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Abstract: We consider the well-studied sequential posted pricing scenarios. In these scenarios, an auctioneer
typically learns the value distributions of all agents as prior information and then offers a take-it-or-leave-it price
to each sequentially coming agent. If the value distributions are correctly learned, the dominant strategy of each
agent is telling the truth. However, an agent could manipulate her value distribution to exploit the auctioneer. We
study the behavior of sophisticated agents predicted by two prominent bounded rationality models: the level-k and
the cognitive hierarchy models. We begin with analyzing the structure of the optimal reported distributions and
then provide algorithms to compute the optimal distributions for each model. In the continuous scenarios, we show
that both models are ill-defined by some examples. Moreover, we evaluate both models in discrete scenarios with
different numbers of agents, different minimum units of the values, and different risk tolerances. The empirical
results and a brief discussion about the Bayesian Nash equilibrium of the experimental scenarios show that both
the level-k model and the equilibrium suggest the highest possible prices. In contrast, the cognitive hierarchy
model suggests low prices. The level-k model and the equilibrium somehow explain the “winner’s curse” in online
markets. The models and the equilibrium fail to explain that the same item could have different prices in different
shops. To explain the different-price phenomenon, we suggest trying other bounded rationality models for agents
and/or considering the auctioneers with bounded rationality.
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0 Introduction

In many online markets, e.g., eBay, Taobao, and
Xianyu, a shopkeeper puts some items on the shelf
and waits for the buyers. When a buyer comes to the
shop, she might negotiate with the shopkeeper about
the price of an item and decide to take it or leave. These
scenarios are modeled as the sequential posted pricing
auctions[1-2]. An auctioneer offers each agent a take-it-
or-leave-it price for a sequential posted pricing schema.
Ideally, the auctioneer can control the arrival order of
agents as he might choose the order to respond if sev-
eral agents come simultaneously. Since an agent only
decides whether to accept the posted price, telling a lie
would not increase her utility. Thus, a sequential posted
pricing auction is a truthful auction. Usually, the auc-
tioneer can learn the value distributions of the truth-
telling agents from the trading history[3-4], so that the
auctioneer can optimize his expected revenue under the
Bayesian setting[5]. However, if an agent observes the
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learning behavior of the auctioneer, she might manip-
ulate her distribution to obtain more utility[6-9]. Here
is an example that a sophisticated agent might com-
pletely exploit the auctioneer.

Example 1 Consider that there is only 1 agent,
and the auctioneer chooses the optimal posted price ac-
cording to the reported distribution D̃1. Suppose that
Agent 1 knows this fact. Then she could manipulate
her distribution to obtain almost all possible utility.

Actually, unless distribution D1 is a one-point dis-
tribution with support {0}, Agent 1 could report the
distribution D̃1 with only support {ε}. Then the auc-
tioneer posts price ε and obtains revenue ε. Since ε
could be any positive number, Agent 1 obtains almost
all possible utility. Furthermore, the auctioneer would
not detect the misreporting even in the repeated set-
ting. The agent would always accept price ε unless the
auctioneer tried to offer a higher price.

The most promising way to analyze the exploita-
tion behaviors of sophisticated agents is to compute
the Bayesian Nash equilibrium[10] or to apply some
bounded rationality models[11]. First, notice that an
agent’s “pure” strategy is to report a distribution.
Then the Bayesian Nash equilibrium strategies usually



J. Shanghai Jiao Tong Univ. (Sci.), 2023

report a distribution over distributions, which could
be hard to formulate. For example, the agent’s op-
timal strategy in Example 1 is not a well-formulated
distribution. So we start with the bounded rationality
models.

In this paper, we study the agents predicted by
the level-k model[12-14] and the cognitive hierar-
chy model[15], which are the most prominent ones
among the bounded rationality models. These mod-
els have succeeded in solving many games[16] and some
auctions[14]. First, we analyze the behavior of a level-
1 agent. We prove a structure lemma to bound the
possible highest support of the reported distribution.
Then we analyze the 2-agent case and a large mar-
ket with enough i.i.d. agents. For each case, we cal-
culate the maximal possible utility of the agent. Af-
ter that, we turn to the general case and provide an
algorithm to compute the optimal utility of the level-
1 agent. The analysis of the behavior of the level-1
agents provides insight for designing the algorithms for
the level-k model and the cognitive hierarchy model.
For both models, we provide algorithms to compute
the optimal strategies of agents with different sophisti-
cation levels. And then, we construct simple examples
to show that both models could be ill-defined when the
support elements of the distribution are continuous. We
evaluate the models in discrete scenarios with different
numbers of agents, different risk tolerances, and differ-
ent minimum units of the values. A long pathological
period typically occurs before the convergence for the
level model. Even worse, the strategies of the sophis-
ticated agents could form cycles. The convergence of
the behavior is mainly affected by a large number of
agents, the risk-averse level, and the sizeable minimum
unit. When the number of agents is large enough, the
level-k model suggests a price near the highest possi-
ble value of agents. For the cognitive hierarchy model,
the strategies will quickly converge after a short patho-
logical period whose length mainly depends on the be-
lief of the sophisticated agents. The cognitive hierar-
chy model usually suggests a low price for the item,
even with many agents. After evaluating two mod-
els, we also briefly discuss the Bayesian Nash equilib-
rium of the experimental scenarios. We can obtain a
Bayesian Nash equilibrium for each scenario by solv-
ing the bi-matrix game induced by the strategies pre-
dicted by the level-k model. The Bayesian Nash equi-
librium usually suggests the same price as the level-k
model in large markets. However, in a real online mar-
ket, the same item might have different prices in differ-
ent shops. Neither the two models nor the equilibrium
could explain this phenomenon. Our study suggests
that a new bounded rationality model for the agents
should be proposed for the sequential posted pricing
scenarios, and/or the auctioneers might have bounded
rationality.

1 Related Work

1.1 Sequential posted pricing
Sequential posted pricing[1-2,17] is a take-it-or-leave-

it schema in that the auctioneer offers a price to each
coming agent, and the agent decides whether to take
the item with the posted price or leave the market for-
ever. The auction is truthful because an agent cannot
increase her utility by misreporting the acceptance or
decline. More robustness discussions can be seen in pre-
vious work[1-2,17]. Usually, the auctioneer can optimize
his revenue under the Bayesian setting[5]. Furthermore,
the sequential posted pricing has a good revenue guar-
antee compared with other auctions[18-19].

However, an agent may manipulate her distribution
and mislead the auctioneer to obtain more utility. This
paper assumes that the agents can misreport (or manip-
ulate) their value distributions while the auctioneer will
optimize his revenue with the reported distributions.
Then we study the behaviors of agents with bounded
rationality in such scenarios.
1.2 Level-k Model

The level-k model[12-13] assumes that a series of so-
phisticated agents iteratively best respond to “naive”
(non-strategic) agents who act randomly or tell the
truth[14]. This model is usually used to explain the
agents’ behaviors in both cooperative and competitive
scenarios, e.g., first-price or second-price auctions[14],
betting games[20], and coordination games[21]. The
model can also explain the “winner’s curse” in some
auctions[14,22]. Levin and Zhang[23] proposed an NLK
model bridging the level-k model and the Bayesian
Nash equilibrium so that an agent might assume that
other agents have the same sophistication level as hers.
In this paper, we will analyze the agents predicted by
the level-k model when they can manipulate their value
distributions.
1.3 Cognitive Hierarchy Model

The cognitive hierarchy model[15] generalizes the
level-k model so that a sophisticated agent could as-
sume that other agents have different lower sophistica-
tion levels. Usually, the belief forms a Poisson distribu-
tion, and such a model is named the Poisson cognitive
hierarchy model. This model has been used to explain
the experimental data of p-beauty games[15], coordina-
tion games[24], lottery games[25], and action commit-
ment games[26]. Furthermore, Koriyama and Ozkes[27]

proposed the inclusive cognitive hierarchy model to al-
low the agents to consider others at the same sophis-
tication level. This paper will also analyze the agents
predicted by the Poisson cognitive hierarchy model in
our scenarios.
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2 Background and Problem Formula-

tion

2.1 Problem Formulation
The sequential posted pricing with a single item

can be formalized into a pair I = {N, D}, where
N = {1, 2, · · · , n} is the set of n agents, D =
{D1, D2, · · · , Dn}, and Di is the true probability dis-
tribution for the item’s value vi of Agent i. We follow
the Bayesian setting that each agent’s value vi is inde-
pendently drawn from Di.

During an auction, each agent comes sequentially and
receives a take-it-or-leave-it price. If the received price
is less than or equal to her value, she buys the item
for that price, and the auction ends. Otherwise, she
leaves the auction, and the next agent comes. When
the auctioneer knows the true value distributions of the
agents, he will decide an order (or permutation) π :
[n] �→ N and posted prices p ∈ R

n to maximize his
expected revenue.

We consider the scenarios where agents can manip-
ulate their value distributions. The problem can be
divided into two phases: In Phase I, each Agent i re-
ports a value distribution D̃i. In Phase II, the auction-
eer decides on the order and the prices to maximize his
expected revenue in his mind according to reported dis-
tributions (D̃i)n

i=1. We assume that both distributions
Di and D̃i for each Agent i have finite support. Let
supp(D), |supp(D)| denote the support and the support
size of the distribution D, respectively. Let ci(x), c̃i(x)
denote the probability masses at x in distributions Di

and D̃i, respectively. Let di(x), d̃i(x) denote the prob-
ability masses of random variable greater than or equal
to x in distributions Di and D̃i, respectively. The auc-
tioneer calculates his expected revenue as

n∑

i=1

⎡

⎣pπ(i)d̃π(i)(pπ(i))
i−1∏

j=1

(
1− d̃π(j)(pπ(j))

)
⎤

⎦ .

We assume that the agents are risk-neutral and the util-
ity of a risk-neutral Agent i is

⎡

⎣
∑

v:v∈supp(Di),v>pi

ci(v)(v − pi)

⎤

⎦×

π−1(i)−1∏

j=1

(
1− dπ(j)(pπ(j))

)
,

where π−1(i) is the position of Agent i in order π.
2.2 Structure Lemma of Auctioneer

The previous work[5,28] shows that the optimal strat-
egy of the auctioneer satisfies the following lemmas.

Lemma 1 (Order property[28]) In a sequential
posted pricing scheme with n agents, if the auctioneer

posts price pi to Agent i, then the monotone decreasing
order with pi gives the highest expected revenue.

Lemma 2 (Price property[5]) In a sequential
posted pricing scheme with n agents, given a order fixed
π, the optimal posted price vector p = (p1, p2, · · · , pn)
of auctioneer should be on ×n

i=1supp(Di).

2.3 Nonstrategic Agent

As formulated by Crawford and Iriberri[14], a non-
strategic agent or a “naive” agent tells a distribution
randomly or her truthful distribution. However, it is
hard to define how to tell a value distribution randomly.
So in this paper, a nonstrategic Agent i can only tell
her truthful distribution Di.

2.4 Sophisticated Agent

A sophisticated agent usually optimizes her reported
distribution with the belief that other agents are non-
strategic or no more sophisticated than her. The level-k
theory[12-13] and the cognitive hierarchy theory[15] are
the most prominent models to characterize agents with
different sophistication levels. We characterize the be-
haviors of agents predicted by the level-k model and
the cognitive hierarchy model, respectively, in sequen-
tial posted pricing with a single item.

Let D̃i,k denote the reported distribution of an Agent
i with level-k sophistication. Both models begin with a
nonstrategic level-0 Agent i with D̃i,0 = Di.

2.4.1 Level-k Model Agent

For a level-k Agent i predicted by the level-k model,
she supposes that all other agents have level-(k − 1)
sophistication. So her reported distribution D̃i,k should
maximize her utility:

⎡

⎣
∑

v:v∈supp(Di),v>p̂i

ci(v)(v − p̂i)

⎤

⎦
π̂−1(i)−1∏

j=1

(1− dj(p̂j)),

where π̂, p̂ = (p̂1, p̂2, · · · , p̂n) are the auctioneer’s op-
timal ordering and optimal posted prices, respectively,
when Agent i reports D̃i,k and each other Agent j (j �=
i) reports Dj,k−1.

2.4.2 Cognitive Hierarchy Model Agent

For a level-k Agent i predicted by the cognitive hi-
erarchy model, she usually believes that a proportion
gk,l of other agents have a level-l (l < k) sophistication.
In other words, gk = (gk,0, gk,1, · · · , gk,k−1) denotes the
belief of the level-k agent. However, defining the num-
ber of agents with level-l sophistication is difficult when
gk,ln is not an integer. So we consider two different ap-
proaches:

(1) Individual sophistication. The level-k Agent i
believes that the probability of an agent with level-l
sophistication is gk,l. Then her reported distribution
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D̃i,k should maximize

Eπ̂,p̂∼{gk,D̃i,k,{D̃j,l}j �=i,0�l<k}⎧
⎨

⎩

⎡

⎣
∑

v:v∈supp(Di),v>p̂i

ci(v)(v − p̂i)

⎤

⎦
π̂−1(i)−1∏

j=1

(1−dj(p̂j))

⎫
⎬

⎭ ,

where π̂, p̂ = (p̂1, p̂2, · · · , p̂n) are the auctioneer’s opti-
mal ordering and optimal posted prices respectively for
each instance of reported distributions.

(2) Global sophistication. The level-k Agent i be-
lieves that the probability of all other agents with level-
l sophistication is gk,l. Then her reported distribution
D̃i,k should maximize

k−1∑

l=0

gk,l

⎧
⎨

⎩

⎡

⎣
∑

v:v∈supp(Di),v>p̂i

ci(v)(v − p̂i)

⎤

⎦ ×

π̂−1(i)−1∏

j=1

(1− dj(p̂j))

⎫
⎬

⎭ ,

where π̂, p̂ = (p̂1, p̂2, · · · , p̂n) are the auctioneer’s op-
timal ordering and optimal posted prices, respectively,
when other agents report distributions {D̃j,l}j �=i.

3 Theoretical Analysis

This section will first analyze the level-1 agent’s strat-
egy in Subsection 3.1. A level-1 agent behaves the same
in both the level-k and the cognitive hierarchy models,
as she considers that all other agents are nonstrategic.
After analyzing the level-1 agents’ behaviors, we will
individually consider the level-k model agents in Sub-
section 3.2 and the cognitive hierarchy model agents in
Subsection 3.3.
3.1 Level-1 Agents

First of all, we consider the possible elements in opti-
mal reported distributions. The analysis shows that an
agent’s optimal reported distribution has no support el-
ement greater than the highest support of her true value
distribution. After that, we consider two special cases,
the 2-agent case and the enough i.i.d. agents case. For
the 2-agent case, we provide an algorithm to compute
the maximal utility for a level-1 agent. For the enough
i.i.d. agents case, we show that a level-1 could obtain
little utility when all agents have i.i.d. value distribu-
tions. At last, we provide an algorithm to compute the
optimal reported distribution for level-1 agents in the
general case.
3.1.1 Elements in Support

As Example 1 shows, for Agent i, an element in
support of the reported distribution supp(D̃i) might
not appear in support of the true value distribution
supp(Di). It seems that supp(D̃i) might contain any

positive number. However, when considering the high-
est element in supp(D̃i), we could prove that it cannot
be greater than the highest element in supp(Di).

Lemma 3 In a sequential posted pricing scheme
with n agents, Agent n knows that the first (n − 1)
agents will report distributions (D̃i)n−1

i=1 , and the auc-
tioneer will choose order π and posted prices p accord-
ing to all reported distributions. Then there exists an
optimal reported distribution D̃n of Agent n so that no
element in its support supp(D̃n) can be greater than
the highest element in supp(Dn).

Proof Let v
|supp(Dn)|
n denote the highest element of

supp(Dn). Let ṽ
|supp(D̃n)|
n denote the highest element of

supp(D̃n). Let ṽ
|supp(D̃n)|−1
n denote the second highest

element (if it exists) of supp(D̃n). When ṽ
|supp(D̃n)|
n >

v
|supp(Dn)|
n , we consider the following three cases.
(1) |D̃n| = 1. In this case, Agent n has no chance

to take the item, so her utility is 0. After moving the
probability mass at ṽ

|supp(D̃n)|
n to v

|supp(Dn)|
n , her util-

ity keeps 0 and the new reported distribution has no
element greater than v

|supp(Dn)|
n .

(2) ṽ
|supp(D̃n)|−1
n > v

|supp(Dn)|
n . In this case, Agent n

has no chance to take the item for both prices ṽ
|supp(D̃n)|
n

and ṽ
|supp(D̃n)|−1
n . After moving the probability mass

at ṽ
|supp(D̃n)|
n to ṽ

|supp(D̃n)|−1
n , her expected utility for

any possible order π and posted prices p would not
change, since her utility is 0 when pn > v

|supp(Dn)|
n and

the moving does not change the probability of Agent
n accepting the posted price pn � v

|supp(Dn)|
n in the

auctioneer’s mind. The highest element in D̃n decreases
after the moving.

(3) ṽ
|supp(D̃n)|−1
n � v

|supp(Dn)|
n . In this case, Agent n

has no chance to take the item for price ṽ
|supp(D̃n)|
n .

After moving the probability mass at ṽ
|supp(D̃n)|
n to

v
|supp(Dn)|
n , her expected utility for any possible order

π and posted prices p would not change, since her util-
ity is 0 when pn = ṽ

|supp(D̃n)|
n and the moving does not

change the probability of Agent n accepting the posted
price pn � v

|supp(Dn)|
n in the auctioneer’s mind. The

new reported distribution has no element greater than
v
|supp(Dn)|
n .
When the first or third case occurs, we can obtain

an optimal distribution satisfying the lemma. When
the second case occurs, we can repeatedly maintain the
reported distribution until the first or the third case
occurs. This concludes the proof.
3.1.2 2-Agent Case

Consider a scenario with only 2 agents, Agent 1 with
level-0 sophistication and Agent 2 with level-1 sophis-
tication. To make the analysis easier, we could assume
the posted prices p1 �= p2 as Agent 2 could add a small
enough εv to the support supp(D̃2,1) with little loss of
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her expected utility. Give posted prices p = (p1, p2),
when p1 > p2, the expected revenue in the auctioneer’s
mind is

p1d1(p1) + (1− d1(p1))p2d̃2,1(p2),

and the expected utility of Agent 2 is

(1− d1(p1))
∑

v:v∈supp(D2),v�p2

(v − p2)c2(v);

when p1 < p2, the expected revenue in the auctioneer’s
mind is

p2d̃2,1(p2) + (1− d̃2,1(p2))p1d1(p1),

and the expected utility of Agent 2 is
∑

v:v∈supp(D2),v�p2

(v − p2)c2(v).

Consider the optimal posted prices p. When p1 � p2,
assume that d1(p1) < 1 or Agent 1 will definitely take
the item and Agent 2 obtains utility 0. For arbitrary
p′1 that d1(p1) �= d1(p′1), we have

p1d1(p1) + (1 − d1(p1))p2d̃2,1(p2) �
p′1d1(p′1) + (1 − d1(p′1)) max

p′
2�p′

1

p′2d̃2,1(p′2). (1)

When p′1 > p1, Inequality (1) turns to

p1d1(p1)− p′1d1(p′1) �
(1− d1(p′1)) max

p′
2�p′

1

p′2d̃2,1(p′2)−

(1− d1(p1))p2d̃2,1(p2)⇒
(p2 < p1 < p′1) �
(d1(p1)− d1(p′1))p2d̃2,1(p2).

As p′1 > p1, we have d1(p1)− d1(p′1) > 0. Then we can
make left side of the inequality to p2d̃2,1(p2) as

p2d̃2,1(p2) � p1 − (p′1 − p1)
d1(p′1)

d1(p1)− d1(p′1)
. (2)

When p2 < p′1 < p1, Inequality (1) turns to

p1d1(p1)− p′1d1(p′1) �
(1− d1(p′1)) max

p′
2�p′

1

p′2d̃2,1(p′2)− (1 − d1(p1))p2d̃2,1(p2)⇒

({p1, p2} is the optimal posted prices) =

(d1(p1)− d1(p′1))p2d̃2,1(p2).

We can make left side of the inequality to p2d̃2,1(p2) as

p2d̃2,1(p2) � p1 − (p1 − p′1)
d1(p′1)

d1(p′1)− d1(p1)
. (3)

When p′1 � p2 < p1, Inequality (1) turns to

p1d1(p1)− p′1d1(p′1) �
(1− d1(p′1)) max

p′
2�p′

1

p′2d̃2,1(p′2)− (1 − d1(p1))p2d̃2,1(p2) �

− (1− d1(p1))p2d̃2,1(p2).

We can make left side of the inequality to p2d̃2,1(p2) as

p2d̃2,1(p2) � p1 − p1 − p′1d1(p′1)
1− d1(p1)

. (4)

Inequalities (2), (3), and (4) describe the constraints
for the optimal posted prices p when p1 > p2.

When p1 < p2, the expected revenue of the auctioneer
can be rewritten as

p2d̃2,1(p2) + (1− d̃2,1(p2)) max
p′
1�p2

p1d1(p′1),

due to the optimality of p. Notice that D1 is a fixed
distribution known by Agent 2 so that she can calculate
the value of maxp′

1�p2 p1d1(p′1) when reporting D̃2,1.
Suppose the optimal posted prices of auctioneer with

constraint p1 < p2 are p′ = (p′1, p
′
2) and those with

constraint p1 > p2 are p′′ = (p′′1 , p′′2). The difference of
these two posted price vectors is

p′1d1(p′1) + (1− d1(p′1))p
′
2d̃2,1(p′2)−

p′′2 d̃2,1(p′′2)− (1− d̃2,1(p′′2 ))p′′1d1(p′′1 ). (5)

The sign of Formula (5) depends on which posted price
vector is the global optimal one. Especially, if p′2 = p′′2 ,
Formula (5) becomes

p′1d1(p′1)− d1(p′1)p
′
2d̃2,1(p′2)−

p′′1d1(p′1 + d̃2,1(p′2)p
′′
1d1(p′′1 ). (6)

When p′1, p′′1 , and p′2d̃2,1(p′2) are all fixed, Formula (6)
is monotonic increasing with d̃2,1(p′2).

Now we consider how to compute the optimal re-
ported distribution D̃2,1. By Lemma 2, we have d1 is
in supp(D1). When p1 > p2, the optimal p2 for Agent
2 is affected by:
� The order of p2 and all elements in supp(D1) de-

cides how many inequalities in the form of Inequality
(1) should be considered; � The order of p2 and all
elements in supp(D2) decides how much utility Agent
2 obtains.

So if Agent 2 wants to mislead the auctioneer to post
prices p1 > p2, she should: 1○ Enumerate all possible
prices p1; 2○ For each p1, enumerate all possible inter-
vals containing p2 based on supp(D1) and supp(D2);
3○ Calculate feasible regions of p2d̃2(p2) by Inequalities

(2), (3), (4), and Formula (5). Notice that if D̃2,1 has
non-zero support other than p2, Inequalities (2) and (4)
are loose and more inequalities generated by Formula
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(5) should be considered. So we only need to consider
the case that the reported distribution D̃1,2 has at most
1 non-zero element p2 in its support. To avoid some
complex discussions, we could assume p2 /∈ supp(D1)
or a small enough positive εv could be added into p2.
The optimal expected utility of Agent 2 can be obtained
by Algorithm 1.

Algorithm 1 Optimal expected utility of level-1
Agent 2
Input true value distributions D1, D2

Output optimal expected utility of Agent 2 optRev
1: let optRev← 0
2: let suppall ← supp(D1) ∪ supp(D2)
3: for p1 ∈ supp(D1) do � when p1 < p2

4: for p2 in which interval of suppall do
5: obtain the feasible interval of p2d̃2(p2) by In-

equalities (2), (3), (4), and positive Formula (6)
6: if the feasible interval is not empty then
7: find a minimal feasible p2

8: optRev = max{optRev, (1 − d1(p1))∑
v:v∈supp(D2),v�p2

(v − p2)c2(v)}
9: end if

10: end for
11: end for
12: for p2 in which interval of suppall do

� when p1 > p2

13: the feasible interval of p2d̃2(p2) by negative For-
mula (6)

14: if the feasible interval is not empty then
15: find a minimal feasible p2

16: optRev = max{optRev,∑
v:v∈supp(D2),v�p2

(v − p2)c2(v)}
17: end if
18: end for
19: return optRev

We can show that Algorithm 1 gives an optimal ex-
pected utility of Agent 2.

Lemma 4 Algorithm 1 outputs the expected utility
of level-1 Agent 2.

Proof Considering Lemma 3 and the previous anal-
ysis, p2 is the only possible non-zero support of D̃2,1 and
less than the highest element of supp(D2).

When p1 > p2, Inequalities (2), (3), (4) and positive
Formula (6) tell the exact feasible interval of p2d̃2(p2)
after enumerating the interval that contains p2 as In-
equalities (2) and (4) are tight when p2 is the only
possible non-zero support. Then given a fixed p1, the
minimal possible p2 can be obtained, which gives the
maximal possible utility of Agent 2 in this case. After
enumerating all p1, the first part of Algorithm 1 tells
the optimal utility if p1 > p2.

When p1 < p2, negative Formula (6) tells the exact
feasible interval of p2d̃2(p2) after enumerating the in-
terval that contains p2 as p1 is fixed for a fixed interval
of p2. Then we can obtain the minimal possible p2,
which gives the maximal possible utility of Agent 2 in
this case. Thus, the second part of Algorithm 1 tells
the optimal utility if p1 < p2.

Overall, the algorithm outputs the optimal utility of
level-1 Agent 2. �

Remark The bottleneck of the computation of Al-
gorithm 1 is in the part of the p1 > p2 case. The
enumeration of p1 is about O(|supp(D1)|), the enu-
meration of the interval that contains p2 is about
O(|supp(D1) ∪ supp(D2)|), and the number of inequal-
ities is about O(|supp(D1)|). So the total time com-
plexity for Algorithm 1 is O(|supp(D1)|2 · |supp(D1) ∪
supp(D2)|). However, if we enumerate the interval
that contains p2 in a monotonic order, either in an
increasing order or a decreasing order, only O(1) in-
equalities change. Then we might apply some data
structures to improve Algorithm 1 and we believe the
time complexity of the improved algorithm could be
O(|supp(D1)| · |supp(D1) ∪ supp(D2)| · log|supp(D1)|).
3.1.3 Enough i.i.d. Agents

Let D = D1 = · · · = Dn denote the value distribution
of all agents. Consider the highest support v of D with
probability mass c(v). Without loss of generality, we
assume Agent n has level-1 sophistication. By Lemma 2
and Lemma 3, pn � v. If the auctioneer posts pn < v to
Agent n and v to other agents, the probability that the
item is not taken before Agent n is (1 − c(v))n−1 and
the revenue of auctioneer is at least [1−(1−c(v))n−1]v.
When n is large enough, the probability is almost 0 and
the revenue is almost v. If the posted price pn is v, the
utility of Agent n is 0 since v is the highest support of
Dn. Overall, Agent n could have mere utility in this
case.

If the level-1 agent waives the right to misreport due
to the mere utility, all agents with higher sophistication
will also waive the right. So all agents will tell the
truth. However, the agent might declare that her value
is almost always v or a little lower than v for a chance
to take the item, and the winner’s curse occurs.

Remark Actually, the analysis is still hold for some
non-i.i.d. cases, e.g., the probability mass at v larger
than some constant εc for the value distributions of
enough agents.
3.1.4 General Case

Suppose there are n agents with true value distribu-
tions {Di}ni=1. Without loss of generality, we assume
that Agent n has level-1 sophistication. The reported
distribution D̃n,1 maximizes

⎡

⎣
π̂−1(n)−1∏

i=1

(1− dπ̂(i)(p̂π̂(i)))

⎤

⎦×
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⎡

⎣
∑

v:v∈supp(Dn),v�p̂n

(v − p̂n)cn(v)

⎤

⎦ , (7)

with auctioneer’s corresponding optimal order π̂ and
optimal posted prices p̂ = (p̂1, p̂2, · · · , p̂n).

By Lemma 1 and Lemma 2, we can enumerate all
other possible posted price vectors and obtain a series
of inequalities to ensure the optimality of {π̂, p̂}. As the
same analysis in the 2-agent case, if D̃n,1 has non-zero
support other than p̂n, the number of inequality con-
straints increases. Thus, D̃n,1 has at most 1 non-zero el-
ement p̂n in its support. After the enumeration of a in-
terval that contains p̂n, the inequalities characterize the
relationship between p̂n and d̃n,1(p̂n) and we can obtain
a minimal feasible p̂n. Algorithm 2 follows the above
analysis. Notice that the overall enumeration in Algo-

rithm 2 is O

([∏n−1
i=1 |supp(Di)|

]2

[
∑n

i=1 |supp(Di)|]
)

,

which is exponential of the number of agents n.

Algorithm 2 Optimal expected utility of level-1
Agent n
Input true value distributions {Di}n−n

i=1

Output optimal expected utility optRev
1: let optRev← 0
2: let suppall ← ∪n

i=1supp(Di)
3: for p̂1 ∈ supp(D1) do

� enumerating all possible p̂1, p̂2, · · · , p̂n−1

4: · · ·
5: for p̂n−1 ∈ supp(D(n− 1) do
6: for p̂n in which interval of suppall do
7: enumerate all other possible price vectors and

obtain inequalities about pnd̃n(p̂n) and d̃n(p̂n)
8: if the feasible interval is not empty then
9: find a minimal feasible p̂n

10: calculate the utility by Formula (7) and up-
date optRev

11: end if
12: end for
13: end for
14: · · ·
15: end for
16: return optRev

3.2 Level-k Model Analysis
In Subsection 3.1, we analyze the behavior of level-1

agents. We can apply a similar analysis to the behav-
iors of agents predicted by the level-k model with higher
sophistication levels. We will first analyze the behav-
ior of agents with level-k sophistication. Then we will
provide a concrete example to show that the behaviors
of a series of agents with different sophistication levels
could be ill-defined.

3.2.1 Level-k Agent
By Algorithm 2, the reported distribution D̃n,1 of

level-1 Agent n has at most 1 non-zero element in its
support. However, multiple possible solutions could ex-
ist for the reported distribution D̃n,1. To simplify the
analysis, we assume that the highest support is the min-
imal possible one with a maximum possible probabil-
ity mass. Consider a level-k (k > 1) Agent n and all
{D̃j,k−1}n−1

j=1 with at most 1 non-zero element in each
of their support. In Agent n’s mind, by Lemma 2, the
auctioneer can only offer an Agent i (1 � i < n) the
highest support of D̃i,k−1. As the posted prices for all
other agents are fixed, the order of all other agents is
also fixed by Lemma 1. With a similar analysis of the
number of non-zero elements in the support, the sup-
port of D̃n,k also has at most 1 non-zero element. Thus,
Agent n needs to decide a p̂n maximizing

⎡

⎣
π̂−1(n)−1∏

i=1

(1− dπ̂(i)(p̂π̂(i)))

⎤

⎦×
⎡

⎣
∑

v:v∈supp(Dn),v�p̂n

(v − p̂n)cn(v)

⎤

⎦ , (8)

where p̂i is the highest support of D̃i,k−1 for an Agent
i (1 � i < n). Since there is only one possible order and
posted prices after the enumeration of p̂n, the exponen-
tial enumeration in Algorithm 2 is no more needed. We
can obtain Algorithm 3 by eliminating the exponential
enumeration in Algorithm 2.

Algorithm 3 Optimal expected utility of level-k
Agent n predicted by the level-k model
Input true value distributions {Di}ni=1, agents’ re-
ported distributions {D̃i,k−1}n−1

i=1

Output optimal expected utility optRev
1: let optRev← 0
2: let suppall ←

(
∪n−1

i=1 supp(D̃i)
)
∪ supp(Dn)

3: for i = 1 to n− 1 do let p̂i be the maximal support
of D̃i,k−1

4: end for
5: for p̂n in which interval of suppall do
6: obtain π̂ by Lemma 1
7: calculate the utility by Formula (8) and update

optRev
8: end for
9: return optRev

As Algorithm 3 shows, the only enumeration is for
the interval that contains p̂n. Thus, Algorithm 3 runs
in polynomial time. Since there is no inequality con-
straint, the optimal p̂n equals p̂π̂(π̂−1(n)+1) + εv, where
εv could be an arbitrarily small positive number. This
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phenomenon indicates that the strategy of the level-k
model could be ill-defined.
3.2.2 Ill-Defined Example for Level-k Agent

As Example 2 shows, the level-k model is ill-defined
in continuous scenarios. Even in a discrete scenario, the
highest support reported by agents with level-k sophis-
tication could be ε larger than that reported by agents
with level-(k−1) sophistication, where ε equals the min-
imum unit μ of the scenario. Similar phenomena could
be seen in Rasooly’s work[29] for all-pay auctions and
first-price auctions with cancel probability.

Example 2 Consider a sequential posted price
schema with 2 agents. Both agents have the same value
distribution D = D1 = D2 with probability mass 0.1 at
100 and probability mass 0.9 at 20. We first analyze the
reported distributions D̃·,1 = D̃1,1 = D̃2,1 when both
agents have level-1 sophistication.

Let the highest support of D̃·,1 be p′1 with probability
mass c′1.

(1) When p′1 < 20 and the optimal posted prices
p = (100, p′1), we have

0.1× 100 + 0.9× p′1c
′
1 > 20.

The solution is p′1c
′
1 > 100

9 . Thus the minimal possi-
ble p′1 is approximately equal to 100

9 with c′1 = 1. In
this case, the utility of a level-1 agent in her mind is
approximately

0.1× 100 + 0.9× 20− 100
9

=
152
9
≈ 16.89.

(2) When p′1 � 20 and the optimal posted prices
p = (100, p′1), we have

0.1× 100 + 0.9× p′1c
′
1 > p′1c

′
1 + (1− c′1)× 20⇒

100 < (200− p′1)c
′
1.

The minimal possible p′1 = 20 with c′1 ∈ (5
9 , 1]. In this

case, the utility of a level-1 agent in her mind is

0.1× 100 + 0.9× 20− 20 = 8.

(3) When p′1 > 20 and the optimal posted prices
p = (p′1, 20), we have

p′1c
′
1 + (1− c′1)× 20 > 0.1× 100 + 0.9× p′1c

′
1 ⇒

100 > (200− p′1)c
′
1.

The minimal possible p′1 is approximately equal to 20
with c′1 ∈ (0, 5

9 ). In this case, the utility of a level-1
agent in her mind is approximately

0.1× 100 + 0.9× 20− 20 = 8.

According to the above discussion, the optimal re-
ported distribution D̃·,1 of a level-1 agent is with p′1 =
100
9 + εv and c′1 = 1, where εv could be an arbitrarily

small positive number. Since p′1 < 20, the item will
be taken by a level-1 agent if the item is left when she
comes to the market. The strategy of a level-2 agent is
quite simple. She should trade before the level-1 agent
with a minimal possible price p′2 = p′1 + εv and prob-
ability mass c′2 = 1. Similarly, for a level-k (k > 2)
agent, p′k = p′k−1 + εv and c′k = 1. For the discrete
scenarios with a minimum unit of the value, εv could
equal the minimum unit. Then we could obtain a se-
ries of pathological strategies of agents predicted by the
level-k model when the minimum unit is small enough.

Notice that the agents are i.i.d. in Example 2. So
in many restricted or extended sequential posted pric-
ing scenarios, e.g., constrained sequential posted pric-
ing scenarios described by Xiao et al.[5], the agents pre-
dicted by the level-k model might be ill-defined or have
a series of pathological strategies.
3.3 Cognitive Hierarchy Model Analysis

In the previous subsection, we analyze the agents pre-
dicted by the level-k model. In this subsection, we
turn to the agents predicted by the cognitive hierar-
chy model. As only level-0 agents in a level-1 agent’s
mind, the behavior of a level-1 agent has been analyzed
in Subsection 3.1. We can start with the agents with
level-2 sophistication.
3.3.1 Cognitive Hierarchy Agent

Recall that a level-k agent predicted by the cogni-
tive hierarchy model believes that other agents follow a
proportion of different sophistication levels, from level-
0 to level-(k−1). Suppose that there are n agents with
true value distribution {Di}ni=1. In general, we assume
Agent n has level-k sophistication. Her belief of differ-
ent sophistication levels is {gk,l}k−1

l=0 and the reported
distribution is D̃i,l for an Agent i (1 � i < n) with
level-l (0 � l < k) sophistication with D̃i,0 = Di.

For the individual sophistication case, the optimal
reported distribution D̃n,k should maximize

ED′
i∼{D̃i,l}k−1

l=0 ,{gk,l}k−1
l=0

⎧
⎨

⎩

⎡

⎣
π̂−1(n)−1∏

i=1

(1−dπ̂(i)(p̂π̂(i)))

⎤

⎦ ×
⎡

⎣
∑

v:v∈supp(Dn),v�p̂n

(v − p̂n)cn(v)

⎤

⎦

⎫
⎬

⎭ ,

where D′
i is drawn independently from {D̃i,l}k−1

l=0 with
probability gk,l for the distribution D̃i,l, and {π̂, p̂} are
the auctioneer’s optimal strategy when Agent n reports
D̃n,k as well as other agents reporting {D′

i}n−1
i=1 . Notice

that for different {D′
i}n−1

i=1 , the posted price p̂n can have
different values. Thus, the maximal number of possible
non-zero elements in support of D̃n,k could be kn−1.
We can obtain D̃n,k by solving inequality constraints
as Algorithm 2 with the following steps: 1○ Enumerate
all possible {D′

i}n−1
i=1 ; 2○ For each {D′

i}ni=1, enumerate
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a posted price vector {p̂{D′
i}n

i=1
i }n−1

i=1 as Algorithm 2; 3○
Enumerate the order of all posted prices p̂n and obtain
all inequality constraints. Algorithm 4 shows a possible
way to calculate D̃n,k.

Algorithm 4 Optimal expected utility of level-k
agent n predicted by the individual-sophistication cog-
nitive hierarchy model
Input true value distribution Dn, agents’ reported
distributions {{D̃i,l}kl=0}n−1

i=1

Output optimal expected utility optRev
1: let optRev← 0
2: let suppall ←

(
∪n−1

i=1 ∪k−1
l=0 supp(D̃i,l)

)
∪ supp(Dn)

3: for each possible {p̂{D′
i}n−1

i=1
1 , p̂

{D′
i}n−1

i=1
2 , · · · , p̂

{D′
i}n−1

i=1
n−1 }

of all {D′
i}n−1

i=1 do

4: for the intervals of suppall containing each p̂
{D′

i}n−1
i=1

n

and the order of all p̂
{D′

i}n−1
i=1

n do
5: obtain a series of inequality constraints about

p̂
{D′

i}n−1
i=1

n and c̃n,k(p̂{D′
i}n−1

i=1
n )p̂{D′

i}n−1
i=1

n

6: calculate the optimal utility under inequality con-
straints and update optRev

7: end for
8: end for
9: return optRev

For the global sophistication case, the optimal re-
ported distribution D̃n,k should maximize

k−1∑

l=0

⎧
⎨

⎩gk,l

⎡

⎣
π̂−1(n)−1∏

i=1

(1− dπ̂(i)(p̂π̂(i)))

⎤

⎦ ×
⎡

⎣
∑

v:v∈supp(Dn),v�p̂n

(v − p̂n)cn(v)

⎤

⎦

⎫
⎬

⎭ ,

where (π̂, p̂ = (p̂1, p̂2, · · · , p̂n)) are the auctioneer’s op-
timal strategy when Agent n reports D̃n,k as well as
other agents reporting {D̃i,l}n−1

i=1 . Notice that for dif-
ferent l, the posted price p̂n can have different values.
Thus, the maximal number of possible non-zero ele-
ments in support of D̃n,k could be k. We can obtain
D̃n,k by solving inequality constraints as Algorithm 2
with the following steps: 1○ For each l, enumerate a
posted price vector {p̂l

i}n−1
i=1 as Algorithm 2; 2○ Enu-

merate the order of all posted prices p̂l
n and obtain in-

equality constraints. Algorithm 5 shows a possible way
to calculate D̃n,k.

Algorithm 5 Optimal expected utility of the level-
k Agent n predicted by the individual-sophistication
cognitive hierarchy model

Input True value distribution Dn, agents’ reported
distributions {{D̃i,l}kl=0}n−1

i=1

Output optimal expected utility optRev
1: let optRev← 0
2: let suppall ←

(
∪n−1

i=1 ∪k−1
l=0 supp(D̃i,l)

)
∪ supp(Dn)

3: for each possible {p̂l
1, p̂

l
2, · · · , p̂l

n−1} of all l do
4: for the intervals of suppall containing each p̂l

n and
the order of all p̂l

n do
5: obtain a series of inequality constraints about p̂l

n

and c̃n,k(pl
n)p̂l

n

6: calculate the optimal utility under inequality con-
straints and update optRev

7: end for
8: end for
9: return optRev

3.3.2 Ill-defined Example for Cognitive Hierarchy
Agent

As Example 3 shows, the cognitive hierarchy model
with either sophistication case is ill-defined in continu-
ous scenarios.

Example 3 Consider a similar scenario in Exam-
ple 2 that 2 agents have the same value distribution
D = D1 = D2 with probability mass 0.1 at 100 and
probability mass 0.9 at 20. For the 2-agent case, the
individual and global sophistication cases are the same
ones.

As the analysis in Example 2, the optimal reported
distribution of agents with level-1 sophistication is with
probability mass 1 at 100

9 + εv for an arbitrarily small
positive number εv. Since εv is an arbitrarily small pos-
itive number, the distribution with probability mass
1 at 100

9 + 2εv is a near-optimal strategy for level-1
agents. Moreover, the agent reported the new distribu-
tion could take the item before a level-1 agent. So the
optimal reported distribution of agents with level-1 so-
phistication is probability mass 1 at 100

9 +2εv if g2,1. We
can apply the same analysis to each sophistication level.
Thus, the reported distribution of a level-k (k > 0) is
with probability mass 1 at 100

9 + kεv.
It should be pointed out that for a discrete scenario,

the {gk,l} parameters could ease the pathological phe-
nomenon. For example, all gk,0 are 1 − 10−5, and the
minimum units of the values in the discrete scenario
are large enough, e.g., 1, so that all level-k agents only
need to care about the non-strategic agents.

4 Experiments

4.1 Experimental Setup
4.1.1 Environment

Like Example 2 and Example 3, we consider dis-
crete sequential posted pricing scenarios with n (n � 2)
agents. In the scenarios, the minimum unit of the values
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is μ, and the true value distribution Di of each Agent i
is with probability mass 0.9 at 100 and 0.1 at 20. In our
experiments, μ could be 1, 0.1, 0.01. We assume that
if the auctioneer posts the same price to more than one
agent, the order of these agents is randomly selected.
4.1.2 Belief in Cognitive Hierarchy Model

For the cognitive hierarchy model, we assume that
the sophistication is Poisson distributed following the
setting in the cognitive hierarchy paper[15]. For a level-
k agent, she believes that an Agent i has a level-l so-
phistication with probability:

gk,l =
τ l/l!

∑k−1
i=0 τ i/i!

,

where τ is parameter of the Poisson distribution and we
set τ = 1.5 as the cognitive hierarchy paper suggests[15].
4.1.3 Risk Tolerance

In the previous sections, we assume that agents are
risk-neutral. However, an agent with bounded rational-
ity could be risk-averse or risk-seeking. For an Agent i
with risk-tolerant degree α, her utility is ui = (pi−vi)α

when she takes the item with her value vi and a posted
price pi � vi.
4.2 Main Results and Analysis
4.2.1 Level-k Model Results

For the level-k model, we have predicted the existence
of pathological strategies by the analysis in Subsection
3.2. We first validate the pathological phenomenon
with minimum unit μ = 1, 0.1, 0.01 and analyze the

impact of the precision on the behaviors of agents with
different sophistication levels.

As Fig. 1 shows, the pathological and cycling phe-
nomena occur. In Fig. 1(a), the highest support in-
creases with 1 per sophistication level. When the agent
has a level-10 sophistication, the highest support of her
reported distribution is 21, which is the largest pos-
sible highest support. When the agent has a level-11
sophistication, the highest support of her reported dis-
tribution drops to 0, and the highest support re-begins
to increase with 1 per sophistication level. The cy-
cling phenomenon occurs per 22 sophistication levels.
In Fig. 1(b), the highest support increases with 0.1 per
sophistication level. When the agent has a level-90 so-
phistication, the highest support of her reported dis-
tribution is 20.1, which is the largest possible highest
support. When the agent has a level-91 sophistication,
the highest support of her reported distribution drops
to 0, and the highest support re-begins to increase with
0.1 per sophistication level. We can predict that the
cycling phenomenon occurs per 202 sophistication lev-
els. In Fig. 1(c), the highest support increases with 0.01
per sophistication level. With the previous two figures,
we can predict that the highest support of her reported
distribution is 20.01 when the agent has a level-890 so-
phistication, and it drops to 0 when the agent has a
level-891 sophistication. After the dropping, the high-
est support will re-begin to increase with 0.01 per so-
phistication level. We can predict that the cycling phe-
nomenon occurs per 2002 sophistication levels.
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Fig. 1 Highest support of risk-neutral agents predicted by the level-k model with μ = 1, 0.1, 0.01. All figures show the
pathological phenomena of agents’ strategies, and (b) and (c) show the cycling phenomena

Then we consider the agents with different risk tol-
erances. Figure 2 shows that risk aversion could help
the convergence. Different from the result in Fig. 1(a),
Fig. 2(a) shows that the strategies of sophisticated
risk-averse agents converge after sophistication level-8.
However, for μ = 0.1, 0.01, the strategies remain to
form cycles with each 22 levels, which indicates that
the precision of μ could prevent the convergence of the
level-k model. The following experiments will provide
more pieces of evidence for the impact of α.

It still remains a problem whether the strategies con-
verged or formed cycles with an increasing number of
agents. In Subsection 3.1.3, we show that the utility
of a sophisticated agent could be reduced with enough
agents. We are curious about the relationship between
convergence and the number of agents. Now we set up
an experiment with the different number of agents from
2 to 100 to analyze the strategies of the agents with
minimum unit u = 1. Figure 3 shows the relationship
between the maximal highest support and the number
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(a) α=0.5, μ=1 (b) α=0.5, μ=0.1 (c) α=0.5, μ=0.01

(d) α=1.5, μ=1 (e) α=1.5, μ=0.1 (f) α=1.5, μ=0.01
Fig. 2 Highest support of risk-averse (α = 0.5) and risk-seeking (α = 1.5) agents predicted by the level-k model with

μ = 1, 0.1, 0.01. Only (a) shows a different result from the risk-neutral case
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(a) α=0.5 (b) α=1.0 (c) α=1.5
Fig. 3 Maximal highest support of risk-averse (α = 0.5), risk-neutral (α = 1), and risk-seeking (α = 1.5) agents predicted

by the level-k model with the number of agents from 2 to 100. The minimum unit u is set to 1. In all three figures,
the maximal highest support converges to 99

of agents with different risk tolerances. In Fig. 3(a),
the maximal highest support converges to 99 with 39
risk-averse agents. In Fig. 3(b), the maximal highest
support converges to 99 with 55 risk-neutral agents.
In Fig. 3(c), the maximal highest support converges to
99 with 73 risk-seeking agents. All these three figures
show that the maximal highest support increases with
the increment of the number of agents and finally all
converge to 99. Comparing Figs. 3(a)—3(c), we find
that the risk-averse level promotes the agents reporting
high values.

Notice that the strategies can form cycles even the
maximal highest support converge. The strategies need
about extra 20 agents to converge since the maximal
highest support converges to 99 for the agents with dif-
ferent risk tolerances. Figure 4 illustrates the thresh-

olds for the number of risk-averse agents between the
converged strategies and the cycling strategies. Fig-
ures 4(a) and 4(b) show that the strategies of sophisti-
cated agents form cycles with 3 to 54 risk-averse agents.
Figure 4(c) shows that the strategies of sophisticated
agents converge with 55 or more risk-averse agents. Fig-
ure 5 illustrates the thresholds for the number of risk-
neutral agents between the converged strategies and the
cycling strategies. Figure 5(a) shows that the strate-
gies of sophisticated agents form cycles with 2 to 73
risk-neutral agents. Figure 5(b) shows that the strate-
gies of sophisticated agents converge with 74 or more
risk-neutral agents. Figure 6 illustrates the thresholds
for the number of risk-seeking agents between the con-
verged strategies and the cycling strategies. Figure 6(a)
shows that the strategies of sophisticated agents form
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(a) Strategies still form cycles
     when n=3

(b) Strategies still form cycles
     when n=54

(c) Strategies converge when
    n=55

Fig. 4 Highest support of risk-averse (α = 0.5) agents predicted by the level-k model with the number of agents n = 3, 54, 55
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Fig. 5 Highest support of risk-neutral (α = 1) agents predicted by the level-k model with the number of agents n = 73, 74
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(a) Strategies still form cycles when n=93 (b) strategies converge when n=94
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Fig. 6 Highest support of risk-seeking (α = 1.5) agents predicted by the level-k model with the number of agents n = 93, 94

cycles with 2 to 93 risk-seeking agents. Figure 6(b)
shows that the strategies of sophisticated agents con-
verge with 94 or more risk-seeking agents. Table 1
shows the thresholds of the final convergence move to a
larger number of agents when the agents increase their
risk-seeking level. The table points out the starting
point of different convergences on the number of agents.
The second column illustrates the least numbers of so-
phisticated agents with maximal highest support 99 in
Fig. 3. The third column illustrates the least numbers
of sophisticated agents with the converging reported

distribution of 99 with probability mass 1 in Figs. 4—6.
The fourth column illustrates the length of the cycling-
strategy periods with maximal highest support 99. Re-
call that the maximal highest support starts to converge
at 39, 55, and 73 with risk-averse, risk-neutral, and risk-
seeking agents, respectively. The reported distributions
of sophisticated agents start to converge to the distri-
bution of 99 with probability mass 1 at 55, 74, and
94 for three different risk-tolerant types, respectively.
So the cycling-strategy periods after the convergence of
the maximal highest support are 16, 19, and 21. These
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results indicate that the risk-averse level would urge
the convergence of the strategies of sophisticated agents
and reduce the length of the cycling-strategy period.

Table 1 Convergence on the number of sophisti-
cated agents predicted the level-k model
with μ = 1

Risk-tolerant type
Support

convergence

Strategies’

final

convergence

Differences

Risk-averse (α = 0.5) 39 55 16

Risk-neutral (α = 1) 55 74 19

Risk-seeking (α = 1.5) 73 94 21

4.2.2 Cognitive Hierarchy Model Results
Since the behavior of agents predicted by the cogni-

tive hierarchy model with Poisson distribution always
converges in discrete scenarios, we focus on the length

of the pathological period.
Figure 7 shows the empirical results of the cogni-

tive hierarchy model with different risk tolerances α =
0.5, 1, 1.5 and different minimum units μ = 1, 0.1, 0.01.
We observe that the risk tolerances have almost no ef-
fect in each column of the figures. The reason could
be the early exponential decay of gk,l with τ = 1.5. An
agent with level-k sophistication predicted by the cogni-
tive hierarchy model would merely consider the agents
with a high sophistication level l with a small gk,l. Al-
though the risk-tolerant level α affects the utility of an
agent, the extremely small gk,l prevents strategies from
changing with an increment of the sophistication level.
Each row illustrates the length of the pathological peri-
ods increases with high precision μ. This fact indicates
that the pathological periods could be arbitrarily long
for a high enough precision μ, and the model becomes
ill-defined in the continuous scenarios as the analysis in
Subsection 3.3.
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Fig. 7 Highest support of risk-averse (α = 0.5), risk-neutral (α = 1), and risk-seeking (α = 1.5) agents predicted by the
cognitive hierarchy model with μ = 1, 0.1, 0.01. The figures in the same column (with the same μ) show the similar
results
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Notice that the strategies could keep unchanged be-
fore the convergence as the occurrence in Figs. 7(c)
and 7(d). The convergence of the agents’ behaviors pre-
dicted by the cognitive hierarchy model needs a careful
check. This is the reason why we still run the experi-
ments to level-100 for the cognitive hierarchy model.
4.2.3 Discussion about Bayesian Nash Equilibrium

The main rival of the level-k model and the cognitive
hierarchy model is the Bayesian Nash equilibrium. The
Bayesian Nash equilibrium in both discrete and con-
tinuous scenarios is not easy to compute as the agents
report a distribution. We might obtain the equilibrium
by a bi-matrix equilibrium solver and Algorithm 2 in
the discrete scenarios. For the converged scenarios in
the previous experiments, the convergence of the level-
k model with enough number of agents to the distri-
bution of 99 with probability mass 1 indicates that
all agents reporting this distribution form a symmet-
ric Bayesian Nash equilibrium. For the non-converged
scenarios, solving the bi-matrix game induced by cy-
cling strategies will also obtain a symmetric Bayesian
Nash equilibrium.

5 Conclusion and Discussion

We analyze the behavior of boundedly rational agents
predicted by the level-k model and the cognitive hierar-
chy model in sequential posted pricing when the value
distributions could be manipulated. We show that so-
phisticated agents could exploit the auctioneer by mis-
reporting the distribution. Then we propose the algo-
rithms to compute the optimal strategies of the sophis-
ticated agents predicted by both models. However, we
find that both models are ill-defined when agents’ val-
ues are continuous and could have pathological strate-
gies when the values are discrete. After the theoretical
analysis, we evaluate the behavior of agents in different
settings, including different minimum units of the val-
ues, different risk tolerances, and different numbers of
agents. The results show that a large minimum unit,
the risk-averse level, and a large number of agents would
help the behavior of agents predicted by the level-k
model converge and prevent the occurrence of cycling
strategies. For the cognitive hierarchy model, the be-
lief distributions of the sophisticated agents and the
precision of the values have the greatest impact on the
convergence.

In stock markets or online exchange markets, there
are usually enough agents with similar highest values,
and the posted prices of the auctioneer could be accu-
rate to the penny. The behavior of agents predicted
by the level-k model could somehow explain the win-
ner’s curse in these markets, which could be modeled
as a sequential posted pricing auction. However, there
are still some unexplained behaviors. By the level-k
model, all the auctioneers would post near the highest

prices that the agents could accept. Even more, each
agent reporting a distribution with the highest support
near her highest value could be a Bayesian Nash equi-
librium, and the equilibrium would predict the same
behavior of the auctioneers. However, the same item
might have different posted prices in some online mar-
kets. The highest price could be about 4 or 5 times
as much as the lowest. This fact illustrates that both
the Bayesian Nash equilibrium and the level-k model
have difficulties explaining human behaviors in sequen-
tial posted pricing. Meanwhile, the cognitive hierar-
chy model would suggest small prices, except τ is large
enough, and the agents with extremely high sophistica-
tion levels are considered. Thus, all these three models
have difficulties in explaining the behavior of the opti-
mal auctioneer.

Although we briefly discuss the Bayesian Nash equi-
librium in the discrete scenarios in Subsection 4.2.3,
how to compute the Bayesian Nash equilibrium in the
continuous scenarios remains unknown even with i.i.d.
value distributions. Another issue is characterizing auc-
tioneers with bounded rationality to explain the behav-
ior of real auctioneers, which is an interesting future
work. For example, the huge gap between different
prices might be caused by the different estimations of
the agents’ values. At last, as we mentioned before,
both the level-k model and cognitive hierarchy model
could be ill-defined or have pathological strategies. Im-
proving two models to avoid or ease these phenomena
could be a challenge.
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