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Abstract: To solve the synchronization and tracking problems, a cooperative control scheme is proposed for
a class of higher-order multi-input and multi-output (MIMO) nonlinear multi-agent systems (MASs) subjected
to uncertainties and external disturbances. First, coupled relationships among Laplace matrix, leader-following
adjacency matrix and consensus error are analyzed based on undirected graph. Furthermore, nonlinear disturbance
observers (NDOs) are designed to estimate compounded disturbances in MASs, and a distributed cooperative anti-
disturbance control protocol is proposed for high-order MIMO nonlinear MASs based on the outputs of NDOs
and dynamic surface control approach. Finally, the feasibility and effectiveness of the proposed scheme are proven
based on Lyapunov stability theory and simulation experiments.
Keywords: nonlinear disturbance observer (NDO), higher-order multi-input and multi-output (MIMO) system,
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0 Introduction

Control systems have developed from centralization,
decentralization, fieldbus to intelligent control. In ad-
dition, the control unit has become increasingly intelli-
gent. Modern control systems have taken on the shape
of multi-agent systems (MASs), and the control method
of the systems is increasingly trending toward multi-
agent cooperative control mode. Compared with indi-
vidual intelligent system, MASs have the advantages
of high efficiency, high reliability, flexibility, robustness
and fault tolerance, as well as the ability to perform
certain tasks that would be difficult for a single agent
to do[1]. Nowadays, MASs are widely used in forma-
tion control[2-3], cluster control[4-5], electric networks,
and sensor networks[6-8].

The main researches in the field of MASs control
include formation problems[9-10], cluster problems[11],
consensus problems[12-15], etc. Considering that the
computation capacity and communication bandwidth
of individual agent are usually limited in engineering
practice, the problem of consensus control, which only
requires local agents in a system by communicating
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with each other to achieve an overall cooperation, has
received an extensive attention from researchers[16-17].
In order to further reduce the computation burden of in-
dividual agent, a problem of event-triggered consensus
control about MASs was studied in Refs. [18-20], which
effectively reduced the communication cost and com-
putation burden caused by repeated communication
among agents with the event-trigger scheme that was
introduced in the controller. However, event-trigger
scheme will cause the Zeno phenomenon sometimes,
which is a situation that certain events are triggered
repeatedly over a period of time, making the introduc-
tion of this scheme undesirable. To analyze the reason
of Zeno phenomenon, the basic properties of the mini-
mum event trigger interval in several event-trigger con-
trol structures were studied in Ref. [21], including the
influence of external disturbances and measuring noise.
In addition, the finite-time consensus problem has been
widely studied in order to keep the system with a high
tracking accuracy and convergence speed[22-24]. The
finite-time consensus problem under switching topology
condition was investigated in Refs. [25-27], and then a
distributed switching cooperative control protocol was
constructed that can make the system achieve finite-
time consensus. However, when the initial state of the
system is unknown, the upper bound of the conver-
gence time cannot be calculated. In order to overcome
the aforementioned limitation, the fixed time consen-
sus problem based on MASs with non-linear dynamics
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was studied in Refs. [28-29], which excluded the influ-
ence of the initial state of the system for the global
stable convergence time. It is worth mentioning that
the above studies are based on single-input and single-
output (SISO) system models, while multi-input and
multi-output (MIMO) characteristic is widely present
in agent models of engineering practice, such as un-
manned aircraft (UAV)[30], and unmanned vessel[31].
Therefore, the consensus problem for a class of MIMO
multi-agent systems in the presence of input saturation,
specified time and unknown dead zone was investigated
in Refs. [32-34], respectively. Although positive results
have been obtained in above studies, the design pro-
cess, structure and stability proof of the controller be-
came complicated while satisfying various performances
of the system.

The application scenario of MASs always surrounded
by various unknown disturbances is extensive and com-
plex, while the tracking accuracy of the system is im-
portant in engineering practice. Fortunately, distur-
bance observer, which is physically significant and sim-
ple in structure, has been proven to be an effective
method to deal with system uncertainties and unknown
external disturbances[35]. In Ref. [35], a distributed dis-
turbance observer was constructed for a class of non-
linear MASs with external disturbances and switching
topology to estimate the disturbances suffered by fol-
lowers, then a distributed consensus control protocol
based on the observer was proposed. To address a class
of nonlinear systems with parameter uncertainties, and
matched and mismatched disturbances, a disturbance
observer with only one tuning parameter was designed
in Ref. [36] to attain the disturbance compensation, and
then by combining it with command filter technique
and adaptive control, a command filtering controller
with adaptive-gain auxiliary systems was developed,
achieving an asymptotic tracking. However, it is worth
noting that the above studies of MASs have been lim-
ited to first- or second-order system models. In fact,
many systems of objects are modeled with higher order
dynamics in nature and engineering; for example, single
linkage flexible joint robotic arm systems and pendulum
arm systems are modeled with fourth and third order
dynamics respectively[37]. For higher-order systems,
backstepping method makes the design of the controller
very standard, and its advantages in improving the
quality of system transition process maintain the sta-
bility and error convergence, making it one of the most
effective methods for dealing with complex nonlinear
system control problems[38]. For a class of high-order
MIMO nonlinear systems with unmeasurable states, an
adaptive fuzzy output feedback control protocol has
been constructed in Ref. [39] using the backstepping
method. However, traditional backstepping method
produces a “computational explosion” problem when
resolving the higher order derivatives of the virtual con-

trol law[40]. Dynamic surface control (DSC) effectively
solves this problem by estimating the virtual control law
and derivative at each step through the use of first-order
filter[41-44]. In Ref. [41], the principle and technical de-
tails of DSC were described, furthermore, nonlinear fil-
ter was introduced in the controller design[42], and then
the proposed adaptive dynamic surface control scheme
solved the “computational explosion” problem in the
control of n-degrees of freedom hydraulic manipulators.
Nevertheless, it is not easy to apply existing research
results based on first- or second-order system models
to higher-order MASs. The challenge lies in the stabil-
ity of the Lyapunov function solution and the control
singularity problem in the direct extension of existing
methods[45].

Considering the above discussion and analysis, the
research model in this paper is extended to a class of
uncertain high-order MIMO nonlinear MASs with un-
certainty and unknown external disturbances combin-
ing with engineering practice, and then a distributed
cooperative anti-disturbance scheme is proposed. The
main contribution and work of this paper are as fol-
lows: �Coupled relationships among Laplace matrix,
leader-following adjacency matrix and consensus error
are analyzed based on undirected graphs, which make
the structure of the designed control protocol compara-
tively simple;�Nonlinear disturbance observer (NDO)
is designed to suppress the effects of uncertainties and
external dynamic disturbances on the performance of
closed-loop systems, and a distributed cooperative anti-
disturbance control protocol is developed based on DSC
for high-order MIMO nonlinear MASs to achieve a real-
time tracking of leader output signals; �An appropri-
ate Lyapunov function is designed to demonstrate the
stability of the closed-loop system, and the effectiveness
of the designed control protocol is verified by numerical
simulation.

1 Preliminaries and Problem Formula-
tion

1.1 Algebraic Graph Theory
The communication topology among N (N � 2)

agents can be described by undirected graphs and
directed graphs. Assuming that each node corre-
sponds to an agent, the topology of N nodes is rep-
resented by an undirected graph G = (V , E , A), where
V = (1, 2, · · · , N) is a nonempty set of nodes, E =
{(i, j), i, j ∈ V} is the set of edges formed by ordered
edges of all nodes, and A = [aij ] ∈ RN×N is the
weighted adjacency matrix. If (i, j) ∈ E , then node
i and node j can communicate with each other and
aij > 0; otherwise, aij = 0. If G has no loops, then

aii = 0. Define bi =
N∑

j

aij , j �= i to be the weighted
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in-degree of node i and B = diag(b1, b2, · · · , bN) as the
in-degree matrix. Then, the Laplacian matrix is de-
fined by L = B − A. Assuming that there is a virtual
leader 0 among the MASs, H = diag(h1, h2, · · · , hN )
is defined as the leader-follower adjacency matrix, and
hi is the contact weight between agent i and the vir-
tual leader. When agent i and the virtual leader can
communicate, hi > 0; otherwise, hi = 0. For the com-
munication topology graph shown in Fig. 1, assuming
that the weights of all edges are 1, the in-degree ma-
trix B = diag(1, 2, 2, 1) is obtained, and the adjacency
weight matrix A and Laplace matrix L are as follows:

A =

⎡

⎢⎢⎢⎢⎣

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

⎤

⎥⎥⎥⎥⎦
, L =

⎡

⎢⎢⎢⎢⎣

1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1

⎤

⎥⎥⎥⎥⎦
.

1

2

3

40

Fig. 1 Communication topology diagram

1.2 Problem Statement
Considering a class of high-order MIMO nonlinear

MASs with N nodes, the dynamic equation of agent i
is given as follows:

ẋq
i = F q

i (x̄q
i ) + Gq

i (x̄
q
i )x

q+1
i + Dq

i (x̄
q
i , t)

q = 1, 2, · · · , n − 1
ẋn

i = F n
i (x̄n

i ) + Gn
i (x̄n

i )ui + Dn
i (x̄n

i , t)

yi = x1
i

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (1)

where, i = 1, 2, · · · , N , x̄q
i = [x1

i x2
i · · · xq

i ]
T,

xq
i = [xq

i1 xq
i2 · · · xq

im]T is the state vector of agent i;
ui ∈ Rs, and yi = x1

i ∈ Rm denote the control input
and output of system (1), respectively; F q

i (x̄q
i ) ∈ Rm,

Gq
i (x̄

q
i ) ∈ Rm×m and Gn

i (x̄n
i ) ∈ Rm×s are known

smooth nonlinear functions; Dq
i (x̄

q
i , t) = ΔF q

i (x̄q
i ) +

dq
i (t) is the unknown compound disturbance. Addition-

ally, Δfq
i (x̄q

i ) and dq
i (x̄

q
i , t), q = 1, 2, · · · , n denote the

uncertainties and external time-varying disturbances of
system (1), respectively.

The objective is to develop a distributed cooperative
control protocol for the high-order MIMO nonlinear
MAS (1), which can guarantee that each agent’s out-
put signal yi in the MASs can track the virtual leader
output signal yr with consensus errors converging to
the neighborhood of zero, and all signals in closed-loop
system are eventually consistently bounded.

To facilitate achieving above objectives, the following
assumptions and lemmas are given.

Assumption 1[38] There is a virtual leader 0 with
output yr in high-order MIMO nonlinear MASs, whose
state is measurable and sensible for some followers, and
the output signal of the virtual leader satisfies: yr, ẏr

and ÿr are bounded; that is, there exists an unknown
constant B0 > 0 such that Π0 = {(yr, ẏr, ÿr): ‖yr‖2 +
‖ẏr‖2 + ‖ÿr‖2 � B0}, where ‖·‖ denotes the Frobenius
norm of a matrix or the Euclidean norm of a vector.

Assumption 2[46] For the high-order MIMO non-
linear MAS (1), the derivative of compound disturbance
Dq

i is bounded, that is, there exists unknown constant

βq
i > 0 such that

∥∥∥Ḋq
i

∥∥∥ � βq
i , q = 1, 2, · · · , n.

Assumption 3[47] For the high-order MIMO non-
linear MAS (1), the inverse matrix of Gq

i ∈ Rm×m

exists, q = 1, 2, · · · , n − 1, and the generalized inverse
matrix of Gn

i ∈ Rm×s exists. In addition, there exists
a positive constant λ̄q

i such that λmax(G
q
i (G

q
i )

T) � λ̄q
i ,

q = 1, 2, · · · , n.
Lemma 1[48] Considering bounded initial condi-

tions, if there exists a Cq continuous and positive def-
inite Lyapunov function V (x) satisfying π1(‖x‖) �
V (x) � π2(‖x‖) such that V̇ (x) � −κV (x) + c, where
π1, π2 : Rm → R are class K functions, and κ and
c are positive constants, then the system state x(t) is
eventually consistently bounded.

2 Distributed Cooperative Anti-
Disturbance Control Design

From the coordinate transformation designed by the
standard backstepping approach and the definition of
consensus error, the following consensus tracking error
and coordinate transformation are defined for the high-
order MIMO nonlinear MAS (1):

z1
i =

∑

j∈N

aij(x1
i − x1

j) + hi(x1
i − yr), (2)

zq
i = xq

i − ᾱq−1
i , (3)

zn
i = xn

i − ᾱn−1
i , (4)

where ᾱq−1
i is the output of the following first-order

filter. For instance,

Γ q
i

˙̄αq
i + ᾱq

i = αq
i , ᾱq

i (0) = αq
i (0), (5)

q = 2, 3, · · · , n − 1,

where, Γ q
i = diag(τq

i1, τ
q
i2, · · · , τq

im), τq
il > 0 is the time

constant of the filter, and αq
i is the virtual control law

of the qth subsystem of the ith agent, whose specific
form will be given later. The first-order filter defined
in Eq. (5) is the idea of DSC and addresses the “com-
putational explosion” problem.

To facilitate the subsequent controller design and sta-
bility analysis, the following lemma is first given.
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Lemma 2 Define L̃ = L+H ∈ RN×N and L(·) =
·⊗Im, where ⊗ is the Kronecker product and Im is the
m × m identity matrix; then, the augmented matrix
L(L̃) ∈ RNm×Nm is positive definite and satisfies:

1
2
X1TL(L̃)X1 =

1
2
(Z1 + �)TΔ(Z1 + �) =

1
2
(Z1 + �)TX1, (6)

where, X1 = [x1
1 x1

2 · · · x1
N ]T ∈ RNm; z1

i =
[z1

i1 z1
i2 · · · z1

im]T ∈ Rm, Z1 = [z1
1 z1

2 · · · z1
N ]T ∈

RNm; �i = [hiy
r
1 hiy

r
2 · · · hiy

r
m]T, � =

[�1 �2 · · · �N ]T; z1
il =

∑

j∈N

aij(x1
il − x1

jl)+ hi(x1
il −

yr
l ), z1

il, x1
il and yr

l denote the lth component of the con-
sensus tracking error vector z1

i , the state vector x1
i and

the virtual leader output vector yr, respectively.
Proof see Appendix.
The design of a distributed cooperative anti-

disturbance control protocol for higher order MIMO
nonlinear MASs based on DSC and NDO will be given
as follows:

Step 1 From Eq. (1), the first order subsystem of
the ith agent can be described as

ẋ1
i = F 1

i (x̄1
i ) + G1

i (x̄
1
i )x

2
i + D1

i (x̄1
i , t). (7)

It follows from Eq. (2) that the consensus error of
system (1) can be given as

z1
i =

∑

j∈N

aij(x1
i − x1

j) + hi(x1
i − yr). (8)

To suppress the effect of the compound disturbance
D1

i on the performance of the closed-loop system, the
following NDO is designed:

D̂1
i = η1

i + P 1
i , (9)

η̇1
i = −L1

i η
1
i − L1

i (P
1
i + F 1

i + G1
i x

2
i ), (10)

where η1
i ∈ Rm is the state vector of the disturbance

observer, P 1
i ∈ Rm is the designed function vector, and

L1
i = ∂P 1

i /∂x1
i ∈ Rm×m.

Based on the output of the NDO, the following vir-
tual control law can be designed for the first-order sub-
system of the ith agent:

α1
i = (−G1

i )
−1

[
C1

i (z1
i + �i) + F 1

i + D̂1
i

]

λmin(C1
i ) � ki

2
λmax(Δ) +

1
2
(λ̄1

i + 1)

⎫
⎪⎬

⎪⎭
, (11)

where C1
i = (C1

i )T > 0 and ki > 0 are the parameters
to be designed.

Step 2 From Eq. (2), the tracking error of the 2nd
subsystem of the ith agent can be defined as

z2
i = x2

i − ᾱ1
i , (12)

where ᾱ1
i is the filtered signal of the virtual control law

α1
i designed in the 1st step, and taking the derivative

of both sides of Eq. (12) with respect to time yields

ż2
i = F 2

i (x̄2
i ) + G2

i (x̄
2
i )x

3
i + D2

i (x̄2
i , t) − ˙̄α1

1. (13)

Like Step 1, the following NDO is constructed for
the 2nd subsystem of the ith agent to approximate the
composite disturbance:

D̂2
i = η2

i + P 2
i , (14)

η̇2
i = −L2

i η
2
i − L2

i (P
2
i + F 2

i + G2
i x

3
i ), (15)

where η2
i ∈ Rm is the state vector of the disturbance

observer, P 2
i ∈ Rm is the designed function vector, and

L2
i = ∂P 2

i /∂x2
i ∈ Rm×m.

Based on the output of the NDO, the following vir-
tual control law can be designed for the 2nd subsystem
of the ith agent:

α2
i = (−G2

i )
−1[C2

i z2
i + (G1

i )
T(z1

i + �i)+

F 2
i − ˙̄α1

i + D̂2
i ], (16)

where C2
i = (C2

i )T > 0 is the parameter to be designed.
Step q (3 � q � n− 1) It follows from Eq. (3) that

the tracking error of the qth subsystem of the ith agent
can be defined as

zq
i = xq

i − ᾱq−1
i , (17)

where ᾱq−1
i is the filtered signal of the virtual control

law αq−1
i designed in the (q−1)th step, and taking the

derivative of both sides of Eq. (17) with respect to time
yields

żq
i = F q

i (x̄q
i ) + Gq

i (x̄
q
i )x

q+1
i + Dq

i (x̄
q
i , t) − ˙̄αq−1

1 . (18)

Like Step 1, the following NDO is constructed for the
system to approximate the compound disturbance:

D̂q
i = ηq

i + P q
i , (19)

η̇q
i = −Lq

i η
q
i − Lq

i (P
q
i + F q

i + Gq
i x

q+1
i ), (20)

where ηq
i ∈ Rm is the state vector of the disturbance

observer, P q
i ∈ Rm is the designed function vector, and

Lq
i = ∂P q

i /∂xq
i ∈ Rm×m.

Based on the output of the NDO, the following vir-
tual control law can be designed for the qth subsystem
of the ith agent:

αq
i =(−Gq

i )
−1[Cq

i zq
i + (Gq−1

i )Tzq−1
i +

F q
i − ˙̄αq−1

i + D̂q
i ], (21)

where Cq
i = (Cq

i )T > 0 is the parameter to be designed.
Step n It follows from Eq. (4) that the tracking er-

ror of the nth subsystem of the ith agent can be defined
as

zn
i = xn

i − ᾱn−1
i , (22)
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where ᾱn−1
i is the filtered signal of the virtual control

law αn−1
i designed in the (n−1)th step, and taking the

derivative of both sides of Eq. (22) with respect to time
yields

żn
i = F n

i (x̄n
i ) + Gn

i (x̄n
i )ui + Dn

i (x̄n
i , t) − ˙̄αn−1

1 . (23)

Like Step 1, the following NDO is constructed for the
system to approximate the compound disturbance:

D̂n
i = ηn

i + P n
i , (24)

η̇n
i = −Ln

i ηn
i − Ln

i (P n
i + F n

i + Gn
i u), (25)

where ηn
i ∈ Rm is the state vector of the disturbance

observer, P n
i ∈ Rm is the designed function vector, and

Ln
i = ∂P n

i /∂xn
i ∈ Rm×m.

Based on the output of the NDO, the following con-
trol protocol can be designed for the ith agent

ui = − Gn
i (Gn

i (Gn
i )T)−1[Cn

i zn
i + (Gn−1

i )Tzn−1
i +

F n
i − ˙̄αn−1

i + D̂n
i ], (26)

where Cn
i = (Cn

i )T > 0 is the parameter to be de-
signed.

Theorem 1 Consider the high-order MIMO non-
linear MAS (1) satisfying Assumptions 1—3. The
NDOs are given as Eqs. (18), (19), (23), (24), (28), (29),
(33) and (34), and the virtual control laws are designed
as Eqs. (11), (16) and (21). Under the NDO-based dis-
tributed cooperative anti-disturbance controller (26),
the closed-loop system satisfies: output signal yi is lo-
cated in a small neighborhood of yr which is the output
signal of the virtual leader, and all signals in the closed-
loop system are bounded.

Proof Define the approximation error of NDO as
follows:

D̃q
i = Dq

i − D̂q
i , q = 1, 2, · · · , n. (27)

Differentiating Eq. (27) and invoking Eqs. (24) and (25)
yields

˙̃Dq
i = Ḋq

i − η̇q
i − Lq

i ẋ
q
i =

Ḋq
i + Lq

i η
q
i + Lq

i P
q
i − Lq

i D
q
i =

Ḋq
i − Lq

i D̃
q
i . (28)

Define the filtering error of a first-order filter as

εq
i = ᾱq

i − αq
i , q = 1, 2, · · · , n − 1. (29)

Differentiating both sides of Eq. (29) with respect to
time t yields

ε̇q
i = −(Γ q

i )−1εq
i +

(
− ∂αq

i

∂xq
i

ẋq
i −

∂αq
i

∂zq
i

żq
i − ∂αq

i

∂ηq
i

η̇q
i + ÿr

)
=

− (Γ q
i )−1εq

i + Bq
i (żq

i , zq+1
i , εq

i , η
q
i , yr, ẏr, ÿr), (30)

where Bq
i (·) is a continuous function with respect to

the variables (żq
i , zq+1

i , εq
i , η

q
i , y

r, ẏr, ÿr). Since the sets
Π0 ∈ R3m and Π1 ∈ R2m+1 are compact, Π0 × Π1 is
also compact. By the continuity of the function[49], the
maximum value B̄q

i of function Bq
i (·) exists on Π0×Π1.

Therefore,

ε̇q
i � −(Γ q

i )−1εq
i + B̄q

i . (31)

The candidate Lyapunov function is chosen as

V =
1
2
(X1)TL(L̃)X1 +

N∑

i=1

[ n∑

q=2

1
2
(zq

i )Tzq
i +

n−1∑

q=1

1
2
(εq

i )
Tεq

i +
n∑

q=1

1
2
(D̃q

i )TD̃q
i

]
. (32)

Remark In this paper, coupled relationships
among Laplace matrix, leader-following adjacency ma-
trix and consensus error are analyzed on the basis of
Ref. [43] and summarized in Lemma 2. The study is
on higher-order MIMO nonlinear MASs, which is more
general in engineering practice. In addition, designed
virtual control law is comparatively simple in structure
compared with Ref. [43].

Differentiating Eq. (32) and combining Eq. (6) yields

V̇ =(Z1 + �)TẊ1 +
N∑

i=1

[ n∑

q=2

(zq
i )Tżq

i +

n−1∑

q=1

(εq
i )

Tε̇q
i +

n∑

q=1

(D̃q
i )

T ˙̃Dq
i

]
, (33)

where

(Z1 + �)TẊ1 =
m∑

l=1

(z1
1l + h1ly

r
1l)ẋ

1
1l+

m∑

l=1

(z1
2l + h2ly

r
2l)ẋ

1
2l + · · ·+

m∑

l=1

(z1
Nl + hNly

r
Nl)ẋ

1
Nl =

N∑

i=1

(z1
i + �i)Tẋ1

i . (34)

From Eq. (34), combining Eqs. (9), (10), (11), (14),
(15), (19), (20), (24), (25), (29) and (31) yields

N∑

i=1

(z1
i + �i)Tẋ1

i �

N∑

i=1

{
−

[
λmin(C1

i ) − 1
2
(λ̄1

i + 1)
]
(z1

i + �i)T(z1
i + �i)+

(z1
i + �i)TG1

i z
2
i +

1
2
(ε1

i )
Tε1

i +
1
2
(D̃1

i )TD̃1
i

}
�
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N∑

i=1

[
− k

2
λmax(Δ)(z1

i + �i)T(z1
i + �i)+

(z1
i + �i)TG1

i z
2
i +

1
2
(ε1

i )
Tε1

i +
1
2
(D̃1

i )TD̃1
i

]
�

− k

2
(X1)TL(L̃)X1 +

N∑

i=1

[
(z1

i + �i)TG1
i z

2
i +

1
2
(ε1

i )
Tε1

i +
1
2
(D̃1

i )TD̃1
i

]
, (35)

n∑

q=2

(zq
i )Tżq

i =
n∑

q=2

[
−(zq

i )TCq
i zq

i + (zq
i )TD̃q

i

]
+

n−1∑

q=2

(zq
i )TGq

i ε
q
i − (z2

i )TG1
i (z

1
i + �i), (36)

(εq
i )

Tε̇q
i � −(εq

i )
T(Γ q

i )−1εq
i

+
1
2
(εq

i )
Tεq

i +
1
2
(B̄q

i )TB̄q
i , (37)

(D̃q
i )T ˙̃Dq

i � −(D̃q
i )

TLq
i D̃

q
i +

1
2
(D̃q

i )
TD̃q

i +
1
2
(βq

i )2 �

−
[
λmin(Lq

i ) −
1
2

]
(D̃q

i )TD̃q
i +

1
2
(βq

i )2. (38)

Substituting Eqs. (34)—(38) into Eq. (33) yields

V̇ �
N∑

i=1

(z1
i + �i)Tẋ1

i +

N∑

i=1

[ n∑

q=2

(zq
i )Tżq

i +
n−1∑

q=1

(εq
i )

Tε̇q
i +

n∑

q=1

(D̃q
i )T ˙̃Dq

i

]
�

− k

2
(X1)TL(L̃)X1−

N∑

i=1

[ n−1∑

q=2

(
λmin(Cq

i ) − 1
2
(λ̄q

i + 1)
)
(zq

i )Tzq
i +

(
λmin(Cn

i ) − 1
2

)
(zn

i )Tzn
i

]
−

N∑

i=1

[ n−1∑

q=1

(λmin(Γ q
i )−1 − 1)(εq

i )
Tεq

i

]
−

N∑

i=1

[ n∑

q=1

(λmin(Lq
i ) − 1)(D̃q

i )
TD̃q

i

]
+

N∑

i=1

( n−1∑

q=1

1
2
(B̄q

i )TB̄q
i +

n∑

q=1

1
2
(βq

i )2
)

�

− κV + M, (39)

where

κ = min
{

k, λmin(Cq
i ) − 1

2
(λ̄q

i + 1),

λmin(Cn
i ) − 1

2
, λmin(Γ q

i )−1 − 1,

λmin(Lq
i ) − 1

}
> 0,

M =
N∑

i=1

[ n−1∑

q=1

1
2
(B̄q

i )TB̄q
i +

n∑

q=1

1
2
(βq

i )2
]
,

q = 1, 2, · · · , n.

This concludes the proof.

3 Simulation Results

In this section, simulations are performed to ver-
ify the effectiveness of the proposed distributed anti-
disturbance cooperative control protocol. The MASs
consist of one virtual leader 0 and four followers with
numbered A1, A2, A3 and A4. The output of the vir-
tual leader is yr = [sin 0.5t cos 0.5t]T, and the topol-
ogy is shown in Fig. 1. The corresponding degree ma-
trix B, adjacency weight matrix A and Laplace ma-
trix are given previously. H = diag(0, 1, 0, 0), L(L̃) =
L(L+H) = L(L)+L(H), and λmax(Δ) = 4.414. The
dynamical system model of each follower is described as

ẋ1
i =

[
x1

i1 sin x1
i1

x1
i2

]
+

[
x2

i1

x2
i2

]
+ D1

i ,

ẋ2
i =

[
0.1x1

i1x
2
i1/x1

11 + 1

x2
i2 cosx1

i1 sin x2
i1

]
+

[
u1

u2

]
+ D2

i ,

y = x1
i , i = 1, 2, 3, 4.

The initial values for each follower are x1,0 =
[0.4 0 0.3 0]T, x2,0 = [0.3 0.2 0 0]T, x3,0 =
[0.3 0.2 0.5 0]T and x4,0 = [0.3 0.2 0.2 0]T, the
parameter ki is chosen to be ki = 2, and the other pa-
rameters and controller design parameters are shown in
Table 1. From the parameters in Table 1, the parameter
C1

i satisfies the conditions of Eq. (11).
Simulation results show the performance of the pro-

posed distributed anti-disturbance cooperative control
protocol in Figs. 2—7. Figures 2—4 show the track-
ing effect x1

i , tracking error eTi , and consensus error
z1

i , respectively. The tracking error is used to describe

2
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,x
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r
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80 100
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A3
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Fig. 2 Tracking effect of followers
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Table 1 Other parameters and controller design parameters

Agent A1 A2 A3 A4

D1
D1

11 = 0.3 cos(0.5t)

D1
12 = 0.1 cos(0.3t)

D1
21 = 0.7 sin(0.1t)

D1
22 = 0.5 sin(0.1t)

D1
31 = 0.2 sin(0.2t)

D1
32 = 0.5 sin(0.1t)

D1
41 = 0.6 cos(0.3t)

D1
41 = 0.2 cos(0.2t)

C1
i

⎡

⎣100 0

0 100

⎤

⎦

⎡

⎣100 0

0 100

⎤

⎦

⎡

⎣100 0

0 100

⎤

⎦

⎡

⎣100 0

0 100

⎤

⎦

P1
i

⎡

⎣0.8x1
11 + 0.3

0.8x1
12 + 0.1

⎤

⎦

⎡

⎣x1
21

x1
22

⎤

⎦

⎡

⎣x1
31

x1
32

⎤

⎦

⎡

⎣x1
41 + 0.3

x1
42

⎤

⎦

D2
D2

11 = 0.8 sin(0.5t)

D2
12 = 0.1 cos(0.2t)

D2
21 = 0.6 sin(0.5t)

D2
22 = 0.5 cos(0.2t)

D2
31 = 0.5 sin(0.2t)

D2
32 = 0.3 cos(0.2t)

D2
41 = 0.6 sin(0.7t)

D2
42 = 0.3 cos(0.3t)

C2
i

⎡

⎣10 0

0 10

⎤

⎦

⎡

⎣10 0

0 10

⎤

⎦

⎡

⎣10 0

0 10

⎤

⎦

⎡

⎣10 0

0 10

⎤

⎦

P2
i

[
0.8x2

11 0.8x2
12

]T [
x2
21 x2

22

]T [
x2
31 x2

32

]T [
x2
41 x2

42

]T
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Fig. 3 Tracking error of followers to leaders
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the tracking performance of the follower i output sig-
nal xi on the virtual leader 0 output signal yr, that
is, lim

t→∞
∥∥x1

i − yr
∥∥ = 0. The consensus error is used to

describe the deviation of the states among agents, and
the smaller its value, the better MASs can work cooper-

2
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u i
1
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80 100

0 20 40 60
t/s

80 100

A1
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u i
2

Fig. 5 Control input of followers

atively, that is, lim
t→∞

∑

j∈N

aij(x1
i −x1

j)+hi(x1
i −yr) = 0.

From Figs. 3 and 4, it can be seen that after about 3 s
of adjustment, the tracking error and consensus error of
all followers are stable within ±1%, which means that
the designed controller has a good control effect. Fig-
ure 5 shows the controller input signals (ui1 and ui2),
because the initial state of each agent is different and
needs to be adjusted quickly, so input signals are jit-
tered at the beginning, after which the signals are stable
within ±2. From Fig. 6, it can be seen that the designed
NDO is effective for online estimation of compound dis-
turbances. To further analyze the effect of NDO on the
performance of the closed-loop system, the simulation
comparison plots of the follower consensus error and
tracking error with and without the addition of NDO
are given in Fig. 7. It can be seen that the addition
of NDO can reduce the tracking error and consistency
error by about five times at the peak.
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4 Conclusion

In this paper, the leader-following consensus problem
is investigated for a class of high-order MIMO nonlinear
MASs with uncertainties and dynamic disturbances in
undirected topology. By employing NDO to estimate
the compound disturbances online and based on DSC,
a distributed cooperative anti-disturbance control pro-
tocol is designed for the high-order MIMO nonlinear
MASs. By analyzing the coupled relationships among
Laplace matrix, leader-following adjacency matrix and
consensus error, the Lyapunov function is constructed
to ensure that the designed control protocol is struc-
turally simple and all signals in the closed loop sys-
tem are bounded. In the future, the distributed anti-

disturbance cooperative control protocol for high-order
MIMO nonlinear MASs will be considered in the pres-
ence of directed graphs, dynamic topologies and prac-
tical engineering application.
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Appendix

From the definition of the augmented matrix L(·),
the following equation holds:

L(L̃) = L(L + H) = L(L) + L(H), (A1)

where L(L) ∈ RNm×Nm and L(H) ∈ RNm×Nm are
both real symmetric matrices. Since L(H) is a diagonal
matrix with main diagonal elements hi � 0, L(H) is
semipositive definite.

Noting

L(L) = L(B − A) =

⎡

⎢⎢⎣

c11 · · · c1Nm

...
...

cNm1 · · · cNmNm

⎤

⎥⎥⎦ , (A2)

let λ0 be any eigenvalue of L(L) and ξ0 be the eigen-
vector associated with λ0, such that L(L)ξ0 = λ0ξ0.
The ith component of ξ0 is ξi (i = 1, 2, · · · , Nm), and
L(L)ξ0 = λ0ξ0 can be expressed as a system of linear
equations as follows:

c11ξ1 + c12ξ2 + · · · + c1NmξNm = λ0ξ1

c21ξ1 + c22ξ2 + · · · + c2NmξNm = λ0ξ2

...
cNm1ξ1 + cNm2ξ2 + · · · + cNmNmξNm = λ0ξNm

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(A3)

Suppose that |ξr| is the largest of the magnitudes
|ξ1|, |ξ2| , · · · , |ξNm|. Based on Eq. (A3), the following
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formula holds:

(λ0 − crr)ξr = cr1ξ1 + · · · + cr(r−1)ξr−1+
cr(r+1)ξr+1 + · · · + crNmξNm, (A4)

|(λ0 − crr)| |ξr| � |cr1| |ξ1| + · · · + ∣∣cr(r−1)

∣∣ |ξr−1|+∣∣cr(r+1)

∣∣ |ξr+1| + · · · + |crNm| |ξNm| �
(
|cr1| + · · · + ∣∣cr(r−1)

∣∣ +
∣∣cr(r+1)

∣∣ + · · ·+

|crNm|
)
|ξr| � � |ξr| , (A5)

crr − � � λ0 � crr + �, (A6)

where � = |cr1|+ · · ·+∣∣cr(r−1)

∣∣+
∣∣cr(r+1)

∣∣+ · · ·+ |crNm|.
From graph theory, it follows that

crr = − (cr1 + · · · + cr(r−1) + cr(r+1) + · · · + crNm) =
� � 0. (A7)

It follows from Eqs. (A6) and (A7) that any eigen-
value of L(L) satisfies λ0 � 0. Whereupon L(L) is a
semipositive definite real symmetric matrix. Consider-
ing L(L̃) = L(L)+L(H), it is possible to obtain eigen-
values of L(L̃) satisfying λ̃0 � 0. L(L̃) is a semipositive
definite real symmetric matrix, whose Nm eigenvalues

are λ1, λ2, · · · , λNm. Define ξ = (ξ1, ξ2, · · · , ξNm) ∈
RNm×Nm to be the orthogonal matrix of L(L̃) and
ξ1, ξ2, · · · , ξNm to be the eigenvectors corresponding
to the eigenvalues λ1, λ2, · · · , λNm, and obtain ξTξ =
ξξT = INm, where INm ∈ RNm×Nm is the identity
matrix. Then, it follows from real symmetric matrix
properties that

1
2
(X1)TL(L̃)X1 =

1
2
(X1)TξTΛξX1 =

1
2
(X1)TξTΛξξTΛ−1ξξTΛξX1 =

1
2
(X1)TL(L̃)ξTΛ−1ξL(L̃)X1 =

1
2
(Z1 + �)TΔ(Z1 + �), (A8)

where Λ = diag(λ1, λ2, · · · , λNm) and Δ = ξTΛ−1ξ.
Combining the Laplace matrix with the definition of

the matrix L(L̃) leads to

1
2
(X1)TL(L̃)X1 =

1
2
(Z1 + �)TX1. (A9)

This concludes the proof.


