence for second-order
MASs. The consensus problems of fixed-time and finite-
time are considered under the unified framework[15]; the
MASs converge in fixed-time and finite time by adjust-
ing parameters, separately. In Refs. [16-17], fixed-time
containment control for MASs is investigated, and the
sufficient condition of convergence is obtained by em-
ploying the sliding-mode control method. In addition,
the communication resources and computing power of
agents are limited. This motivated the study of event-
triggered mechanism to reduce the frequency of the con-
troller updates. In Refs. [18-20], both first-order and
second-order MASs under undirected topology are dis-
cussed. In Ref. [21], the fixed-time consensus problems
of second-order MASs with uncertain bounded distur-
bances are investigated. Moreover in Ref. [22], based on
the fixed-time consensus algorithm, the mechanisms of
self-triggered and team-triggered are designed to avoid
continuous communication. In Ref. [23], the problems
of fixed-time consensus under continuous communica-
tion and intermittent communication are studied.

On the other hand, since some factors are out of con-
trol such as imperfect data transmission and changing
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communication environment, the delay and switching
topologies are inevitable. Noticeably, it is meaningful
to investigated fixed-time consensus of MASs with the
delay and switching topologies. There are many re-
sults of consensus problems for first-order MASs with
delay[24]. In Refs. [25-26], the system with delay is con-
verted to a system without input delay by employing
an extension of the Artstein’s reducing transformation.
In Ref. [27], the fixed-time consensus tracking control
for second-order nonlinear MASs with delay is com-
pleted, and a sliding-mode controller is added in order
to eliminate chattering. The convergence problem for
high-order MASs with delay is transformed into Nash
equilibrium seeking problem in Ref. [28]. The fixed-
time convergence of nonlinear MASs with stochastically
switching topologies and time-varying topologies is re-
searched in Refs. [29-30]. In Refs. [31-32], the track-
ing control of second-order and high-order MASs with
time-varying communication topologies can be achieved
at fixed-time, respectively. In Ref. [33], the problem of
fixed-time fault-tolerant control is studied, and the con-
tinuous control action can be provided in both switch-
ing and fixed topologies by employing the sliding-mode
control.

In previous work, many results are obtained on the
problems of continuous trigger and disturbance. How-
ever, there are few conclusions that discuss the fixed-
time consensus of second-order MASs with delay and
switching topologies, and these problems are frequent
in practical applications. This paper is motivated by
these factors to design a consensus algorithm to solve
the problems. Inspired by the above discussion, event-
triggered fixed-time consensus algorithms for second-
order nonlinear MASs with delay and switching topolo-
gies are presented. Compared with fixed-time consen-
sus algorithms in Ref. [12], an event-triggered mecha-
nism is designed to save communication resources and
avoid Zeno behaviors, and the control parameters are
adjusted to reduce the threshold of the control input. In
addition, the external disturbances and nonlinear term
are also discussed. Motivated by Ref. [22], according
to the fixed-time consensus algorithms for first-order
MASs with delay and switching topologies, this paper
extends the results to second-order MASs. In the case
of switching topologies, all agents can connect arbitrar-
ily if there is at least one path between followers and
leader. Under the action of the controller, the veloc-
ity and position of all followers can reach agreement
with the leader in fixed-time and the setting time can
be obtained. In contrast to previous work, the control
protocol designed in this study is effective to reduce the
cost and improve the practicability of the MASs.

The main innovations can be summarized in two as-
pects. First, the event-triggered mechanism is used to
reduce the frequency of the controller updates. Second,
the fixed-time consensus problems of the second-order

MASs with delay and switching topologies are solved.
The structure of this paper is given as follows. Some

necessary basic knowledge of graph theory and system
dynamic model is provided in Section 1. The event-
triggered fixed-time consensus algorithms for second-
order MASs with delay and switching topologies are
given in Section 2. Finally, a simulation is presented
and the result proves the availability of the controller
in Section 3.

1 Problem Statement

1.1 Graph Theory
Suppose a system which contains N + 1 agents. The

communication topology is described by a digraph G =
(V,E,A), where V = {1, 2, · · · , N} is a finite nonempty
node set. The edge set is denoted as E = V × V
and the set of neighbours of the ith node is denoted
by Ni = {j : (i, j) ∈ E, j �= i}. If node i can de-
liver a message to node j, there exists an edge between
node i and node j, and the edge is described as (i, j).
In an undirected graph that satisfies (i, j) ∈ E and
(j, i) ∈ E for any i, j ∈ V , if the graph is directed, then
the above equation does not hold. The adjacency ma-
trix A = [aij ]N×N is used to represent the connection
relationship between the agent i and their neighbours.
Assume that aii = 0 for all i ∈ V . If there exists a
path from i to j, then aij > 0; otherwise, aij = 0. The
Laplacian matrix L = [lij ]N×N of the graph is associ-

ated with the adjacency matrix A, where lii =
N∑

j=1

aij

and the non-diagonal elements are lij = −aij . Herein,
‖ ·‖ represents the induced 2-norm for matrices and the
Euclidean norm for vectors.

Consider there are N followers and 1 leader in the
MASs. The agent is leader, and the followers are de-
noted as 1, 2, · · · , N . The matrix BL ∈ RN×N =
B + L, where B = diag{b1, b2, · · · , bN} represents the
input matrix as being a diagonal matrix. If the infor-
mation from the leader can be received by the follower
i, then bi > 0; otherwise, bi = 0.

Lemma 1[34] If and only if the adjacency matrix of
graph G is irreducible, then G is strongly connected.

Lemma 2[35] Let L define as the Laplacian ma-
trix of graph G and it is a positive semidefinite ma-
trix. If graph G is undirected and connected, for any
x = (x1, x2, · · · , xN )T, the following equality xTLx =
1
2

N∑

j=1

aij(xi − xj)2, i = 1, 2, · · · , N holds. Here, 0 is

the unique smallest eigenvalue of L and none of the
other eigenvalues are negative. There are eigenvalues
0, λ2, · · · , λN satisfying 0 � λ2 � · · · � λN and 1 is
the associated eigenvector of 0 eigenvalue. If 1Tx = 0,
then xTLx � λ2x

Tx. Furthermore, it can be obtained
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that
N∑

i=1

(aij(xi − xj))2 = (L
1
2 x)L(L

1
2 x) � λ2x

TLx

and
∑N

i=1(aij(xi − xj))2 = (L
1
2 x)L(L

1
2 x) � 2λNV �

2λNV (0).
Lemma 3[36] If there exists a function V : Rn →

R+ ∪ {0} and it is continuous and radially unbounded,
some constants are denoted as a > 0, b > 0, 0 < v <
1 < w, such that:

(1) V (x) = 0 ↔ x = 0;
(2) For any x(t) that satisfies the inequality

V̇ (x(t)) � −aV v(x(t)) − bV w(x(t)),

then the global fixed-time stability is reached. One has

T (x0) � Tmax =
πθ

2
√
ab
,

where θ > 0, v = 1 − 1
θ

and w = 1 +
1
θ
. The MASs

consensus is reached in settling time T (x0), where x0

is the initial state.
Lemma 4[37] If there exists a set of constants

κ1, κ2, · · · , κN � 0, 0 < p. Then,

N∑

i=1

κp
i �

( N∑

i=1

κi

)p

, 0 < p � 1,

N∑

i=1

κp
i � N1−P

( N∑

i=1

κi

)p

, 0 < p � ∞.

1.2 System Model
There exist N followers and 1 leader in the system.

The node i is the representative of the agent in an undi-
rected graph, and the nonlinear dynamic functions of
the followers are given as follows:

ẋi(t) = vi(t)
v̇l(t) = ui(t) + fi(xi(t),vi(t), t)+

di(xi(t),vi(t), t)

⎫
⎪⎬

⎪⎭
, (1)

where, i = 1, 2, · · · , N represents the number of agents;
xi(t) ∈ Rn is the position and vi(t) ∈ Rn is the velocity
of the ith follower; ui(t) ∈ Rn is the input of the con-
troller, and uncertain disturbance and nonlinear term
of agent i are written as di(xi(t),vi(t), t) ∈ Rn and
fi(xi(t),vi(t), t) ∈ Rn respectively.

The dynamic of the leader is formulated as

ẋ0(t) = v0(t)
v̇0(t) = f0(x0(t),v0(t), t)

}
, (2)

where x0(t) is the position of leader and v0(t) ∈ Rn is
the corresponding velocity.

For convenience, some necessary definitions and as-
sumptions are presented.

Assumption 1 The ‖fi(xi(t),vi(t), t)‖ and
‖di(xi(t),vi(t), t)‖ in the system are bounded as

F and D such as ‖fi(xi(t),vi(t), t)‖ � F and
‖di(xi(t),vi(t), t)‖ � D.

Assumption 2 The topology graph G is undi-
rected and there is a spanning tree in graph G, i.e.,
BL is full rank.

Definition 1 For any initial value, the second-
order MASs (1) and (2) can achieve a fixed-time stabil-
ity if and only if the state of agent i satisfies

lim
t→T

‖xi(t) − x0(t)‖ = 0

lim
t→T

‖vi(t) − v0(t)‖ = 0

}
, (3)

i ∈ {1, 2, · · · , N},

where T is bounded, and there exists Tmax > 0 such
that T � Tmax is true.

Definition 2[36] If the system is Lyapunov stable
and there is a set time T (x0) > 0, such that the system
converges to the equilibrium point within T . Then, the
origin is said to be finite-time stable. Furthermore, for
any initial state x0 if ∃T > 0, such that T � Tmax, the
origin of the system is fixed-time stable.

Definition 3 For each agent, the controller is up-
dated if and only if inf{t− tik} > 0.

For i = 1, 2, · · · , N , define the error function as

x̄i(t) = xi(t) − x0(t)
v̄i(t) = vi(t) − v0(t)

}
. (4)

Remark 1 Assumption 1 is used for stability anal-
ysis in the following sections. Assumption 2 is used to
ensure the communication between agents and it is a
necessary condition for consensus of the MASs.

2 Main Results

The stability analysis of fixed-time consensus prob-
lems for MASs (1) and (2) is proposed in this part.
Then, the availability of the event-triggered mechanism
is also demonstrated. Finally, the consensus problems of
the system in the case of delay and switching topologies
are discussed as follows.
2.1 Event-Triggered Fixed-Time Consensus

Algorithm
The fixed-time consensus controller is designed as fol-

lows:
First, the virtual velocity v∗

i is designed as follows:

v∗
i (t) = − k1sig

( N∑

j=1

aijsig(xi(t) − xj(t))+

bisig(xi(t) − x0(t))
)γ1−

k2sig
( N∑

j=1

aij(xi(t) − xj(t))+

bi(xi(t) − x0(t))
)γ2

+ v0(t) =
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− k1sig
( N∑

j=0

aijsig(xi(t) − xj(t))
)γ1−

k2sig
( N∑

j=0

aij(xi(t) − xj(t))
)γ2

+ v0(t), (5)

where k1 and k2 are positive constants, 0 < γ1 < 1 and
γ2 > 1.

Remark 2 For the sig(x)a, there exist x ∈ R and
a > 0 such that sig(x)a = sign(x)|x|a. Additionally,

the derivative satisfies
d

dx
sig(x)a = a|x|a−1.

The tracking error is written as

ei(t) = vi(t) − v∗
i (t). (6)

From Eqs. (1), (5) and (6), one has

ėi(t) =ui(t) + fi(xi(t),vi(t), t)+
di(xi(t),vi(t), t)+

k1γ1

∣∣∣
N∑

j=0

aijsig(xi(t) − xj(t))
∣∣∣
γ1−1

×

[ N∑

j=0

aij(vi(t) − vj(t))
]
+

k2γ2

∣∣∣
N∑

j=0

aijsig(xi(t) − xj(t))
∣∣∣
γ2−1

×

[ N∑

j=0

aij(vi(t) − vj(t))
]
−

f0(x0(t),v0(t), t). (7)

In order to simplify the process, let fi(xi(t),vi(t), t),
f0(x0(t),v0(t), t), and di(xi(t),vi(t), t) be replaced by
fi f0, and di, respectively.

According to the above analysis, the event-triggered
fixed-time consensus protocol is proposed:

ui(t) = − k3sig(ei(tik))ρ1 − k4sig(ei(tik))ρ2−

k1γ1

∣∣∣
N∑

j=0

aijsig(xi(tik) − xj(tik))
∣∣∣
γ1−1

×

[ N∑

j=0

aij(vi(tik) − vj(tik))
]
−

k2γ2

∣∣∣
N∑

j=0

aij(xi(tik) − xj(tik))
∣∣∣
γ2−1

×

[ N∑

j=0

aij(vi(tik) − vj(tik))
]

+ f0 − fi, (8)

where tik is the latest triggered time of agent i, k3 and
k4 are positive constants, ρ1 ∈ (0, 1) and ρ2 > 1.

The measurement error is defined as

Ei(t) = k3sig(ei(tik))ρ1 + k4sig(ei(tik))ρ2+

k1γ1

∣∣∣
N∑

j=0

aijsig(xi(tik) − xj(tik))
∣∣∣
γ1−1

×

[ N∑

j=0

aij(vi(tik) − vj(tik))
]
+

k2γ2

∣∣∣
N∑

j=0

aij(xi(tik) − xj(tik))
∣∣∣
γ2−1

×

[ N∑

j=0

aij(vi(tik) − vj(tik))
]
−

f0 + fi − k3sig(ei(t))ρ1 − k4sig(ei(t))ρ2−

k1γ1

∣∣∣
N∑

j=0

aijsig(xi(t) − xj(t))
∣∣∣
γ1−1

×

[ N∑

j=0

aij(vi(t) − vj(t))
]
−

k2γ2

∣∣∣
N∑

j=0

aij(xi(t) − xj(t))
∣∣∣
γ2−1

×

[ N∑

j=0

aij(vi(t) − vj(t))
]

+ f0 − fi. (9)

Based on Eqs. (7), (8) and (9), ėi(t) can be expressed
as

ėi(t) = − Ei(t) − k3sig(ei(t))ρ1−
k4sig(ei(t))ρ2 + di. (10)

According to the measurement error Ei(t) and the
tracking error ei(t), event-triggered mechanism can be
designed as

Δi(Ei(t), ei(t), t) =

‖Ei‖ −
(
k421+ρ2N

1−ρ2
2 −D

)‖ei‖ρ2ωi, (11)

where ωi ∈ (0, 1) is the triggered parameter. Then the
next triggered moment of follower i can be obtained:

tik+1 = inf{t > tik, Δi(Ei(t), ei(t), t) � 0}. (12)

From Definition 3, the Zeno behavior of the system
can be avoided if and only if Eq. (12) is satisfied. The
system cannot be triggered infinitely many times in fi-
nite time.

Remark 3 Any follower i updates its controller
only at triggered moment ti0, t

i
1, · · · . In addition, the

leader has no event-triggered time.
Theorem 1 Suppose the undirected communica-

tion topology based on MASs (1) and (2) satisfies As-
sumptions 1 and 2. Under the action of controller (8)
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and event-triggered function (11), the consensus prob-
lem for MASs (1) and (2) can be addressed in a fixed-
time. For any initial condition, the convergence time T
can be obtained and the bound is as follows:

T =T1 + T2 � T1max + T2max =
2π

(ρ2 − ρ1)
√
k321+

ρ1+ρ2
2 k4N

1−ρ2
2 (1 − ωi)

+

2π

(γ2 − γ1)
√
k1(2λ2(BL))1+

γ1+γ2
2 k2N

1−γ2
2

. (13)

Proof The Lyapunov function of the system is cho-
sen as V (t) = V1(t) + V2(t).

(1) The first step is to make the true velocity vi

converge to the virtual velocity v∗
i based on the back-

stepping control method. The corresponding Lyapunov
function of this part is constructed by tracking error:

V1(t) =
1
2

N∑

i=1

e2
i (t). (14)

Take the derivative of the V1(t) and combine
Eqs. (8)—(10):

V̇1(t) =
N∑

i=1

ei(t)ėi(t) =

N∑

i=1

ei(t)(−Ei(t) − k3sig(ei(t))ρ1−

k4sig(ei(t))ρ2 + di) �
N∑

i=1

ei(t)(−Ei(t) − k3sig(ei(t))ρ1−

k4sig(ei(t))ρ2 +D) =

− k3

N∑

i=1

|ei(t)|ρ1+1 − k4

N∑

i=1

|ei(t)|ρ2+2−

−
N∑

i=1

|ei(t)|(Ei(t) −D) �

− k3

( N∑

i=1

e2
i (t)

) ρ1+1
2 − k4

( N∑

i=1

e2
i (t)

) ρ2+1
2

−
N∑

i=1

|ei(t)|(Ei(t) −D). (15)

In the above equation,

N∑

i=1

|ei(t)| (Ei(t) −D) � ‖ei(t)‖(‖Ei(t)‖ −D) =

‖ei(t)‖(‖Ei(t)‖ −D)

V1(t)
ρ2+1

2

V1(t)
ρ2+1

2 =

‖ei(t)‖(‖Ei(t)‖ −D)

2
ρ2+1

2 ‖ei(t)‖ρ2+1
= V1(t)

ρ2+1
2 =

‖ei(t)‖−ρ2(‖Ei(t)‖ −D)

2
ρ2+1

2

V1(t)
ρ2+1

2 . (16)

According to Lemma 4 and combine Eqs. (15) and
(16):

V̇1(t) � −k3

( N∑

i=1

e2
i (t)

) ρ1+1
2 − k4

( N∑

i=1

e2
i (t)

) ρ2+1
2 −

‖ei(t)‖−ρ2(‖Ei(t)‖ −D)

2
ρ2+1

2

V1(t)
ρ2+1

2 �

− k32
ρ1+1

2 V1(t)
ρ1+1

2 − k42
ρ2+1

2 N
1−ρ2

2 V1(t)
ρ2+1

2 +

‖ei(t)‖−ρ2(‖Ei(t)‖ +D)

2
ρ2+1

2

V1(t)
ρ2+1

2 . (17)

From Lemma 3, the event-triggered condition is de-
signed as

‖Ei‖ � (k421+ρ2N
1−ρ2

2 −D)‖ei‖ρ2ωi, (18)

which has

V̇1(t) � − k32
ρ1+1

2 V1(t)
ρ1+1

2 −
[
k42

ρ2+1
2 N

1−ρ2
2 −

k421+ρ2N
1−ρ2

2 ωi +D(1 − ωi)

2
ρ2+1

2

]
V1(t)

ρ2+1
2 =

− k32
ρ1+1

2 V1(t)
ρ1+1

2 −
[
k42

ρ2+1
2 N

1−ρ2
2 −

k421+ρ2N
1−ρ2

2 ωi

2
ρ2+1

2

− D(1 − ωi)

2
ρ2+1

2

]
V1(t)

ρ2+1
2 =

− k32
ρ1+1

2 V1(t)
ρ1+1

2 −
[
k42

ρ2+1
2 N

1−ρ2
2 (1−ωi)−

D(1 − ωi)

2
ρ2+1

2

]
V1(t)

ρ2+1
2 �

− k32
ρ1+1

2 V1(t)
ρ1+1

2 −
(
k42

ρ2+1
2 N

1−ρ2
2 −D

)
(1 − ωi)V1(t)

ρ2+1
2 . (19)

Let ρ1 = 1 − 1
θ
, ρ2 =

1
θ

+ 1, then θ =
4

ρ2 − ρ1
, and

the tracking time T1 can be obtained:

T1 �T1max =
2π

(ρ2 − ρ1)
√
k321+

ρ1+ρ2
2 k4N

1−ρ2
2 (1 − ωi)

. (20)

Within the fixed-time T1, the tracking error ei(t) con-
verges to 0 and the virtual velocity v∗

i (t) is tracked by
true velocity vi(t).
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(2) When ei(t) = 0, we have

vi(t) =v∗
i (t) =

− k1sig
( N∑

j=0

aijsig(xi(t) − xj(t))
)γ1−

k2sig
( N∑

j=0

aij(xi(t) − xj(t))
)γ2

+ v0(t). (21)

Consider the Lyapunov function in the second part
constructed by state error:

V2(t) =
1
2
x̄T

i (t)BLx̄i(t). (22)

According to Lemma 2 and take the derivative of
V2(t):

V̇2(t) = x̄T
i (t)BL ˙̄xi(t) =
N∑

i=1

N∑

j=0

aij(xi(t) − xj(t))v̄i(t) =

N∑

i=1

N∑

j=0

aij(xi(t) − xj(t))(vi(t) − v0(t)) =

N∑

i=1

N∑

j=0

aij(xi(t) − xj(t))×

[
− k1sig

( N∑

j=0

aijsig(xi(t) − xj(t))
)γ1−

k2sig
( N∑

j=0

aij(xi(t) − xj(t))
)γ2]

=

− k1

N∑

i=1

N∑

j=0

aij(xi(t) − xj(t))×

sig
( N∑

j=0

aij(xi(t) − xj(t))
)γ1−

k2

N∑

i=1

N∑

j=0

aij(xi(t) − xj(t))×

sig
( N∑

j=0

aij(xi(t) − xj(t))
)γ2

�

− k1

N∑

i=1

N∑

j=0

|aij(xi(t) − xj(t))|γ1+1 −

k2

N∑

i=1

N∑

j=0

|aij(xi(t) − xj(t))|γ2+1 =

− k1

N∑

i=1

N∑

j=0

∣∣[aij(xi(t) − xj(t))]2
∣∣

γ1+1
2 −

k2

N∑

i=1

N∑

j=0

∣∣[aij(xi(t) − xj(t))]2
∣∣

γ2+1
2 �

− k1(2λ2(BL))
γ1+1

2 V2(t)
γ1+1

2 −
k2N

1−γ2
2 (2λ2(BL))

γ2+1
2 V2(t)

γ2+1
2 , (23)

where λ2(BL) is the smallest non-zero eigenvalue of the
matrix BL. Additionally, T2 is expressed as

T2 �T2max =
2π

(γ2 − γ1)
√
k1(2λ2(BL))1+

γ1+γ2
2 k2N

1−γ2
2

. (24)

According to Lemma 3 and based on Eqs. (20) and
(24), the consensus problem for MASs (1) and (2) is
solved. In addition, convergence time T satisfies

T � 2π

(ρ2 − ρ1)
√
k321+

ρ1+ρ2
2 k4N

1−ρ2
2 (1 − ωi)

+

2π

(γ2 − γ1)
√
k1(2λ2(BL))1+

γ1+γ2
2 k2N

1−γ2
2

. (25)

(3) The analysis of global stability is necessary to
ensure that the agent state does not escape before the
true velocity is tracked to the virtual velocity.

When t ∈ [0, T1], one can get that v∗
i (t) and ei(t)

are bounded from Eqs. (5), (6) and (21). In addition,
vi(t) = v∗

i (t) + ei(t), so vi(t) is bounded. According
to the virtual velocity v∗

i (t) designed in Eq. (5) and the
dynamic functions of Eq. (1), we can obtain

ẋi(t) =vi(t) = v∗
i (t) + ei(t) =

ei(t) − k1sig
( N∑

j=0

aijsig(xi(t) − xj(t))
)γ1−

k2sig
( N∑

j=0

aij(xi(t) − xj(t))
)γ2

+ v0(t). (26)

Because ei(t) is bounded at t ∈ [0, T1], xi(t) is
bounded. According to Lemma 3 and Eq. (23), the
tracking of xi(t) can be completed at t ∈ [T1, T2]. The
proof is completed. �

Next, event-triggered mechanism is discussed with
the following event-triggered condition:

‖Ei‖ � (k421+ρ2N
1−ρ2

2 −D)‖ei‖ρ2ωi. (27)

The first trigger time is and e(0) = 0.
‖Ei‖
‖ei‖ρ2

gets

the maximum value (k421+ρ2N
1−ρ2

2 − D)ωi when the
MASs event-triggered condition (11) is violated. So
the minimum interval between events is determined

by the shortest time from
‖Ei‖
‖ei‖ρ2

= 0 to
‖Ei‖
‖ei‖ρ2

=

(k421+ρ2N
1−ρ2

2 −D)ωi.
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Theorem 2 For the MASs (1) and (2), the Zeno be-
haviours are avoided under the action of controller (8)
and event-triggered mechanism (11). The time-interval
τi is a strictly positive number and expressed as

τi =
(
k421+ρ2N

1−ρ2
2 +

D

N1−ρ2

)
ωi

c1(c2 + c3)
[
c2 + c3 +

(
k421+ρ2N

1−ρ2
2 +

D

N1−ρ2

)
ωi

] .

(28)

Proof Let η =
‖E‖
‖eρ2‖ . Combined with the mea-

surement error in Eq. (9),

z = k3sig(ei(t))ρ1 + k4sig(ei(t))ρ2+

k1γ1

∣∣∣∣∣∣

N∑

j=0

aijsig(xi(t) − xj(t))

∣∣∣∣∣∣

γ1−1

×

[ N∑

j=0

aij(vi(t) − vj(t))
]
+

k2γ2

∣∣∣∣∣∣

N∑

j=0

aij(xi(t) − xj(t))

∣∣∣∣∣∣

γ2−1

×

[ N∑

j=0

aij(vi(t) − vj(t))
]
. (29)

Take the derivative of the η and in every time period
[tik, t

i
k+1) there exists

η̇ =
d
dt

(ETE)
1
2

((eρ2)T(eρ2))
1
2

=

1
(eρ2)T(eρ2)

[
(ETE)−

1
2 (E)T(E)′((eρ2 )T(eρ2))

1
2−

((eρ2)T(eρ2))−
1
2 (eρ2)T(eρ2)′(ETE)

1
2
]

=

− (E)T(z)′

‖E‖‖eρ2‖ − (eρ2 )T(eρ2 )′

‖eρ2‖2

‖E‖
‖eρ2‖2

�

− ET(eρ2)′

‖E‖‖eρ2‖ − (eρ2 )T(eρ2 )′

‖eρ2‖2

‖E‖
‖eρ2‖2

=

−
(
1 +

‖E‖
‖eρ2‖

)(‖(eρ2)′‖
‖eρ2‖

)
�

− (1 + η)
ρ2‖e‖ρ2−1‖ė‖

‖eρ2‖ �

ρ2‖e‖ρ2−1(1 + η)
(
η +

k3sig(e)ρ1 +k4sig(e)ρ2 − d

‖eρ2‖
)

�

ρ2‖e‖ρ2−1(1 + η)
(
η +

k3‖e‖ρ1 + k4‖e‖ρ2 +D

‖eρ2‖
)

�

ρ2‖e‖ρ2−1(1 + η)×
(
η +

k3

N1−ρ2
‖e‖ρ1−ρ2 +

k4

N1−ρ2
+

D

‖eρ2‖
)
. (30)

According to Lemma 1, ‖e‖ =
√

eTe �
√

2V1 �√
2V1(0); then, it can be obtained:

η̇ � ρ2‖e‖ρ2−1(1 + η)×
[
η +

k3

N1−ρ2
(2V1(0))

ρ1−ρ2
2 +

D(2V0(0))
−ρ2

2 +
k4

N1−ρ2
+ 1

]
�

c1(c2 + c3 + η)2, (31)

where c1 = ρ2‖e‖ρ2−1, c2 =
k3

N1−ρ2
(2V1(0))

ρ1−ρ2
2 +

k4

N1−ρ2
and c3 = D(2V1(0))

−ρ2
2 + 1. Let

ψ̇i = c1(c2 + c3 + ψi)2, ψi(0, ψi
0) = ψi

0. (32)

Therefore, ηi(t) satisfies

ηi(t) � ψi(t, ψi
0), (33)

where ψi(t, ψi
0) is the solution of Eq. (32).

A solution can be obtained:

ψi(τi, 0) =
τic1(c2 + c3)2

1 − τic1(c2 + c3)
. (34)

According-to the event-triggered condition (11), we
obtain

‖E‖
‖ei‖ρ2

� (k421+ρ2N
1−ρ2

2 −D)ωi. (35)

Based on Lemma 4, one has

‖E‖
‖e‖ρ2

� 1
N1−ρ2

‖E‖
‖ei‖ρ2

�

k421+ρ2N
1−ρ2

2 ωi −Dωi
1

N1−ρ2
=

(
k421+ρ2N

1−ρ2
2 − D

N1−ρ2

)
ωi =

τic1(c2 + c3)2

1 − τic1(c2 + c3)
. (36)

Then, it can be obtained that the minimum triggered
interval is written as

τi =
(
k421+ρ2N

1−ρ2
2 − D

N1−ρ2

)
ωi

c1(c2 + c3)
[
c2 + c3 +

(
k421+ρ2N

1−ρ2
2 − D

N1−ρ2

)
ωi

] .

(37)

Then the minimum interval τi > 0. The proof is
completed. �
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2.2 Fixed-Time Consensus Problem with De-
lay and Switching Topologies

Due to problems such as defective data transmission
and processing after data reception, delay is frequent
in MASs and the stability of systems will be affected.
On the other hand, the communication between agents
cannot remain unchanged, and the new communication
connections are possible in practical applications. The
consensus problem of the MASs under delay and switch-
ing topologies is discussed as follows.
2.2.1 Event-Triggered Fixed-Time Consensus Algo-

rithm with Delay
For the MASs (1) and (2) with delay, the nonlinear

dynamic functions of followers are redefined as

˙̂xi(t) = v̂i(t)
˙̂vı(t) = ûi(t− hi) + fi(x̂i(t), v̂i(t), t)+

di(x̂i(t), v̂i(t), t)

⎫
⎪⎬

⎪⎭
, (38)

where hi is delay and hi > 0.
As mentioned above, the true velocity v̂i(t) is traced

to the virtual velocity v̂∗
i by backstepping design

method, and the virtual velocity is adjusted as

v̂∗
i (t) = − k1sig

( N∑

j=0

aijsig(x̂i(t) − x̂j(t))
)γ1−

k2sig
( N∑

j=0

aij(x̂i(t) − x̂j(t))
)γ2

+

v0(t) −
∫ t

t−hi

ûi(T )dT. (39)

The tracking error under the delay is expressed as

êi(t) = v̂i(t) − v̂∗
i (t). (40)

The controller ûi(t) is designed as

ûi(t) = − k3sig(êi(tik))ρ1 − k4sig(êi(tik))ρ2−

k1γ1

∣∣∣∣∣∣

N∑

j=0

aijsig(x̂i(tik) − x̂j(tik))

∣∣∣∣∣∣

γ1−1

×

[ N∑

j=0

aij(v̂i(tik) − v̂j(tik))
]
−

k2γ2

∣∣∣∣∣∣

N∑

j=0

aij(x̂i(tik) − x̂j(tik))

∣∣∣∣∣∣

γ2−1

×

[ N∑

j=0

aij(v̂i(tik) − v̂j(tik))
]

+ f0 − fi. (41)

According to the tracking error êi(t), the measure-
ment error Ei(t) is represented as Êi(t), and event-

triggered mechanism is designed as

Δi(Êi(t), êi(t), t) =

‖Êi‖ −
(
k421+ρ2N

1−ρ2
2 −D

)‖êi‖ρ2ωi. (42)

Taking the derivative of êi(t) and combining Eq. (9),
one can obtain

˙̂ei(t) = ˙̂vi(t) − ˙̂v∗
i (t) =

ûi(t− hi) + fi(t) + di(t)+

k1γ1

∣∣∣
N∑

j=0

aijsig(x̂i(t) − x̂j(t))
∣∣∣
γ1−1

×

[ N∑

j=0

aij(v̂i(t) − v̂j(t))
]
+

k2γ2 |(x̂i(t) − x̂j(t))|γ2−1
[ N∑

j=0

aij(v̂i(t) − v̂j(t))
]
−

f0(t) + ûi(t) − ûi(t− hi) =

− Êi(t) − k3sig(êi(t))ρ1 − k4sig(êi(t))ρ2 + di. (43)

Theorem 3 For the MAS (2) and Eq. (38), under
the controller (41) and based on virtual velocity de-
signed in Eq. (39), the fixed-time consensus with delay
is achieved and the Zeno behaviour can be excluded
by event-triggered mechanism (42). The bound of T is
expressed as

T = T̂1 + T̂2 �
2π

(ρ2 − ρ1)
√
k321+

ρ1+ρ2
2 k4N

1−ρ2
2 (1 − ωi)

+

2π

(γ2 − γ1)
√
k1(2λ2(BL))1+

γ1+γ2
2 k2N

1−γ2
2

+

max(hi). (44)

Proof Lyapunov function is constructed by track-
ing error:

V̂1(t) =
1
2

N∑

i=1

ê2
i (t). (45)

According to Eqs. (19) and (43), the derivative of
V̂1(t) is given:

˙̂
V1(t) =

N∑

i=1

êi(t) ˙̂ei(t) =

N∑

i=1

êi(t)(−Êi(t) − k3sig(êi(t))ρ1−

k4sig(êi(t))ρ2 + di) �

− k32
ρ1+1

2 V̂1(t)
ρ1+1

2 − (
k42

ρ2+1
2 N

1−ρ2
2 −D

)×
(1 − ωi)V̂1(t)

ρ2+1
2 . (46)
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The proof process of Lyapunov function can be given
by Theorem 1. According to Lemma 3, the error êi(t)
converges to 0 in time T̂1max, and the convergence time
is satisfied:

T̂1max =
2π

(ρ2 − ρ1)
√
k321+

ρ1+ρ2
2 k4N

1−ρ2
2 (1 − ωi)

. (47)

Remark 4 When t = T̂1max, we can get that
V̂1(t) = 0 and the error êi(t) = 0, which implies(
k421+ρ2N

1−ρ2
2 −D)‖êi‖ρ2ωi = 0. In this case, the con-

sensus is not achieved if ûi(t) �= 0. The event-triggered
condition ‖Êi‖−

(
k421+ρ2N

1−ρ2
2 −D)‖êi‖ρ2ωi > 0 can

be satisfied, the system is updated, and ûi(t) converges
to 0. Therefore, ûi(t) = 0 is true before the consensus

can be achieved. In addition,
∫ t

t−hi

ûi(T )dT converges

to 0 at time T̂1max +hi. Therefore, T̂1 can be obtained:

T̂1 � T̂1max + max(hi) =
2π

(ρ2 − ρ1)
√
k321+

ρ1+ρ2
2 k4N

1−ρ2
2 (1 − ωi)

+

max(hi). (48)

According to the above analysis, Eq. (21) still

holds and v̂i(t) = v̂∗
i (t) = −k1sig

( N∑

j=0

aijsig(x̂i(t) −

x̂j(t))
)γ1−k2sig

( N∑

j=0

aij(x̂i(t)−x̂j(t))
)γ2

+v0(t). From

Eqs. (4) and (21), it follows that

˙̂̄xi(t) = v̂∗
i (t) − v0(t) =

− k1sig
( N∑

j=0

aijsig(x̂i(t) − x̂j(t))
)γ1−

k2sig
( N∑

j=0

aij(x̂i(t) − x̂j(t))
)γ2

. (49)

Consider the Lyapunov function as

V̂2(t) =
1
2

¯̂xT
i (t)BL

¯̂xi(t). (50)

Take the derivative of V̂2(t) as

˙̂
V2(t) = ¯̂xT

i (t)(BL) ˙̂̄xi(t) =
N∑

i=1

N∑

j=0

aij(x̂i(t) − x̂j(t))¯̂vi(t) �

− k1(2λ2(BL))
γ1+1

2 V̂2(t)
γ1+1

2 −
− k2N

1−γ2
2 (2λ2(BL))

γ2+1
2 V̂2(t)

γ2+1
2 . (51)

The position of followers converges to the leader in
fixed-time and T̂2 is written as

T̂2 � T̂2max =
2π

(γ2 − γ1)
√
k1(2λ2(BL))1+

γ1+γ2
2 k2N

1−γ2
2

. (52)

Under the action of controller (41) and event-
triggered mechanism (42), the consensus problem of the
MAS (2) and Eq. (38) is solved in fixed-time T , satis-
fying as follows:

T � max(hi)+
2π

(ρ2 − ρ1)
√
k321+

ρ1+ρ2
2 k4N

1−ρ2
2 (1 − ωi)

+

2π

(γ2 − γ1)
√
k1(2λ2(BL))1+

γ1+γ2
2 k2N

1−γ2
2

. (53)

The proof is completed. �

2.2.2 Event-Triggered Fixed-Time Consensus Algo-
rithm with Switching Topologies

Consider that the communication topology is time-
varying and connected. For the MASs (1) and (2), a
switching signal is introduced that δ(t) : [0,+∞) → Q
and the topologies of the system can be determined by
δ(t). The communication graph is fixed if and only
if δ(t) is constant. Otherwise, Q = {1, 2, · · · , N} is
a finite set and it is an index set for the set of undi-
rected graphs Gs = (V,E,Aδ(t)), where adjacency ma-
trix Aδ(t) = [aδ

ij ]N×N and aδ
ij is used to represent

the adjacency relationship between the agent i and j.
Gδ(t) ∈ Gs is used to represent the topology at time t
and t0, t1, · · · are the switching time series.

For the MASs under switching topologies, the non-
linear dynamic functions of followers are redefined as

˙̃xi(t) = ṽi(t)
˙̃vı(t) = ũi(t) + fi(x̃i(t), ṽi(t), t)+

di(x̃i(t), ṽi(t), t)

⎫
⎪⎬

⎪⎭
. (54)

The virtual velocity (5) can be rewritten as

ṽ∗
i (t) = − k1sig

( N∑

j=0

aδ
ijsig(x̃i(t) − x̃j(t))

)γ1−

k2sig
( N∑

j=0

aδ
ij(x̃i(t) − x̃j(t))

)γ2

+ v0(t). (55)

The error function is

ẽi(t) = ṽi(t) − ṽ∗
i (t). (56)

We can obtain

ũi(t) = − k3sig(ẽi(tik))ρ1 − k4sig(ẽi(tik))ρ2−

k1γ1

∣∣∣
N∑

j=0

aδ
ijsig(x̃i(tik) − x̃j(tik))

∣∣∣
γ1−1

×
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[ N∑

j=0

aδ
ij(ṽi(tik) − ṽj(tik))

]
−

k2γ2

∣∣∣
N∑

j=0

aδ
ij(x̃i(tik) − x̃j(tik))

∣∣∣
γ2−1

×

[ N∑

j=0

aδ
ij(ṽi(tik) − ṽj(tik))

]
+ f0 − fi. (57)

The measurement error Ei(t) is adjusted to Ẽi(t) and
event-triggered mechanism is designed as

Δi(Ẽi(t), ẽi(t), t) =

‖Ẽi‖ −
(
k421+ρ2N

1−ρ2
2 −D

)‖ẽi‖ρ2ωi. (58)

Theorem 4 Under the Assumptions 1 and 2, the
fixed-time consensus can be obtained by virtual velocity
(55) and consensus protocol (57) for the MASs (54) and
(2). And the event-triggered function (58) is used to
avoid Zeno behavior. The bound of T is expressed as

T = T̃1 + T̃2 �
2π

(ρ2 − ρ1)
√
k321+

ρ1+ρ2
2 k4N

1−ρ2
2 (1 − ωi)

+

4π
/{

(γ2 − γ1)
[
k1(4λmin

2 (L2/(1+γ1)))
γ1+1

2 ×
k2N

1−γ2
2 (4λmin

2 (L2/(1+γ2)))
γ2+1

2
] 1

2
}
, (59)

where L2/(1+γ1), L2/(1+γ2) are the Laplacian matrices

of communication topologies G(A
2

1+γ1 ) and G(A
2

1+γ2 ),
and λmin

2 (L2/(1+γ1)), λ
min
2 (L2/(1+γ2)) are the minimum

eigenvalue of L2/(1+γ1) and L2/(1+γ2), respec-
tively. In addition, there exist λmin

2 (L2/(1+γ1)) =
min{λ2(L2/(1+γ1)(t0)), λ2(L2/(1+γ1)(t1)), · · · }
and λmin

2 (L2/(1+γ2)) =
min{λ2(L2/(1+γ2)(t0)), λ2(L2/(1+γ2)(t1)), · · · }.

Proof Construct a Lyapunov function as

Ṽ1(t) =
1
2

N∑

i=1

ẽ2
i (t). (60)

Based on the measurement error Ẽi(t), take the
derivative of Ṽ1(t) as

˙̃V1(t) =
N∑

i=1

ẽi(t) ˙̃ei(t) =

N∑

i=1

ẽi(t)(−Ẽi(t) − k3sig(ẽi(t))ρ1−

k4sig(ẽi(t))ρ2 + di) �
N∑

i=1

ẽi(t)(−Ẽi(t) − k3sig(ẽi(t))ρ1−

k4sig(ẽi(t))ρ2 +D) �

− k32
ρ1+1

2 Ṽ1(t)
ρ1+1

2 − (k42
ρ2+1

2 N
1−ρ2

2 −D)×
(1 − ωi)Ṽ1(t)

ρ2+1
2 . (61)

The tracking time T̃1 can be obtained:

T̃1 � T̃1max =
2π

(ρ2 − ρ1)
√
k321+

ρ1+ρ2
2 k4N

1−ρ2
2 (1 − ωi)

. (62)

Lyapunov function Ṽ2(t) is constructed by position
of agents. Take the derivative of Ṽ2(t):

Ṽ2(t) =
1
2

N∑

i=1

¯̃x2
i (t), (63)

˙̃V2(t) =
N∑

i=1

¯̃xi(t) ˙̃̄xi(t) =
N∑

i=1

¯̃xi(t)¯̃vi(t) �

N∑

i=1

¯̃xi(t)
(
− k1

N∑

j=1

aδ
ij

∣∣(¯̃xi(t) − ¯̃xj(t))
∣∣γ1 −

k2

N∑

j=1

aδ
ij

∣∣(¯̃xi(t) − ¯̃xj(t))
∣∣γ2

)
�

− 1
2
k1

N∑

i=1

N∑

j=1

aδ
ij

∣∣(¯̃xi(t) − ¯̃xj(t))
∣∣γ1 (¯̃xi(t) − ¯̃xj(t))−

1
2
k2

N∑

i=1

N∑

j=1

aδ
ij

∣∣(¯̃xi(t) − ¯̃xj(t))
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ij
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1
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aδ
ij
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2
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( N∑
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N∑

j=1

a
δ 2

γ1+1

ij

∣∣(¯̃xi(t) − ¯̃xj(t))2
∣∣
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2 −

1
2
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( N∑

i=1

N∑

j=1

a
δ 2

γ2+1

ij

∣∣(¯̃xi(t) − ¯̃xj(t))2
∣∣
) γ2+1

2 �

− 1
2
k1(4λmin

2 (L2/(1+γ1)))
γ1+1

2 Ṽ2(t)
γ1+1

2 −
1
2
k2N

1−γ2
2 (4λmin

2 (L2/(1+γ2)))
γ2+1

2 Ṽ2(t)
γ2+1

2 . (64)

According to Lemma 3, the consensus time T̃2 is sat-
isfied as follows:

T2 = T̃2max =

4π
/{

(γ2 − γ1)
[
k1(4λmin

2 (L2/(1+γ1)))
γ1+1

2 ×
k2N

1−γ2
2 (4λmin

2 (L2/(1+γ2)))
γ2+1

2
] 1

2
}
. (65)
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Therefore, it can be concluded that the system con-
sensus achieves within the fixed-time:

T � 2π

(ρ2 − ρ1)
√
k321+

ρ1+ρ2
2 k4N

1−ρ2
2 (1 − ωi)

+

4π
/{

(γ2 − γ1)
[
k1(4λmin

2 (L2/(1+γ1)))
γ1+1

2 ×
k2N

1−γ2
2 (4λmin

2 (L2/(1+γ2)))
γ2+1

2
] 1

2
}
. (66)

The proof is completed. �

Remark 5 The proof of event-triggered mecha-
nism is similar to that of Theorem 2. The parame-
ters in Eq. (31) are adjusted to c̃1 = ρ2‖ẽ‖ρ2−1, c̃2 =
k3

N1−ρ2
(2Ṽ1(0))

ρ1−ρ2
2 +

k4

N1−ρ2
and c̃3 = D(2Ṽ1(0))

−ρ2
2 +

1. It can be obtained that the result in Theorem 2 is still
available. In addition, it is ensured that the topology
graph is connected within the event-triggered interval.
Therefore, event-triggered mechanism is still valid in
the switching topologies.

3 Simulation Example

A simulation example is provided to validate the ef-
fectiveness of the event-triggered fixed-time consensus
algorithm. The undirected connection topologies are
given in Fig. 1, and the example in the fixed topology
is represented by Fig. 1(a). In addition, Fig. 1 shows
the switching topologies. Consider that the switch-
ing interval is 0.5 s and the switching sequence satisfies
(a) → (b) → (c) → (a). Figure 2 shows the work-
ing principle of the controller. Assume that there is a
leader and five followers in the system.

(a) Graph G1

(b) Graph G2 (c) Graph G3
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1 2

35
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0

1 2

35

4

1 2

35

4

0

Fig. 1 Communication topology graphs

Some simulation parameters are given. Assume that
the information of initial position and velocity for each
follower is proposed as x(0) = [−1 − 2 2 1 3]
and v(0) = [2 1 3 2 1]. The corresponding infor-
mation of the leader is x0(0) = 1 and v0(t) = 0.4 +

Follower i

Leader
Controller iActuator i

ui(t)

xi(t),vi(t)

xi(tk),vi(tk)

δ(t)

Event
detector i

Communication
graph

Sensor i

Switching
signal

MAS

i i

Fig. 2 Event-triggered fixed-time consensus controller

0.3 sin t. In addition, the other parameters are given
as fi(xi(t),vi(t), t) = 0.3 cos(0.5t), di(xi(t),vi(t), t) =
0.2 cos(xi(t)), k1 = 2, k2 = 1, k3 = 3, k4 = 2, γ1 = 0.9,
γ2 = 1.1, ρ1 = 0.3, ρ2 = 1.05, and ω = 0.5. The
choice of the parameters is derived by performing mul-
tiple tests within the given range.

As shown in Figs. 3—8, it can be seen that the con-
sensus of position and velocity can be achieved in these
figures. Figures 3—5 are the path of position, the path
of position with the event-triggered and the path of
position with the delay and switching topologies, re-
spectively. Figures 6—8 are the corresponding velocity
information.

Figures 9—10 show the tracking error and measure-
ment error of the system. It is clear that the errors
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Fig. 4 Position under event-triggered mechanism
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Fig. 5 Position of delay and switching topologies
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Fig. 6 Velocity of leader and followers
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Fig. 7 Velocity under event-triggered mechanism
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Fig. 8 Velocity of delay and switching topologies
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Fig. 9 Tracking error of true velocity and virtual velocity
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converge to 0 in less than 2 s. In addition, the change of
the switching topologies can be seen in the time nodes
of Figs. 9(b) and 10(b).

For the MASs with delay and switching topologies,
Figs. 11 and 12 show the inputs of agents and the sam-
pling number of event-triggered mechanism. It can
be seen that the inputs converge to 0 in around 2 s
in Fig. 11, and the event-triggered interval is shown
Fig. 12.

Figures 13 and 14 show the control inputs for Refs. [7]
and [12] respectively. It can be seen from the results
that the computational complexity of the controller de-
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Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

1 000

600

200

−200

−600

−1 000

C
on

tr
ol

 i
np

ut

0 1 2
Time/s

3 4 5

Fig. 14 Input of controller in Ref. [12]

signed in this paper is lower.

4 Conclusion

A protocol of event-triggered fixed-time consensus for
second-order nonlinear MASs with delay and switch-
ing topologies is proposed in this paper. The problem
of convergence time dependence on initial value is ad-
dressed by employing the fixed-time consensus control.
The control inputs are updated if and only if the mea-
surement error of agents meets the trigger threshold
condition. It is effective to avoid the Zeno behaviors.
In addition, it is necessary to prove the availability of
controller through stability analysis. The stabilization
of the system is proved by Lyapunov stability theory.
It can be seen from the results that the stability of
the system can be ensured under the influence of ex-
ternal disturbances and nonlinear term. The controller
is still valid in the case of delay and switching topolo-
gies. Therefore, the robustness and practicality of the
system are improved. Finally, the simulation exam-
ple indicates that the control algorithm is effective for
solving the fixed-time consensus problem of the system.
The object of this paper is second-order and homoge-
neous MASs. However, heterogeneous MASs are com-
mon in practical applications, and it is inevitable in
the study of consensus problems. Furthermore, there
are many other factors that affect the stability of the
system, such as data packet loss and cyber-attack. The
problems mentioned above are difficulties that need to
be studied intensively in the future.
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