
J. Shanghai Jiao Tong Univ. (Sci.), 2023

https://doi.org/10.1007/s12204-023-2666-z

Gait Learning Reproduction for Quadruped Robots Based on
Experience Evolution Proximal Policy Optimization

LI Chunyang (���), ZHU Xiaoqing∗ (���), RUAN Xiaogang (���),
LIU Xinyuan (���), ZHANG Siyuan (���)

(Faculty of Information Technology, Beijing University of Technology; Beijing Key Laboratory of Computational
Intelligence and Intelligent System; Engineering Research Center of Digital Community of Ministry of Education,

Beijing 100124, China)

© Shanghai Jiao Tong University 2023

Abstract: Bionic gait learning of quadruped robots based on reinforcement learning has become a hot research
topic. The proximal policy optimization (PPO) algorithm has a low probability of learning a successful gait from
scratch due to problems such as reward sparsity. To solve the problem, we propose a experience evolution proximal
policy optimization (EEPPO) algorithm which integrates PPO with priori knowledge highlighting by evolutionary
strategy. We use the successful trained samples as priori knowledge to guide the learning direction in order to
increase the success probability of the learning algorithm. To verify the effectiveness of the proposed EEPPO
algorithm, we have conducted simulation experiments of the quadruped robot gait learning task on Pybullet.
Experimental results show that the central pattern generator based radial basis function (CPG-RBF) network
and the policy network are simultaneously updated to achieve the quadruped robot’s bionic diagonal trot gait
learning task using key information such as the robot’s speed, posture and joints information. Experimental
comparison results with the traditional soft actor-critic (SAC) algorithm validate the superiority of the proposed
EEPPO algorithm, which can learn a more stable diagonal trot gait in flat terrain.
Key words: quadruped robot, proximal policy optimization (PPO), priori knowledge, evolutionary strategy,
bionic gait learning
CLC number: TP 242 Document code: A

0 Introduction

The control of quadruped robots, being a highly non-
linear structure, requires the kinematics and dynamics
of the robots, as well as the modeling of their control
model. Since the first quadruped robot was born in
1960[1], bionic quadruped robots have been an interest-
ing research topic for scholars. This type of robot is
a dynamic system with complex control features that
is strongly coupled and has numerous inputs and out-
puts. Owing to the intricate nature of the situation,
conventional control approaches that allow for the ex-
amination of the environment and the development of
pertinent mathematical models cannot encompass all
eventualities[2]. Therefore, deep reinforcement learning
(DRL) algorithms[3-5] can be used to tackle the com-
plexity of traditional control techniques, enabling the
robot to learn locomotion skills through many interac-
tions with the environment via trial and error, just like

Received: 2023-02-20 Accepted: 2023-03-14
Foundation item: the National Natural Science Founda-

tion of China (No. 62103009)
∗E-mail: alex.zhuxq@bjut.edu.cn

animals in nature.
Thor et al.[6] developed a legged robot motion control

system utilizing a central pattern generator (CPG). The
approach was appraised by its successful application to
three different types of legged robots, yet fell short of
providing the desired degree of interaction with the en-
vironment. Subsequently, Peng et al.[7-8] introduced
DeepMimic, which makes use of reinforcement learning
methods for the robotic acrobatics learning process, ne-
cessitating expert knowledge of both the robotics sys-
tem and the desired locomotion skill. Lee et al.[5] then
implemented the use of proprioceptive information from
the robot to achieve a stable walking of ANYmal robots
by means of DRL approaches, necessitating large com-
putational resources. Rahme et al.[9] further adjusted
the robot’s gait by way of Bezier curves as a low-order
open loop model combined with the augmented random
search method. Tan et al.[10] adopted two sinusoidal
functions and proximal policy optimization (PPO) to
construct the foot trajectory for the support of the
quadruped robot’s reinforcement learning. However,
the gait learning process can be too rigid due to the
priori knowledge provided by the fixed trajectory.

J. Shanghai Jiao Tong Univ. (Sci.), 2023

To address the aforementioned issues, this paper
proposes experience evolution proximal policy opti-
mization (EEPPO) algorithm, a gait learning algorithm
for quadruped robots which integrates PPO with priori
knowledge comprising evolutionary guidance to enable
quadruped robots to achieve an effective bionic diagonal
trot gait learned from scratch. Following prior work in
Refs. [5, 9-10], the construction of the controller in this
research consists of two components: a priori knowl-
edge provided by a foot trajectory generator (FTG) and
a residual control signal generated by a neural network
(NN)-based policy, both of which are subsequently com-
bined to generate the signal to control the motor. The
FTG in this research utilizes a central pattern genera-
tor based radial basis function (CPG-RBF) network[6]

and leverages the evolution strategy (ES)[11] to seek
for the optimal trajectory in trajectory space and op-
timize the linear network parameters. As opposed to
previous work, the provided priori knowledge is not
a fixed trajectory, and thus allows the robot’s foot-
end trajectory to be adapted to the environment and
the robot itself during training, which leads to better
matching with the quadruped’s own motion character-
istics, contributes to a more robust update direction
of the DRL policy network, and ultimately provides
better quality training models. The update of the pol-
icy network follows the PPO algorithm, a stable on-
policy learning method capable of demonstrating ex-
cellent performance in controlling the tasks with con-
tinuous episodes[12].

In this paper, the effectiveness of the EEPPO al-
gorithm is evaluated through its application in a
quadruped robot learning a forward trot gait from
scratch. The algorithm combines prior knowledge opti-
mization with PPO and leverages the reward function
of the environment to motivate the robot towards faster
and more energy-efficient paths. The results obtained
by experiments show that the proposed approach out-
performs prior methods in terms of stability, coordina-
tion, and flexibility of the robot’s movement. Finally,
we demonstrate that the robot can learn stable forward
bionic gait strategies while interacting with its environ-
ment on flat terrain.

1 Deep Reinforcement Learning for
Quadruped Robot Gait Learning

1.1 Problem Description
In this section, we formulate the task of controlling

quadrupedal robots locomotion as a Markov decision
process (MDP) and solve it using DRL. The MDP is de-
fined by a tuple (S, A, P (st+1|st, at), R, γ)[13-14], where
S is the finite state space, A is the finite action space,
P (st+1|st, at) is a probabilistic transition function, st is
the state of the agent at the current moment, at is the
action of the agent at the current moment, st+1 is the

state of the agent at the next moment, R is the reward
function, and γ ∈ [0, 1] is the discount factor that can
be used to ensure that the return is finite. Here, rt indi-
cates the expected reward obtained by the agent at time
t after taking the action at. The goal of the controller
based on reinforcement learning is to select an optimal
policy π∗, so that the robot can obtain the maximum
expected average reward during the movement process:

π∗ = argmax
π

Est+1∼P

(∞∑
t=0

γtrt

)
. (1)

In this paper, we have adopted an actor-critic rein-
forcement learning framework[15] to identify the opti-
mal policy, wherein the state value function Vθ(st) is
used to estimate the expected future reward:

Vθ(st) = Eat∼π(st)

(∞∑
t=0

γtrt

)
. (2)

The state value function can be approximated by
minimizing the temporal difference (TD) error, which
serves as the loss function of the critic network:

L(Vθ) = [Vθ(st) − (rt + Vθ(st+1))]2. (3)

We use the neural network θ to represent the policy
πθ(st). The optimal policy can be achieved by maximiz-
ing the expected reward, with the loss function of the
actor network represented as the negative state value
function. Consequently, we are able to identify the best
policy for our problem.

L(πθ) = −Vθ(st). (4)

1.2 State and Action Space
State space is st ∈ R

49, which contains 49-
dimensional data. The state st includes the roll an-
gle, pitch angle, yaw angle and angular velocity of the
robot body obtained from the inertial measurement
unit (IMU), the four binary values representing whether
the foot joints of the robot are supported on the ground
or suspended in the air, the angle and angular velocity
of each motor joint of the robot, and the speed of the
robot body in the world coordinate system. The dis-
tinction between our study and Refs. [5, 9-10] is that we
add the FTG signal to the state space, which is a 12-
dimensional motor control signal. In this way, various
observations may be appropriately utilized to capture
the status of the quadruped robot in the environment,
thereby learning the most suitable gait strategy for the
robot given its real-time state.

Action space is at ∈ R
12, which contains 12-

dimensional data and consists of the angles of 12 motors
of the robot, tracked by the joint-level PD controller in
order to reach the desired angle.

J. Shanghai Jiao Tong Univ. (Sci.), 2023

1.3 Reward Function
In this study, we have designed a reward function to

enable our model to learn a stable and energy-efficient
bionic trot gait. The reward function consists of three
distinct components:

(1) The speed reward, including two speed rewards,
is to encourage the forward movement of the quadruped
robot, which can be formulated as

rv = w1vbase + w2

4∑
f=1

vfeet,f , (5)

where w1 = 1.0, w2 = 0.2, vbase is the velocity of the
robot’s center of mass, and vfeet,f is the velocity of the
four foot-end joints of the robot.

(2) The stability reward, containing three penal-
ties that cause the robot to be unstable, enables the
quadruped robot to move smoothly, which can be ex-
pressed as follows:

rs = − w3

√
θ2
roll + θ2

pitch − w4ncollision−
w5 max(nloss contact − 2, 0), (6)

where w3 = 0.3, w4 = 0.1, w5 = 0.1; θroll and θpitch rep-
resent the robot’s roll and pitch angles, respectively;
ncollision is the number of torso joints that touch the
ground; nloss contact is the number of foot-end joints not
on the ground. The first item is to penalize the oscil-
lations of two attitude angles of the robot, and thus
prevent excessive displacements of its center of mass.
The second item is to penalize the case in which the
robot’s trunk comes into contact with the ground. The
third item is to penalize the robot when nloss contact

is greater than two joints which indicate the robot is
severely unstable.

(3) The energy reward, which has only one penalty
term, is used to penalize the robot for consuming ex-
cessive energy during movements:

re = −w6 |τq| dt, (7)

where w6 = 0.1, τ is the motor torque, and q is the
motor velocity.

The total reward can be obtained by

r = rv + rs + re. (8)

1.4 Foot Trajectory Generator Including Evo-
lutionary Strategy

We employed a CPG-RBF neural network to gener-
ate foot trajectories[6], which provide prior knowledge
of the motion to the policy network as a reference tra-
jectory for policy learning. The CPG-RBF network,
which combines a CPG with an RBF network, consists
of an input layer, a hidden layer and a linear layer[16].

The input layer utilizes two sinusoidal signals to rep-
resent the rhythmic signal outputted from the CPG,
which are defined as follows:

o0(t) = A sin(ωt)
o1(t) = A sin(ωt + B)

}
, (9)

where A is the amplitude, ω is the frequency, and B is
the phase between two signals.

The hidden layer of the CPG-RBF neural network
is an artificial neural network that utilizes the RBF as
its activation function, thus providing flexibility in the
construction of various foot trajectories by altering the
parameters in the RBF network. The transfer function
for the hidden layer is specified as follows:

Lm =

exp
[
− (o0(t) − μm,0)2 + (o1(t) − μm,1)2

σ2
RBF

]
, (10)

m = 1, 2, · · · , H − 1,

μm,n = on

((i − 1)T
H − 1

)
, n = 0, 1, (11)

where Lm is the output of the RBF neuron after receiv-
ing the CPG signal, μm,0 and μm,1 are the two mean
values of RBF neuron calculated by Eq. (11), σ2

RBF is
the variance between neuron outputs, and H is the
number of neurons in the hidden layer.

The output layer consists of a fully connected layer,
which is used to calculate the target angles of each joint
of the robot based on the result of

K = WLm + b, m = 1, 2, · · · , H − 1, (12)

where W and b are respectively the weights and biases
of the linear layer, and K includes 12 target angles.

We employ the CPG-RBF to optimize the shape of
the foot-end trajectories, and an RBF network to gen-
erate diverse foot trajectories. Because of the low-
dimensional structure of the trajectory space and be-
cause sampling in the parameter space may lead to
trajectories that deviate significantly from the cur-
rent trajectory[14], an evolutionary strategy is then em-
ployed to search for the optimal trajectory in the tra-
jectory space. We use τ0 to denote the ideal optimal
trajectory, while K(τ0) denotes the collection of control
points as the trajectory space. In each iteration of the
optimization process, we add Gaussian noise to K(τ0)
and sample 50 foot trajectories in trajectory space, the
control points of which are solved for joint angles by
inverse kinematics. The trajectory with the highest re-
ward value is selected as the optimal foot trajectory and
the parameters of the RBF network are updated follow-
ing Ref. [17]. As a result, FTG constantly optimizes the
parameters of the CPG-RBF network to generate op-
timal prior knowledge of the motion in order to better
guide policy network updates.

J. Shanghai Jiao Tong Univ. (Sci.), 2023

1.5 Proximal Policy Optimization Algorithm
The PPO[15] algorithm is an innovative DRL algo-

rithm developed by OpenAI in 2017. PPO builds upon
the policy gradient (PG)[18] algorithm, addresses issues
of inefficient sampling, and slows convergence when the
PG is sensitive to hyperparameters. The agent initially
interacts with the environment using πθ, and the policy
network learns from the gathered data. Updates to the
parameters θ result in a new policy πθ′ being acquired.
This in turn necessitates the re-sampling of the training
data, leading to an exceedingly low utilization efficiency
of the sampled data in the traditional PG method[19].
The PG algorithm uses

∇R̄πθ
= Eτ∼pπθ

(t)[R(τ)∇ ln pπθ
(τ)], (13)

to update the policy, where τ is the trajectory created
by policy πθ, θ is the parameter of policy πθ, R(τ) is
the sum of trajectory rewards, pπθ

(τ) is the probability
of a trajectory, and R̄θ is the expected rewards.

To reuse training data, the PPO algorithm is to use
importance sampling in order to utilize data from an-
other distribution to estimate the expected value of the
current distribution[19]. For this purpose, the impor-
tance weight p(x)/q(x) is introduced to handle the dif-
ference between the two distributions:

Ex∼p[f(x)] ≈ 1
N

N∑
i=1

f(xi) =

∫
f(x)p(x)dx =

∫
f(x)

p(x)
q(x)

dx =

Ex∼q

[
f(x)

p(x)
q(x)

]
, (14)

where Ex∼p[f(x)] is the expectation of the function
f(x), p(x) is a distribution of the x, and q(x) is the
another distribution of the x.

Following the use of important sampling, the pre-
dicted reward update formula is modified from Eq. (13)
to

∇R̄πθ
= Eτ∼pπ

θ′ (t)

[pπθ
(t)

pπθ′ (t)
R(τ)∇ ln pπθ

(τ)
]
, (15)

where pπθ′ is the new probability after the updates of
θ.

The predicted reward update equation is amended
from Eq. (13) to Eq. (15), subsequent to the utilization
of importance sampling. It should be noted that the dif-
ference between the two distributions should not be too
large, otherwise it would take a substantial amount of
sampling in order to compute an approximate result[19].

After R(τ) in Eq. (15) is replaced with the advantage
function Aθ(st, at), Eq. (15) can be transformed as

∇R̄θ = Eτ∼pθ′ (t)

[pθ(st, at)
pθ′(st, at)

Aθ(st, at)∇ log pθ(τ)
]

=

Eτ∼pθ′ (t)

[pθ(at|st)pθ(st)
pθ′(at|st)pθ′(st)

Aθ(st, at)∇ log pθ(at|st)
]
.

(16)

According to the theorem of importance sampling,
the difference between the two distributions is ex-
pected to be modest, that is pθ(st) ≈ pθ′(st). With-
out a constraint, the maximization of expected re-
ward would lead to an overly large policy update;
thus it becomes imperative to clip the probability ratio
pθ(st, at)/pθ′(st, at). The surrogate objective is

Jθ′
(θ) = E(st,at)∼πθ′

[
min

(pθ(at|st)
pθ′(at|st)

Aθ′
(st, at),

clip
(pθ(at|st)

pθ′(at|st)
Aθ′

(st, at), 1 − σ, 1 + σ
))]

, (17)

where Aθ(st, at) uses generalized advantaged estima-
tion (GAE)[20], and the clip function modifies the sur-
rogate objective by clipping the probability ratio.
1.6 Algorithmic Framework

This paper proposes a novel gait learning algorithm
for quadruped robots, which integrates PPO and priori
knowledge that comprise evolutionary guidance. The
algorithm framework is shown in Fig. 1.

First, the FTG provides periodic signals that serve as
a priori knowledge for the policy network, which is com-
bined with the observation of the robot in the environ-
ment as a state. Then, the policy network output and
the signal from the FTG are superimposed to produce
the robot’s final control signal, and the PD controller is
used to drive the motor motions to the corresponding
locations defined by the signal. Next, FTG searches
the trajectory space using an evolution strategy
and optimizes the parameters of the corresponding

Reference foot trajectory generator Inverse kinematics

Evolutionary strategy
Episode rewardUpdate

K
at

st πθ(st)
PD control

State

Batch memory
Update

+

Fig. 1 Algorithm framework

J. Shanghai Jiao Tong Univ. (Sci.), 2023

CPG-RBF neural network. Finally, the PPO method is
used to optimize the policy network through the data in
the experience pool, allowing the robot to acquire mo-
tion abilities through its interactions in the simulated
environment.

2 Experiment and Result Analysis

2.1 Simulation Experiment Environment
Unitree A1 is a quadruped robot with 12 joints, each

driven by a brushless motor. As shown in Fig. 2, each
leg has three joints, which include the rolling hip joint,
pitching hip joint, and pitching knee joint. Four legs of
the robot are labeled FR (front right), FL (front left),
BR (back right), and BL (back left). The torso of Uni-
tree A1 has a size of 0.5 m × 0.3 m × 0.4 m (length×
width× height), with a total mass of 12.7 kg. An IMU
integrated into the torso allows for sensing of the robot’s
attitude, velocity, and angular velocity; additionally,
each joint features an angle sensor for further informa-
tion retrieval.

Fig. 2 Unitree A1 robot

All experiments were conducted using a laptop
equipped with an NVIDIA GeForce GTX 3060 GPU
and running the Ubuntu 18.04 operating system. The
Pybullet[21] physics engine was utilized to simulate the
training environment. The robot interacted with flat
terrain during experiments. Each training episode was
composed of two situations: one in which the robot
fell and was unable to proceed and the other in which
the training steps exceeded the maximum limit of 600
steps. At the end of each training episode, the Pybul-
let environment would be reset and the robot would be
brought back to the origin to start again.
2.2 Results and Analysis of Trained Model
2.2.1 Episode Reward During Quadruped Training

To evaluate the efficacy of the proposed EEPPO al-
gorithm, it was compared with the soft actor-critic
(SAC) algorithm, an off-policy model-free DRL algo-
rithm. We trained a robot for 8 million steps, and the
results are reflected in Fig. 3, which represent the sum
reward value of each episode of the robot in the simu-
lation environment. The red curve in Fig. 3 represents
the EEPPO algorithm and the blue curve stands for
the SAC algorithm. The EEPPO algorithm was able

to reach convergence at 1.6 million steps, retaining a
reward value of 3 300 during its steady-state, and man-
ifesting a stable converged policy. In contrast, the SAC
algorithm only attained convergence after 0.4 million
steps, securing an average reward value of 2 400, which
is markedly lower than that turned out by the EEPPO
algorithm, as well as presenting an unstable converged
policy.

EEPPO
SACE

pi
so

de
 r

ew
ar

d

3 500

3 000

2 500

2 000

1 500

1 000

500

0 2 4
Steps×10−6

6 8

Fig. 3 Reward curves when training

According to Fig. 3, in the beginning of training
phase, the proposed EEPPO algorithm needs to ex-
plore the environment and has a lot of interactions to
gain experience. However, SAC is an off-policy learning
method that takes temporal-difference updates, so it is
easier to select actions with high scores during policy
learning. Therefore, rewards can increase quickly in the
initial training phase. As for EEPPO algorithm, due to
its stability in training, it has a lot of exploration pro-
cesses at the beginning. After it gets the message of
forward stable movement, the training curve achieved
a rapid increase at 700 000 steps. When the increas-
ing speeds of two curves are almost the same, because
the ultimate reward of EEPPO algorithm is 30% higher
than that of SAC algorithm, thus its convergence point
is later than that of SAC algorithm.
2.2.2 Displacement and Velocity Analysis of

Quadruped
Figure 4 illustrates the horizontal distance trav-

eled by the robot’s center of mass in x direction
while traversing flat terrain at a consistent velocity of

10

8

6

4

2

0 4 8
t/s

x/
m

12 16

Fig. 4 Distance of the moved center of mass

J. Shanghai Jiao Tong Univ. (Sci.), 2023

0.67m/s in a duration of 15.6 s. This indicates that
the robot’s trajectory is continuous, progressing in a
forward direction.
2.2.3 Analysis of Quadruped’s Swing Angle

The data analysis of the real roll angle and pitch an-
gle of the robot traveling 600 steps in the simulated en-
vironment is shown in Table 1. The standard deviation
of the roll angle is 0.030 209 rad, the standard deviation
of the pitch angle is 0.015 830 rad, the average swing

Table 1 Roll and pitch angle data obtained from
the robot’s IMU rad

Angle
Standard

deviation

Average

value

Maximum

value

Minimum

value

Roll 0.030 209 −0.004 557 0.069 181 −0.086 768

Pitch 0.015 830 −0.004 865 0.058 755 −0.030 999

angle of the robot is less than 0.004 865 rad (< 0.3◦)
and the maximum swing angle is 0.069 181 rad (< 4◦).
The above data shows the feasibility and stability of
the gait controller when the robot is walking.
2.3 Performance Comparison Analysis Be-

tween EEPPO and SAC
2.3.1 Screenshot Analysis of Quadruped Movement

Figure 5 shows the motion screenshots of the
quadruped robot within a simulated environment fol-
lowing training with the EEPPO and SAC algorithms,
photographed from the right side, rear side, and left
side respectively. The EEPPO algorithm enables the
robot to move with greater stability and coordination
on the flat terrain, indicated by the same alternating
movement of all four legs of the robot. In contrast,
the SAC algorithm model results in the left hind leg
of the robot continuously dragging on the ground. The
quadruped robot employs the EEPPO algorithm model

(b) SAC

(a) EEPPO

Fig. 5 Motion state of the robot using EEPPO algorithm and SAC algorithm

J. Shanghai Jiao Tong Univ. (Sci.), 2023

(shown in motion video 1: https://v.youku.com/
v show/id XNTkzMjM3MDUyNA==.html?scm=2014
0719.manual.114461.video XNTkzMjM3MDUyNA==)
and the SAC algorithm model (shown in motion video
2: https://v.youku.com/v show/id XNTkzMjM2OTIy
NA==.html?spm=a2hbt.13141534.1 2.d 0&scm=2014
0719.manual.114461.video XNTkzMjM2OTIyNA==).
Through these visualizations, it can be determined that
the EEPPO algorithm is superior to the SAC algorithm,
as the former allows for a smoother and more stable
movement of the robot.
2.3.2 Comparative Analysis of Attitude Angles

Figures 6 and 7 respectively show the change in the
roll and pitch angles, and the roll angular velocity and
pitch angular velocity of the center of mass for the simu-
lation experiment of a robot walking on the flat terrain.
The red line represents the data from the EEPPO algo-

rithm, whereas the green line represents the data from
the SAC algorithm.

The standard deviation of EEPPO for roll angle is
0.030 209 rad, whereas the standard deviation of SAC
is 0.032 048 rad, which is slightly bigger. Furthermore,
the maximum roll angle of EEPPO is 0.069 181 rad,
which is much smaller than the 0.137 727 rad of SAC.
For the pitch angle, the standard deviation of EEPPO
is 0.015 830 rad, much smaller than 0.033 433 rad of
SAC, and the maximum pitch angle of EEPPO is
0.058 755 rad, much smaller than 0.116 447 rad of SAC.
According to Fig. 7, the peaks and troughs of the an-
gular velocity of the roll and pitch angles of EEPPO
are substantially fewer than those of SAC. It can be
concluded that the model trained by the EEPPO algo-
rithm in the simulation experiments is more stable and
has less jitter during movement than the model trained
by the SAC algorithm.

0 4

A
ng

le
/r

ad

0.15

0.10

0.05

0

−0.05

−0.10

8
t/s

12

EEPPO
SAC

(a) Roll angle

16 0 4

A
ng

le
/r

ad

0.125

0.075

0.025

−0.025

−0.075

8
t/s

12

EEPPO
SAC

(b) Pitch angle

16

Fig. 6 Swing angle of EEPPO vs. SAC

0 4

A
ng

ul
ar

 v
el

oc
it
y/

(r
ad

·s
−

1) 6

4

2

0

−2

−4

−6 A
ng

ul
ar

 v
el

oc
it
y/

(r
ad

·s
−

1)

3

2

1

0

−1

−2

−3

−4
8
t/s

12

(a) Roll angular velocity

16 0 4 8
t/s

12

EEPPO
SAC

(b) Pitch angular velocity

16

EEPPO
SAC

Fig. 7 Swing angular velocity of EEPPO vs. SAC

2.3.3 Comparative Analysis of Foot-End Trajectories
Figure 8 illustrates the four foot-end trajectories in

the xOz plane of the centre-of-mass coordinate sys-
tem of the quadruped robot. The red lines represent

the foot end trajectories of EEPPO, whereas the green
ones show the SAC trajectories. It is apparent from
Fig. 8 that the EEPPO foot-end trajectory exhibits
a more consistent pattern during the period of robot

J. Shanghai Jiao Tong Univ. (Sci.), 2023

−0.16

−0.18

−0.20

−0.22

−0.24

−0.26

−0.28

z/
m

x/m
0 0.05 0.10 0.20 0.250.15

Front left foot
−0.16

−0.18

−0.20

−0.22

−0.24

−0.26

−0.28

z/
m

x/m
0 0.05 0.10 0.20 0.250.15

Front right foot

−0.18

−0.20

−0.22

−0.24

−0.26

z/
m

x/m
−0.45 −0.35 −0.25 −0.15

Back left foot

−0.18

−0.20

−0.22

−0.24

−0.26

z/
m

x/m
−0.35 −0.30 −0.25 −0.20 −0.15

Back right foot

EEPPO, SAC

Fig. 8 Foot trajectory

mobility with 600 steps than that of SAC, which ex-
hibits an irregularity in its trajectory. In addition,
the four EEPPO foot-end trajectories display a simi-
lar shape, whereas the four SAC trajectories differ in
shape. As a result, the EEPPO algorithm produces
reduced fluctuations in swing angles and angular veloc-
ities, resulting in a more stable forward motion as well
as a better coordinated movement of the robot.

3 Conclusion

In this paper, we propose the EEPPO algorithm for
quadruped robot bionic gait learning to address the
task of walking forward stably on flat terrain. To
achieve bionic gait learning, we leverage a CPG-RBF
neural network as the FTG, optimize the priori knowl-
edge using an ES, and use the optimized prior knowl-
edge to drive the PPO algorithm to update the pol-
icy network. The simulation experiments verified the
feasibility and effectiveness of the proposed EEPPO
algorithm, which enabled the quadruped robot to ac-
quire a stable forward trot gait while constantly inter-
acting with its environment. Furthermore, the com-
parison between the SAC algorithm and our proposed
EEPPO algorithm reveals that when the model trained
by EEPPO is used, the training stability and motion
stability of the quadruped robot have been improved.
In order to further validate our algorithm, future work
entails deploying physical experiments in real-world
applications.

Conflict of Interest The authors declare no conflict
of interest.

References

[1] YANG J J, SUN H, WANG C H, et al. An overview
of quadruped robots [J]. Navigation Positioning and
Timing, 2019, 6(5): 61-73 (in Chinese).

[2] ZHANG W, TAN W H, LI Y B. Locmotion control of
quadruped robot based on deep reinforcement learn-
ing: Review and prospect [J]. Journal of Shandong
University (Health Sciences), 2020, 58(8): 61-66 (in
Chinese).

[3] KOHL N, STONE P. Policy gradient reinforcement
learning for fast quadrupedal locomotion [C]//IEEE
International Conference on Robotics and Automation,
2004. New Orleans: IEEE, 2004: 2619-2624.

[4] YANG C Y, YUAN K, ZHU Q G, et al. Multi-expert
learning of adaptive legged locomotion [J]. Science
Robotics, 2020, 5(49): eabb2174.

[5] LEE J, HWANGBO J, WELLHAUSEN L, et al.
Learning quadrupedal locomotion over challenging ter-
rain [J]. Science Robotics, 2020, 5(47): eabc5986.

[6] THOR M, KULVICIUS T, MANOONPONG P.
Generic neural locomotion control framework for
legged robots [J]. IEEE Transactions on Neural Net-
works and Learning Systems, 2021, 32(9): 4013-4025.

[7] PENG X B, ABBEEL P, LEVINE S, et al. Deep-
Mimic: Example-guided deep reinforcement learning
of physics-based character skills [J]. ACM Transactions
on Graphics, 2018, 37(4): 1-14.

J. Shanghai Jiao Tong Univ. (Sci.), 2023

[8] PENG X B, COUMANS E, ZHANG T N, et
al. Learning agile robotic locomotion skills
by imitating animals [DB/OL]. (2020-04-02).
https://arxiv.org/abs/2004.00784

[9] RAHME M, ABRAHAM I, ELWIN M L, et al. Linear
policies are sufficient to enable low-cost quadrupedal
robots to traverse rough terrain [C]//2021 IEEE/RSJ
International Conference on Intelligent Robots and
Systems. Prague: IEEE, 2021: 8469-8476.

[10] TAN J, ZHANG T, COUMANS E, et al. Sim-to-real:
Learning agile locomotion for quadruped robots [J].
(2018-04-27). https://arxiv.org/abs/1804.10332

[11] WANG Z, CHEN C L, DONG D Y. Instance weighted
incremental evolution strategies for reinforcement
learning in dynamic environments [J]. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.
https://doi.org/10.1109/TNNLS.2022.3160173

[12] BELLEGARDA G, CHEN Y Y, LIU Z C, et al. Ro-
bust high-speed running for quadruped robots via deep
reinforcement learning [C]//2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems.
Kyoto: IEEE, 2022: 10364-10370.

[13] SHENG J P, CHEN Y Y, FANG X, et al. Bio-inspired
rhythmic locomotion for quadruped robots [J]. IEEE
Robotics and Automation Letters, 2022, 7(3): 6782-
6789.

[14] SHI H J, ZHOU B, ZENG H S, et al. Reinforce-
ment learning with evolutionary trajectory generator:
A general approach for quadrupedal locomotion [J].
IEEE Robotics and Automation Letters, 2022, 7(2):
3085-3092.

[15] SCHULMAN J, WOLSKI F, DHARIWAL P, et al.
Proximal policy optimization algorithms [DB/OL].
(2017-07-20). https://arxiv.org/abs/1707.06347

[16] PITCHAI M, XIONG X F, THOR M, et al. CPG
driven RBF network control with reinforcement learn-
ing for gait optimization of a dung beetle-like robot
[M]//Artificial neural networks and machine learning –
ICANN 2019: Theoretical neural computation. Cham:
Springer, 2019: 698-710.

[17] SALIMANS T, HO J, CHEN X, et al. Evo-
lution strategies as a scalable alternative to
reinforcement learning [DB/OL]. (2017-05-10).
https://arxiv.org/abs/1703.03864

[18] SUTTON R S, MCALLESTER D, SINGH S, et al.
Policy gradient methods for reinforcement learning
with function approximation [C]// 12th International
Conference on Neural Information Processing Systems.
Denver: ACM, 1999: 1057-1063.

[19] BIE T, ZHU X Q, FU Y, et al. Safety priority path
planning method based on Safe-PPO algorithm [J].
Journal of Beijing University of Aeronautics and As-
tronautics, 2023, 49(8): 2108-2118 (in Chinese).

[20] SCHULMAN J, MORITZ P, LEVINE S, et al.
High-dimensional continuous control using general-
ized advantage estimation [DB/OL]. (2015-06-08).
https://arxiv.org/abs/1506.02438

[21] COUMANS E, BAI Y F. PyBullet quickstart guide
[EB/OL]. [2023-02-01]. https://usermanual.wiki/Doc-
ument/PyBullet20Quickstart20Guide.543993445.pdf

