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Abstract: In current small batch and customized production mode, the products change rapidly and the personal
demand increases sharply. Human-robot cooperation combining the advantages of human and robot is an effective
way to solve the complex assembly. However, the poor reusability of historical assembly knowledge reduces the
adaptability of assembly system to different tasks. For cross-domain strategy transfer, we propose a human-robot
cooperative assembly (HRCA) framework which consists of three main modules: expression of HRCA strategy,
transferring of HRCA strategy, and adaptive planning of motion path. Based on the analysis of subject capability
and component properties, the HRCA strategy suitable for specific tasks is designed. Then the reinforcement
learning is established to optimize the parameters of target encoder for feature extraction. After classification and
segmentation, the actor-critic model is built to realize the adaptive path planning with progressive neural network.
Finally, the proposed framework is verified to adapt to the multi-variety environment, for example, power lithium
batteries.
Key words: human-robot cooperation, strategy transfer, reinforcement learning, progressive neural network,
power lithium battery
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0 Introduction

In current small batch and customized production
mode, the products, for example new-energy automo-
biles, have faster replacement speed and higher demand
of customers. Due to the specific advantages of hu-
man and robot, the combination of human and robot
can maximize the operation efficiency. In current era,
human-robot cooperation (HRC) has good application
effect in the scenes with high complexity or high flexi-
bility, such as integral assembly of automobile.

The traditional HRC refers to that the robot as-
sists human to complete the specific tasks by pre-
programming. In this mode, the assembly system is
sensitive to the environment, making it necessary to
design corresponding control programs of robot for dif-
ferent assembly tasks. In flexible human-robot coopera-
tive assembly (HRCA), the robot can adjust the behav-
ior according to the change of environment and improve
the robustness of assembly operation. Liu et al.[1] and
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Huang et al.[2] respectively analyzed the flexible HRCA
process from the aspects of safety evaluation and intel-
ligent human-robot interaction.

The expression of HRCA strategy has the charac-
teristics of complexity, high abstraction and large time-
variability. From the perspective of target domain sam-
ples, the samples or labels are few when new products
appear, causing that the training process of model in
target domain cannot be carried out. Besides, it is
hard to apply the historical assembly knowledge into
the coming assembly task due to the change of task
scene. Therefore, the reuse of assembly knowledge is
the key to improve the overall assembly responsiveness
by comparing the distributions of the features between
source domain and target domain.

The method of calculating the similarity between
source domain and target domain is an important way
to reuse assembly knowledge. Renu and Mocko[3] found
that the retrieval of text-based assembly process and
knowledge sharing could be realized by using the sim-
ilarity algorithm of text. In the field of robotic con-
trol, transferring the weight parameters of intelligent
model in multi-task environment is an approach to ac-
celerating the training of model in new domain. This
method can greatly reduce the training time of model
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and accumulate the skills learned by agent, further im-
proving the responsiveness of system. In the process of
skill learning, the reinforcement learning (RL) model is
used as the agent for realizing the interaction with the
environment.

In view of the above problems, this paper builds an
encoder-decoder network to extract the assembly fea-
ture of part and design the specific cooperation strate-
gies which will be stored in assembly strategy library.
When the new assembly task appears, the target en-
coder is trained with the source encoder through RL
training. Then the comprehensive evaluation process is
conducted including parts, human and robot. By com-
paring the similarities of the assembly features between
source domain and target domain, the HRC strategy is
quickly retrieved. Due to the different assembly scenes,
the trajectory of robot needs to be replanned accord-
ing to the characteristics of current scene. In that, the
actor-critic (AC) model is established with the progres-
sive neural network (PNN) to realize the adaptive path
planning of robot.

1 Related Work

1.1 HRCA
The mode of HRC fully combines the flexibility of

human with the efficiency of robot. In the sharing envi-
ronment of HRCA, cooperative security is the premise
of efficient HRC. Table 1 shows the research status
on the safety of HRC, which mainly concerns the sys-
tem responsiveness and position accuracy prediction.
Darvish et al.[4] proposed an HRC integrated system
in order to improve the system’s ability to deal with
emergencies, while Abuduweili et al.[5] and Cheng et
al.[6] proposed a trajectory prediction model to ensure
the safety of robot’s motion path. Liu and Wang[7] and
Amorim et al.[8] studied the collision-free HRC method
and took into account the safety and efficiency of coop-
eration based on accurate positioning towards human
target position.

The application research of HRC in assembly field
is shown in Table 2. Makris et al.[9] used augmented
reality (AR) tools to improve the efficiency of work-
ers in obtaining task information and decision-making,
while Raatz et al.[10] used genetic algorithm to assign
assembly tasks to human and robot based on analyz-
ing human-robot ability. Besides, the recognition of
human intention in assembly process is the key to plan
HRC strategy. For example, Liu and Wang[11] and Berg
et al.[12] improved the flexibility of assembly activities
based on hidden Markov model.

Table 1 Research status on safety of HRC

Author Time Main method Main conclusion

Darvish et al.[4] 2018 HRC integrated system Improving worker’s comfort and dealing with
emergencies

Abuduweili et al.[5] 2019 Multi-task model Reducing the error of trajectory prediction in
cooperation

Cheng et al.[6] 2020 Plan identification and trajectory
prediction module

Generating safe and effective motion of robot

Liu and Wang[7] 2021 Collision-free cooperation system Considering the safety and efficiency of HRC

Amorim et al.[8] 2021 Online collision avoidance method Accurately capturing the position of human body,
strong robustness

Table 2 Research status of HRCA

Author Time Main method Main conclusion

Makris et al.[9] 2016 AR integrated HRC Improving decision-making efficiency

Raatz et al.[10] 2020 Genetic algorithm Adaptive task allocation

Liu and Wang[11] 2017 Hidden Markov model Improving the flexibility of assembly activities

Berg et al.[12] 2018 Hierarchical hidden Markov model Intention understanding and safe path planning

In digital assembly environment, the real-time per-
ceived environmental data optimizes the decision-
making of HRC. The existing research covers sequence
planning, task allocation, intention recognition, etc.
However, the research on the expression and transfer
of complex strategy information is rare.

1.2 Knowledge Reuse Based on Transfer
Learning

Transfer learning is the transfer of general principles,
methods, strategies and attitudes learned in one do-
main to another domain, which is widely used in the
field of image processing, text, voice and others. For
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the reuse of product assembly knowledge, Li et al.[13]

used the framework structure to represent the struc-
ture configuration tree of product and stored the design
knowledge through the database for reusing the histor-
ical design knowledge. He et al.[14] proposed a novel
triple deep workflow model for production decision sup-
port problem solving (P-DSPS) and found that the as-
sembly knowledge in similar domains can be extracted
or retrieved. The above methods have implemented the
reuse of knowledge, but the transfer of robotic skills has
not been fully studied.

In HRCA, the operation strategy required by the
robot to solve the corresponding task mainly comes
from two aspects: ① learning operation strategy
through interaction with assembly environment; ②
operation strategy transferred from other domains.
Arana-Arexolaleiba et al.[15] proposed an operation sys-
tem supporting RL, in which the robot learned the task
trajectory from human experts and continuously im-
proved its performance over time. Meanwhile, Raziei
and Moghaddam[16] developed and tested a hyper-actor
AC framework based on task modularization and trans-
fer learning. This method can effectively migrate the
strategies learned in historical tasks to new tasks which
can expand the scope and flexibility of intelligent agent.
Rodŕıguez et al.[17] matched the new task execution di-

agram to obtain similar assembly constraints, so as to
realize the process of pattern recognition and classifica-
tion based on storing semantic assembly constraints.

The core of knowledge or skill transfer lies in the sim-
ilarity score between domains, but the current stage
of similarity calculation is not used in the migration
process of HRC strategy. Therefore, the cross-domain
transfer of HRCA strategies is a key research issue
which can be realized by the comparison of assembly
features between source domain and target domain.

2 Adaptive HRCA Approach

Figure 1 shows the proposed HRCA framework which
realizes the reuse of assembly knowledge from source
domain to target domain. The framework consists of
three main modules: ① Expression of HRCA strategy;
② Transferring of HRCA strategy;③ Adaptive motion
planning of HRCA.

For a specific assembly task, it can be divided into
many subtasks according to the constituent elements.
Using the feature extraction model, the main assembly
features of parts can be obtained, such as the threaded
hole and threaded axis. The mapping rule between as-
sembly features and assembly strategies is constructed
by evaluating the attributes and defining corresponding
HRCA strategy. In that, the HRCA strategy is

...

π1 v1 π1 v1 π1 v1

Fig. 1 HRCA framework with strategy transfer
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designed according to the feature characteristics, such
as feature type and parameters. The combination of
feature type, feature parameters, assembly tool and
action sequence are stored in MySQL database. For
achieving the recognition of assembly features in target
domain, the RL model is established to dynamically
adjust the parameters of target encoder. When the
feature distribution in source domain and the feature
distribution in target domain are close, the classifica-
tion and segmentation decoder in source domain can
be used to process the assembly features in target do-
main. Through searching in the defined database, the
assembly tool and human-robot action sequence corre-
sponding to current task can be obtained. After action
classification, the actions which are executed by robot
mainly contain four elements: initial pose, end pose, ob-
stacle and final action. Corresponding to specific action

category, AC model is adopted in order to plan the safe
trajectory of robot. For shortening the training time
of intelligent agent in similar subtasks, the PNN is in-
troduced in this architecture to reuse the pre-training
model in historical subtasks and realize the continuous
learning of agent.
2.1 Expression of HRCA Strategy

The HRCA strategy reflects the action relationship
among assembly parts, assembly objects and assembly
tools. The process of obtaining the assembly strategy
can be divided into three steps: ① obtaining assembly
feature; ② ability analysis of workers and robots; ③
design of HRCA strategy. As shown in Fig. 2, there
will be multiple effective HRC action sequences for a
specific assembly task. In that, the analysis of ability
towards workers and robots determines the design scope
of HRC strategy.

Grasp part

(b)  Analysis of capability

(a)  Extraction of assembly feature (c)  Design of assembly strategy

Pathgrasp Pathsend-r Pathplace Pathpick Pathsend-h Pathscrew

Pathgrasp Pathsend-h Pathplace Pathpick Pathsend-h Pathscrew

Pathgrasp Pathsend-h Pathplace Pathpick Pathsend-h Pathscrew

Pathgrasp Pathsend-r Pathplace Pathpick Pathsend-r Pathscrew

Send part Place part Pick tool Send tool Screw

Grasp part Send part Place part Pick tool Send tool Screw

Grasp part Send part Place part Pick tool Send tool Screw

Grasp part Send part Place part Pick tool Send tool Screw

HRCA strategy

Fig. 2 Expression of HRCA strategy

(1) Extraction of assembly feature. The assembly
properties of two adjacent components are composed
of feature type, feature parameters, assembly tool and
assembly mode. As shown in Fig. 3, the encoder-
decoder network[18] is used to extract the assembly
feature which contains multi-attention layers. The en-
coder network first converts the point cloud into a high-
dimensional vector to describe the semantic association
through the embedding layer. Then the feature extrac-

tion is realized by connecting several attention layers.
The decoder is adopted to process the obtained feature
vectors and output feature type and point set after seg-
mentation. In feature extraction, the attention module
is replaced by self-attention module for obtaining the
relationship between points with surrounding points.
For the point set, the dimensions of features can be ob-
tained by calculating the coordinates of feature points,
for example the length and width of circular hole.
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Fig. 3 Encoder-decoder network[18] for assembly feature processing

The assembly features can be roughly divided into
the following types: hole, axis, slot, cone, buckle and
others. In that, the connection between axis and hole is
the main assembly approach. According to the thread
feature on the interface of axis or hole, the assembly fea-
tures can be further divided as threaded axis, smooth
axis, threaded hole and smooth hole. In Fig. 4, the

defined assembly mode has 8 types and the defined
assembly tool has 4 types. According to the cate-
gory and parameters of assembly feature, the assem-
bly method and tools used for current assembly can
be got by the reference manual. Besides, the oiliness
and harmfulness of part will be recorded in the Json
file.

... ...

...
...

...

Fig. 4 Relationship among assembly feature, assembly mode and assembly tool

(2) Analysis of capability. HRCA requires that hu-
man and robot need to undertake part of work in col-
laborative space. The assignment of tasks is based on
the ability analysis of human and robot. The indicators
of capability analysis for human and robot are different
which are designed by manual in advance. For human,
the evaluation dimensions mainly include: ① grasping
range of human (Rh); ② grasping load of human (Lh);
③ flexibility of human (Fh = 1). For robot, the eval-
uation items are expressed as the following items: ①
grasping range of robot (Rr); ② grasping load of robot
(Lr); ③ flexibility of robot (Fr = 0). To measure the
ability of human and robot in handling current assem-

bly task, the evaluation is executed from the distance
between assembly part and objects (dpo), the weight
of assembly part (Wp), and the flexibility of assembly
part (Fp). Finally, the feasibility of human and robot
in handling current assembly task will be obtained:

Feasibleh =

{
true, if dpo < Rh and Wp < Lh

false, else
, (1)

Feasibler =

⎧⎪⎨
⎪⎩

true, if dpo < Rr and Wp < Lr

and Fp = 0
false, else

. (2)
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When both human and robot can handle the current
task, the robot will give priority to this task.

(3) Design of assembly strategy. After analyzing
the ability of human and robot, assembly tasks can
be further assigned to human and robot. The as-
sembly strategy mainly contains four parts: operation
subjects, executed action, executed trajectory and ex-
ecuted sequence. Figure 5 shows the human-focused
and robot-focused assembly strategies. When Feasibleh

is true, the category of current assembly subtask can

be defined as human-focused assembly task. When
Feasibleh and Feasibler are both true, the assembly
task is preferentially determined as robot-focused as-
sembly task. In human-focused assembly task, human
operator will execute the final assembly process. As
shown in Fig. 5, the main cooperative strategy can be
selected from the provided three forms. Due to the
differences on assembly scenes, the moving trajectory
needs to be planned according to the specific assembly
environment.

Pathh1
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Positioning

Strategy 1

Human-focused assembly strategy

Category of HRCA strategy

Step 1
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Step 4
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Fig. 5 Human-focused and robot-focused assembly strategies

2.2 Transfer of HRCA Strategy
Because different types of products have differences

in component structure, component size and assembly
sequence, the assembly strategy needs to be redesigned
according to the specific assembly task. The trained
encoder-decoder network in source domain cannot be
directly used to identify the assembly features of parts
in target domain. At the same time, the characteris-

tics of small sample and few labels in target domain
also lead to the failure of normal training in target do-
main. Based on copying the encoder network in source
domain, the parameters of network should be further
adjusted for processing the assembly features in target
domain. As shown in Fig. 6, RL is established to dy-
namically adjust the weight parameters of encoder. In
that, deep Q-learning (DQN) model is the agent which
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Fig. 6 Cross-domain recognition of assembly feature based on RL

takes actions and changes the state of encoder network.
So the action of agent is defined:

A = (a1, a2, a3), (3)
a1 = WE + α, a2 = WA + β, a3 = WL + γ, (4)
WA = (Wq, Wk, Wv), (5)

where, WE, WA and WL respectively stand for the
weights of embedding layer, attention layer and linear
layer; the dimension dα = dWE , dβ1 = dWq , dβ2 = dWk ,
dβ3 = dWv , dγ = dWL ; α, β, γ respectively represent
the offsets of the weights towards the embedding layer,
attention layer and linear layer; Wq, Wk, Wv are the
weights of query, key and value, respectively. When
adjusting the action, the variation range of α, β, γ is
expressed as adding or subtracting one from each ele-
ment of matrix.

The state of environment is related to the feature
distance (ΔF) between source domain (DS) and target
domain (DT). Meanwhile, the assembly features ex-
tracted by the encoder is described as an array vector
which consists of feature elements (ai). For measuring
the similarity of assembly features in different domains,
the cosine similarity evaluation function is adopted as
the measurement matrix:

St = ΔF, (6)

ΔF = cos θ =

n∑
i=1

(aibi)

√√√√ n∑
i=1

a2
i

√√√√ n∑
i=1

b2
i

, (7)

where, the variation range of cos θ is [−1, 1] and the
similarity reaches the maximum if the value is equal to
1; bi is the assembly feature elements in target domain.

When the state of environment changes from St to
St+1, a reward (Rt+1) will be generated to evaluate the
effect of action taken by the RL agent. The reward
function is designed:

Rt = mΔF + C, (8)

where, m is the equilibrium coefficient (set by exper-
iment); C is the constant coefficient for initialing the
reward value.

In Fig. 6, the adopted DQN model includes two lay-
ers: main network and target network. Through the
mechanism of memory replay, these two networks will
be trained by the loss function:

L = (r + γ0 maxQ(a′
i) − Q(ai))2, (9)

where, γ0 stands for the discounting factor of RL; r is
the reward value of Rt; Q is the Q function; a′

i presents
the next action taken by the RL agent.

After RL training stage, the extracted feature of as-
sembly tasks in target domain can be automatically rec-
ognized by classification and segmentation module from
source domain. Finally, the elements of assembly fea-
ture will be output, including feature type and param-
eters. Based on the assembly features, the correspond-
ing assembly mode and tools are deduced. Then the
HRC action sequence including operation subject, op-
eration action, operation path and execution sequence
is obtained by comparing the attributes of the assem-
bly parts in two domains. In that, the spatial distance
between assembly part and operators is input by visual
computing and the weight of part is priori knowledge.
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2.3 Adaptive Motion Planning of HRCA

For the specific assembly task, the HRCA strategy
can be expressed as a set of action sequence. Each mo-
tion in this sequence contains its initial pose, end pose,
running path and final action. Unlike source domain
(DS), the path corresponding to the same type of mo-

tion is not same in target domain (DT). For example,
grasping screwdriver and grasping pliers are different
actions under the same type of motion, which requires
the agent to retrain the model. For enabling the agent
to quickly plan the path in target domain, transferring
the empirical parameters of model from source domain
to target domain can play a key role, as shown in Fig. 7.

Path_1

Path_2

Path_3

Path_4

Path_1'

Path_2'

Path_3'

Path_4'

τ
ττ

τ

Fig. 7 Adaptive motion planning based on PNN

Because the AC framework has unique advantages
in controlling the continuous motion of robot, a dual
AC agent is built in order to adapt to planning the
safe path. As seen from Fig. 7, the network consists
of predict network and global network, in which one
actor subnetwork and two parallel critic subnetworks
are contained. The actor generates action according to
the current state of environment and inputs it to critic
to output Q value. In the loop, the time difference (TD)
error is used to update the parameters of network. In
Fig. 7, “256, FC, relu” respectively indicate the network
with number of neurons, type of network layer and type
of activation function. The dotted line stands for that
the weight remains unchanged during transmission.

In training stage, the state of environment is related
to the following three elements: the distance between
robot and target object (D), the distance between end
effector and obstacle (Do), and safety of robot motion
(Sr). Therefore, the state of environment can be set:

st = (D, Do, Sr), (10)

D =
√

(xr − xo)2 + (yr − yo)2 + (zr − zo)2, (11)

Do = list(
√

(xr − xi)2+(yr − yi)2+(zr − zi)2)
i ∈ [0, I], I = num(obstacle)

}
, (12)

Sr =

{
1, if 0 ∈ Do

− 1, else
, (13)
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where, (xr, yr, zr) stands for the position of end effector;
(xo, yo, zo) is the position of target object; (xi, yi, zi)
represents the position of obstacles.

The action of RL is the angle value (θi) of six joints:

at = (θ1, θ2, θ3, θ4, θ5, θ6). (14)

Then the reward function is set to drive the agent to
learn the skill of planning safe path:

rt = 300− D + Sr

n∑
i=1

8Doi. (15)

In Fig. 7, the transferring learning of agent can be
realized by establishing the lateral connection of net-
work between source domain and target domain. In
that, both actor and critic networks have built the lat-
eral connection for improving the learning effect. For
multiple assembly tasks, the transfer of empirical data
can be achieved by connecting the former networks and
target network. The neuron output of layer i can be
described as hk

i and it can be expressed with lateral
connection:

hk
i = f(W k

i hk
i−1 +

∑
j<k

M j:k
i hj

i−1), (16)

where, W k
i stands for the weight matrix of neurons at

layer i of network k; M j:k
i is the lateral connection from

layer i − 1 of network j to layer i of network k; f(·) is
the activation function corresponding to layer i.

Based on the linear transfer of parameters, the con-
struction of non-linear lateral connection is conductive
to expand the transferring range. In that, the output
composition vector of all layer i − 1 at network k − 1
can be assumed as h:k

i−1 = (h1
i−1, h

2
i−1, · · · , hk−1

i−1 ) with

dimension of n:k
i−1. Therefore, a single-layer neural net-

work can be used to replace the linear lateral connec-
tion. The output of layer i at network k is expressed:

hk
i = f(W k

i hk
i−1 + Mk

i σ(V k
i α:k

i−1h
:k
i−1)), (17)

where, V k
i is the projection matrix, making the dimen-

sion of h:k
i−1 compressed from n:k

i−1 to nk
i−1; α:k

i−1 is the
adjustment coefficient, which is used to adjust the in-
put into the network with single hidden layer; σ(·) is
the activation function.

Under the flexibility, the motion of human can be
fine-tuned by getting the motion with RL agent. After
long-term training, the robot can continuously grow the
capability of adaptive path planning in different assem-
bly scenes.

3 Experiment

3.1 Experimental Setup
For verifying the effectiveness of the proposed frame-

work, the assembly experiment of power lithium bat-
tery is carried out. The main components of power
lithium battery include bottom shell, sealing ring, bat-
tery pack, main cable, top cover, fuse, protective film
and so on. The battery pack part is composed of a bat-
tery module, a heat dissipation guard plate, a fireproof
guard plate and a metal partition plate. In this experi-
ment, two types of lithium batteries are used, contain-
ing S471 standard C box and S472 standard G box. As
shown in Fig. 8, the structure and assembly sequence of
these two lithium batteries are presented, which shows
that the composition of them is similar. Multi-variety
lithium batteries with different appearance dimensions
and voltage are in demand for coping with the differ-
ences in on-board structure and power supply voltage

S471 Standard C box

S472 Standard G box

Assembly sequence

Assembly sequence

Step 1 Assembly part 9-10 Step 2 Assembly part 7-9,10 Step 3 Assembly part 8-7,10 Step 4 Assembly part 6-7

Step 1 Assembly part 10-11 Step 2 Assembly part 7-10,11 Step 3 Assembly part 9-7,11 Step 4 Assembly part 8-7 Step 5 Assembly part 6-7

Step 8 Assembly part 1,2-10 Step 7 Assembly part 3-4,5 Step 6 Assembly part 4-5 Step 5 Assembly part 5-6

Step 8 Assembly part 3-4Step 9 Assembly part 1,2-11 Step 7 Assembly part 4-5 Step 6 Assembly part 5-6

Part 1

Part 2

Part 3
Part 4
Part 5
Part 6
Part 7
Part 8
Part 9
Part 10

Part 1
Part 2
Part 3
Part 4
Part 5
Part 6
Part 7
Part 8
Part 9
Part 10

Part 11

Fig. 8 Assembly sequence of different power lithium batteries
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of different new-energy vehicles. S471 standard C box
and S472 standard G box are two different categories
under the same general category. Therefore, the as-
sembly experiment with S471 standard C box and S472
standard G box can be regarded as the multi-variety as-
sembly. For improving the efficiency of HRCA, the as-
sembly strategy towards HRC is an effective way which
can deal with flexible and rigid assembly tasks at the
same time. The HRC strategy can be represented as
human and robot complete the specific assembly task
through the certain execution sequence.

The assembly task towards S471 standard C box is
set as the source domain task while the assembly task
towards S472 standard G box is set as the target do-
main task. In experiment, the assembly task in source
domain is represented as assembling 100 S471 stan-
dard C boxes while the assembly task in target do-
main is assembling 100 S472 standard G boxes. The
list of software and hardware used is shown as follows:
GTX1080Ti graphic card with 8GB memory, Pytorch
framework, MySQL database and others.

The comparative experiment is conducted with two
aspects. ① In cross-domain recognition of assembly
feature, the domain adaption methods based on com-

mon transfer learning with domain adaptive neural net-
work (DANN) and deep adaptation network (DAN),
and RL with DQN are compared; ② In adaptive path
planning, the performance of intelligent agent with or
without PNN module is compared.

The datasets composed of the assembly parts from
S471 standard C box and S472 standard G box are sep-
arately used for feature extraction in source domain and
target domain. In the dataset, the number of samples
corresponding to each part is set as 1 000 through data
enhancement. The number of points in single sample
is maintained at 10 000 by down sampling. Therefore,
the dataset in source domain contains 10 types of part
while the dataset in target domain contains 11 types of
part.

The settings of hyper-parameters towards model
training during assembly feature recognition and adap-
tive path planning are shown in Table 3. In cross-
domain recognition of assembly feature, the round of
model training is all set to 250 episodes or epochs with
a learning rate of 10−3. In adaptive path planning, the
AC framework is adopted to train the agent with PNN.
In agent training of target domain, the episode is set to
280 with PNN while it is 500 without PNN.

Table 3 Settings of hyper-parameters in model training

Stage Model Episode/epoch Learning rate Optimizer

Assembly feature recognition DQN 250 10−3 Adam

DANN 250 10−3 Momentum (0.9)

DAN 250 10−3 Momentum (0.9)

Adaptive path planning With PNN 280 10−3 Momentum (10−4)

Without PNN 500 10−3 Adam

3.2 Experimental Result

3.2.1 Cross-Domain Recognition of Assembly Feature

Figure 9 represents the performance among different
domain adaption models, including RL model, DANN
and DAN. After training, the source encoder and de-
coder has realized the recognition and segmentation of
assembly feature towards S471 standard C box. Then
the weight of target decoder is dynamically adjusted
by RL model or domain adaptive network. As shown
in Fig. 9, when using DAN model, the classification
loss converges faster and the final loss is smaller than
the case using DANN model. From the perspective
of classification accuracy, the classification accuracy is
0.871 with DAN model, which is higher than 0.846 with
DANN model. Compared with that of former mod-
els, the classification accuracy is highest (0.964) with
DQN model. The reason for this phenomenon is that
DAN model adopts multi-layer adaption and multi-
kernel MMD methods, which improves the accuracy of

model. Besides, RL method continuously optimizes the
encoder parameters in target domain, which can make
the performance achieves the best.

3.2.2 Adaptive Path Planning

In experiment, four different subtasks are extracted
to test the performance of different adaptive path plan-
ning methods, including manual method, AC method
and AC-PNN method. As shown in Fig. 10, grasp-
ing, transferring, placing and assembling single battery
cell are four subtasks used to test the performance of
different methods. Each subtask in target domain is
all tested 500 times and the average value is taken as
the result. In model training as Fig. 10(a), the reward
reaches its maximum value in 250 episodes with AC-
PNN model while it is 350 episodes with AC model.
Besides, the maximum reward value of the former is
higher than that of the latter. From Fig. 10(b), the
loss curve of AC-PNN model converges earlier than AC
model and the loss value of the former is smaller than
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that of the latter. The reason for this phenomenon is
that PNN transfers the empirical parameters learned
from similar tasks to the target model, which speeds
up the training process. Figures 10(c) and 10(d) re-
spectively present the average collision rate and running
time of path planning under three different methods. In
four subtasks, the path generated by manual design will
make the robot consume longer running time and pro-
duce higher collision rate. Using AC model to plan the
motion path can shorten the running time of robot and
maintain the collision rate within 5%. In combination
with PNN, the collision rate and running time of path
will be limited into a smaller range than common AC
model. This phenomenon is caused by the reason that
PNN can enable the target model to learn new skills
based on the historical skills.

4 Conclusion

The proposed HRCA system is researched from the
following aspects: expression of collaboration strategy,
transferring of HRCA strategy and adaptive motion

planning of HRCA. The relevant conclusions are shown
as follows.

(1) The proposed HRCA framework realizes the
recognition and classification of cross-domain assembly
features. On this basis, the historical assembly experi-
ence is adopted to guide the design of human-robot ac-
tion sequence and planning of path towards new tasks.

(2) Compared with traditional domain adaption
method, the RL method can more effectively improve
the classification accuracy of assembly features in tar-
get domain which reaches 96.4%.

(3) Compared with manual approach, the AC model
can reduce the collision rate and running time of motion
path in target domain. Besides, the PNN framework
will connect target tasks with historical tasks, which
greatly shortens the training cycle of agent.
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