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Abstract: In order to solve the problem of strength instability of cemented tailings backfill (CTB) under low
temperature environment (� 20 ◦C), the strength optimization and prediction of CTB under the influence of
multiple factors were carried out. The response surface method (RSM) was used to design the experiment to
analyze the development law of backfill strength under the coupling effect of curing temperature, sand-cement
ratio and slurry mass fraction, and to optimize the mix proportion; the artificial neural network algorithm (ANN)
and particle swarm optimization algorithm (PSO) were used to build the prediction model of backfill strength.
According to the experimental results of RSM, the optimal mix proportion under different curing temperatures
was obtained. When the curing temperature is 10—15 ◦C, the best mix proportion of sand-cement ratio is 9,
and the slurry mass fraction is 71%; when the curing temperature is 15—20 ◦C, the best mix proportion of sand-
cement ratio is 8, and the slurry mass fraction is 69%. The ANN-PSO intelligent model can accurately predict
the strength of CTB, its mean relative estimation error value and correlation coefficient value are only 1.95% and
0.992, and the strength of CTB under different mix proportion can be predicted quickly and accurately by using
this model.
Key words: cemented tailings backfill (CTB), response surface method (RSM), multi-factor coupling, strength
optimization, intelligent prediction model
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0 Introduction

Tailings is a solid mineral waste formed after dewa-
tering of tailings slurry discharged from beneficiation
plant. It is currently one of the bulk solid wastes with
the largest output and the lowest comprehensive uti-
lization rate in China[1-3]. Through scientific research,
the tailings have been successfully used to fill the un-
derground goaf[4-7]. Due to the extremely fine parti-
cles of the tailings, the strength of cemented tailings
backfill (CTB) is unstable. A large number of labora-
tory tests are often needed to study the best filling mix
proportion. In addition, mines located in high-cold ar-
eas are affected by the low temperature environment,
which makes the strength of CTB be difficult to meet
the requirements[8-10]. Therefore, exploring the influ-
ence of different factors on the strength of CTB, and
conducting research on optimization and prediction of
the strength of CTB are of great significance to realize
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low-cost and high-efficiency applications of CTB while
ensuring the strength requirements.

The related scholars have carried out a lot of research
work on CTB. Li et al.[11] studied the influence of solid
content, cement/tailings ratio, and curing time on the
strength of CTB, and found that these three factors
had a positive impact on the strength of CTB within
the scope of the test; that is, the larger the correspond-
ing factor value, the higher the strength. Yin et al.[12]

found that the cement content and slurry mass frac-
tion were the main factors affecting the early strength,
and optimized the mix proportion by subjective weight
method. Qi et al.[13] carried out the research on the
application of artificial intelligence in backfill mining,
took the cement-tailings ratio, solid content and cur-
ing time as the influencing factors, and used the ge-
netic programming method (GP) to successfully realize
the high-precision prediction of the backfill strength.
Zhang et al.[14] studied the influence of cement sand
ratio, mass fraction and curing age on the performance
of CTB, and then optimized the mix proportion and
put forward the optimal mix proportion. Qi et al.[15]

summarized the application status of artificial intelli-
gence model in the strength prediction of backfill. In
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the strength prediction of single tailings filling mate-
rial, the artificial intelligence method is mainly the
artificial neural network learning algorithm (ANN). In
recent years, hybrid methods of swarm intelligence opti-
mization algorithm and artificial intelligence algorithm
have appeared one after another. In addition, studies
have shown that the curing temperature has a signif-
icant impact on the strength of CTB, and low tem-
perature will cause the strength of CTB to develop
slowly[16-20]. The above research reveals the mechanism
of different factors on the strength of CTB. However,
there is no in-depth analysis on the strength develop-
ment of backfill under the coupling of different factors,
which cannot provide guidance for the safe and efficient
application of CTB in mines in alpine regions.

In this study, the response surface method of Box-
Behnken function in Design-Expert software (RSM-
BBD) was used to optimize the experimental design,
and the regression model of the strength of CTB with
different curing ages was established to study the in-
fluence of the interaction coupling of different mix pro-
portion (lime sand ratio and slurry mass fraction) and
curing temperature on the strength of CTB. Based on
the experimental results, the ANN-particle swarm op-
timization (PSO) high-precision intelligent prediction
model was constructed to rapidly predict the strength
of CTB with different mix proportion under different
curing temperatures. The research results are of great
significance to the efficient application of CTB in cold
mining area.

1 Experimental Materials, Schemes and
Results

1.1 Experimental Materials
The cementing material used in the experiment is

type 42.5 ordinary portland cement, which is the com-
mon type of binder used for preparing CTB in prac-
tices. The tailings were taken from a gold mine in Jilin
Province, China, and its main chemical composition is
SiO2, which belongs to inert material with stable prop-
erties and can be used as filling material. The contents
of main chemical elements in tailings are shown in Ta-
ble 1. The density of tailings is 2.71 g/cm3, the median
particle size (D50) is only 40 µm, and the particle size
less than 75µm accounts for about 85%, which belongs
to ultra-fine tailings. The particle nonuniformity coeffi-
cient (Cu = d60/d10 = 10.7) is more than 10, indicating
the grading of full tailings is good and suitable as fill-
ing aggregate. The particle size composition tested by
standard wet sieving and laser particle size analysis is
shown in Fig. 1.
1.2 Experimental Schemes

To study the variation law of CTB uniaxial com-
pressive strength (UCS) under multi-factor coupling,
RSM-BBD was used to optimize the experimental

Table 1 Chemical composition of the tailings

Component Mass fraction/% Component Mass fraction/%

SiO2 66.91 Al2O3 16.73

CaO 5.72 SO3 0.90

MgO 5.39 MnO 0.15

Fe2O3 2.26 Others 1.94
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Fig. 1 Particle size composition of tailings

design[21-25]. The influences of single factor and its in-
teraction coupling on CTB strength were analyzed.

The freezing period of a certain gold mine in Jilin
Province lasts as long as 6 months. The average tem-
perature in the underground mine is about 10 ◦C in
winter and no less than 20 ◦C in summer. The change
of environment temperature has an adverse effect on
the strength development of the CTB, so it is neces-
sary to consider the effect of curing temperature on
the strength of the CTB when studying the mix pro-
portion. Based on this, we took sand-cement ratio,
slurry mass fraction and curing temperature as inde-
pendent variables, which were expressed by X1, X2

and X3 respectively. We took 7 d, 14 d and 28 d com-
pressive strength of CTB as response value (The test
was conducted at room temperature, and the temper-
ature has no effect on the strength of CTB during the
test), which were expressed by Y1, Y2 and Y3 respec-
tively. The coupling effect of various factors on backfill
strength is studied. According to a large number of ex-
ploratory tests in early stage, when the mass fraction of
filling slurry is 65%—75%, and the sand-cement ratio
is 6—10, the strength and fluidity of CTB can meet the
requirements, and the temperature of the underground
mine is basically maintained at 10—20 ◦C. The factors
and levels of RSM-BBD test are shown in Table 2.

Table 2 RSM-BBD experimental factors and levels

Level

coding

Sand-cement

ratio (X1)

Slurry mass

fraction (X2)/%

Curing temperature

(X3)/◦C

−1 6 65 10

0 8 70 15

1 10 75 20
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1.3 Experimental Results

Based on the central composite experiment design,
Box-Behnken module in Design-Expert software was

used to automatically generate 17 groups of experi-
ments, as shown in Table 3 (For convenience of com-
parison, the predicted values based on the following
strength model are added to the table).

Table 3 Experimental results of RSM-BBD

Serial number
Factor Experimental value/MPa Predicted value/MPa

X1 X2 X3 Y1 Y2 Y3 Y ∗
1 Y ∗

2 Y ∗
3

1 6 70 20 1.61 2.15 2.12 1.65 2.20 2.28

2 8 70 15 1.05 1.42 1.68 1.04 1.42 1.70

3 8 65 20 0.42 0.87 1.12 0.33 0.82 1.04

4 8 70 15 1.04 1.42 1.71 1.04 1.42 1.70

5 8 75 10 0.9 2.28 2.95 0.99 2.33 3.03

6 8 75 20 2.19 2.83 3.45 2.25 2.83 3.45

7 6 70 10 0.82 2.03 1.95 0.82 2.03 2.03

8 10 65 15 0.29 0.63 0.82 0.39 0.68 0.98

9 6 75 15 2.43 3.54 4.47 2.33 3.49 4.31

10 10 70 10 0.41 0.93 1.11 0.37 0.88 0.95

11 8 70 15 1.03 1.40 1.67 1.04 1.42 1.69

12 10 70 20 0.92 1.26 1.32 0.92 1.26 1.24

13 8 70 15 1.06 1.43 1.69 1.04 1.42 1.69

14 8 70 15 1.03 1.42 1.70 1.04 1.42 1.69

15 6 65 15 0.52 1.25 1.37 0.57 1.25 1.29

16 8 65 10 0.27 0.78 0.91 0.21 0.78 0.91

17 10 75 15 1.39 1.99 2.41 1.34 1.99 2.49

2 Analysis and Discussion

2.1 Construction and Verification of CTB
Strength Model

Design-Expert was used to perform multivariate non-
linear fitting of the experimental values of different cur-
ing ages, and established a regression model of the
relationship between compressive strength and sand-
cement ratio, slurry mass fraction, and curing temper-
ature:

Y ∗ = a +
m∑

j=1

bjxj +
∑

k<j

bkjxkxj +
m∑

j=1

bjjx
2
j , (1)

where, Y ∗ is the response value of the measured value;
a is a constant term; bj , bkj and bjj are the regression
coefficients of the primary, secondary and cross terms,
respectively; m is the number of factors.

The 7 d, 14 d and 28 d compressive strength models
of CTB are as follows:

(1) UCS at 7 d curing age:

Y ∗
1 =2.8+1.153X1−0.211X2−0.485X3−

0.02X1X2 − 0.007X1X3 + 0.011X2X3+

0.014X2
1 + 0.002X2

2 − 0.006X2
3

R2 = 0.980

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (2)

(2) UCS at 14 d curing age:

Y ∗
2 =37.97+0.615X1−1.195X2−0.344X3−

0.023X1X2+0.005X1X3+0.0046X2X3+

0.042X2
1 + 0.011X2

2 + 0.00024X2
3

R2 = 0.997

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (3)

(3) UCS at 28 d curing age:

Y ∗
3 =73.2+2.172X1−2.483X2−0.049X3−

0.038X1X2 + 0.001X1X3 + 0.003X2X3+

0.012X2
1 + 0.021X2

2 − 0.0045X2
3

R2 = 0.977

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (4)

where R2 is the determination coefficient.
To analyze whether the established strength model

is effective, variance analysis of the above regression
equation was carried out, as shown in Table 4. The
P value of the strength model built in this paper is
less than 0.000 1, which is extremely significant, indi-
cating that the model has high reliability. The signal-
to-noise ratio (SNR) is greater than 4, which further
proves the reliability of the model. The adjustment
determination coefficient (R2

a) and R2 of the model ap-
proach to 1, indicating that the model fits well. F =
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77.72 > F0.05(3, 13) = 3.41, indicating that the model
is significant and has statistical significance, which can
better reflect the relationship between the compressive
strength of CTB and the various influencing factors.
Figure 2 shows the comparison between the strength
value of backfill calculated based on the strength model

and the experimental value. The experimental value is
in good agreement with the predicted value, indicating
that the strength model is effective. Therefore, the re-
gression model can be used to replace the experimental
data to carry out the correlation analysis of the influ-
ence of various factors on the strength of CTB.

Table 4 Variance analysis of RSM-BBD experiment results

Source of

variation

Sum of squares Mean square F value P value

Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3

Model 5.93 9.35 14.49 0.66 1.04 1.61 86.66 536.68 77.72 < 0.000 1 < 0.000 1 < 0.000 1

X1 0.70 2.16 2.26 0.70 2.16 2.26 92.29 1 117.11 108.98 < 0.000 1 < 0.000 1 < 0.000 1

X2 3.66 6.32 10.26 3.66 6.32 10.26 480.89 3 263.23 495.25 < 0.000 1 < 0.000 1 < 0.000 1

X3 0.94 0.15 0.15 0.94 0.15 0.15 123.35 76.69 7.17 < 0.000 1 < 0.000 1 0.031 7

X1X2 0.16 0.22 0.57 0.16 0.22 0.57 21.56 111.66 27.51 0.002 4 < 0.000 1 0.001 2

X1X3 0.02 0.01 0.01 0.02 0.01 0.01 2.58 5.69 0.02 0.152 5 0.048 4 0.893 4

X2X3 0.32 0.05 0.02 0.32 0.05 0.02 42.71 27.32 1.01 0.000 3 0.001 2 0.347 3

X2
1 0.01 0.12 0.01 0.01 0.12 0.01 1.69 61.74 0.46 0.234 8 0.000 1 0.520 1

X2
2 0.02 0.30 1.18 0.02 0.30 1.18 2.01 153.85 57.09 0.199 3 < 0.000 1 0.000 1

X2
3 0.10 0.01 0.05 0.10 0.01 0.05 13.69 0.078 2.57 0.007 7 0.787 7 0.152 8
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Fig. 2 Comparison of experimental value and predicted value of backfill strength

2.2 Single Factor on Strength of CTB
According to the variance analysis of strength regres-

sion model, the curing temperature has a very signif-
icant effect on the early strength of CTB (P < 0.01),
and it has a significant impact on the strength of the
middle and late stages (P < 0.05). The slurry mass
fraction and sand-cement ratio have a extremely signif-
icant impact on the compressive strength of the CTB
during the whole curing period (P < 0.01).
2.2.1 Curing Temperature on Strength of CTB

The slurry mass fraction is fixed at 70% and the
sand-cement ratio is fixed at 8. The influence of cur-
ing temperature on the strength of CTB is shown in
Fig. 3. With the decrease of curing temperature, the
rate of decrease in the strength of the CTB increases.

When the curing temperature is lower than 15 ◦C, the
strength of CTB decreases greatly. The transverse com-
parison shows that the curing temperature has obvious
influence on the early strength of the CTB, but the
influence on the middle and late strength is relatively
weak. When the curing temperature is reduced from
20 ◦C to 10 ◦C, the 14 d and 28 d strengths of the CTB
are reduced by 14.6% and 16.8% respectively. While
the 7 d strength of the CTB is reduced by 55.7%, and
the reduction range of the 7 d strength is about three
times of those of the 14 d and 28 d strengths. At the
early stage of curing, the hydration reaction rate is slow
and the amount of cementitious material is less. Un-
der the action of low temperature, the hydration reac-
tion rate is further reduced, the setting time of slurry
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is prolonged, and the strength of CTB is greatly re-
duced. After the backfill is cured to the middle and late
stages, most of the cement in the backfill takes part in
the hydration reaction and generates more cementitious
materials, which has a certain strength. The low tem-
perature only affects a small part of the materials that
have not completed the hydration reaction. Therefore,
the strength of the CTB in the middle and later stages
is relatively less affected by temperature.
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Fig. 3 Effect of curing temperature on strength

2.2.2 Sand-Cement Ratio on Strength of CTB
The slurry mass fraction is fixed at 70% and the

curing temperature is fixed at 20 ◦C, the influence of
sand-cement ratio on the strength of the CTB is shown
in Fig. 4. With the increase of sand-cement ratio, the
strength of CTB at different curing ages shows a sig-
nificant decrease trend; when the sand-cement ratio in-
creases from 6 to 10, the strength of 7, 14 and 28 d de-
creases by 44.2%, 42.6% and 45.6% respectively. The
main source of the CTB strength is the C-S-H gels,
Ca(OH)2 crystals and Aft crystals produced by the hy-
dration reaction. C-S-H gels are formed in the whole
stage of hydration reaction, Aft crystals are mainly
formed in the early stage, and Ca(OH)2 crystals are
mainly formed in the middle and later stages. These
materials can fully fill the pores between tailings and
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Fig. 4 Effect of sand-cement ratio on strength

connect the loose sand body into a dense cemented
structure to ensure that the backfill has high strength
in each curing age. The increase of sand-cement ratio
means that the amount of cement used as cementitious
material in the backfill becomes smaller, leading to the
decrease of hydration products in each age, and the
loose sand body can’t be fully cemented, thus reducing
the strength of backfill at each age.

2.2.3 Slurry Mass Fraction on Strength of CTB

The sand-cement ratio is fixed at 8, the curing tem-
perature is fixed at 20 ◦C, and the influence of the slurry
mass fraction on the strength of CTB is shown in Fig. 5.
The strength of CTB increases with the increase of
slurry mass fraction. When the slurry mass fraction is
increased from 65% to 75%, the strength of 7 d, 14 d and
28 d increases by 582%, 245% and 232%, respectively,
which means that the increase of slurry mass fraction is
more significant to the improvement of early strength;
the strength of 7 d, 14 d and 28d increases by 0.19MPa,
0.20MPa and 0.24MPa respectively when the slurry
mass fraction is increased by 1%. The increase in
mass fraction increases the viscosity of the filling slurry,
increases the settlement resistance of the aggregate
in the slurry, reduces bleeding and the layering and
segregation of the aggregate, and the distribution of
the aggregate is more uniform.
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Fig. 5 Effect of mass fraction on strength

2.3 Multi-Factor Interaction and Coupling on
Strength of CTB

From the analysis of variance of the strength regres-
sion model, the interactive coupling between mass frac-
tion and curing temperature has a significant impact
on the early strength of the backfill. The interactive
coupling between mass fraction and sand-cement ratio
has a significant impact on the mid-term strength of the
backfill. The interactive coupling between sand-cement
ratio and curing temperature It has a significant impact
on the later strength of the backfill.
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2.3.1 Interaction Between Mass Fraction and Curing
Temperature on Strength of CTB

Figure 6 shows the response surface diagram and con-
tour diagram of the 7 d strength of the backfill under
the interaction of mass fraction and curing tempera-
ture, and the sand-cement ratio is a fixed factor. It can
be seen from Fig. 6(a) that when the curing tempera-
ture is low, increasing the mass fraction can improve
the early strength of the backfill, but the strength in-
crease is small, and the response surface is slow. When
the curing temperature is high, the early strength of
the backfill can be significantly improved by increasing
the mass fraction, and the response surface is steep.

When the curing temperature is 10 ◦C, the mass frac-
tion is increased from 65% to 75%, and the 7 d strength
of the backfill is increased by 0.7MPa. When the cur-
ing temperature is 20 ◦C, the strength of the backfill is
increased by 1.85MPa under the same conditions, and
the improvement effect is obvious. Therefore, increas-
ing the curing temperature is helpful to give full play to
the physical characteristics of the filling slurry. From
Fig. 6(b), with the increase of mass fraction and cur-
ing temperature, the spacing between strength isolines
gradually narrows, indicating that the early strength of
backfill can be significantly improved by the interaction
of mass fraction and curing temperature.
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Fig. 6 Influence of interaction between mass fraction and curing temperature on strength

2.3.2 Interaction Between Sand-Cement Ratio and
Mass Fraction on Strength of CTB

Figure 7 shows the response surface diagram and con-
tour diagram of the 14 d strength of the backfill under
the interaction of mass fraction and sand-cement ratio,
and the curing temperature is a fixed factor. Under
the same sand-cement ratio, the strength of the back-
fill increases with the increase of the mass fraction, and
the smaller the sand-cement ratio, the more obvious the
strength increase. Under the same mass fraction, the
strength of the backfill decreases with the increase of
the sand-cement ratio. When the sand-cement ratio is
10 and the mass fraction is increased from 65% to 75%,
the strength of the backfill is increased by 1.13MPa.
When the sand-cement ratio is 6, the strength of the
backfill is increased by 2.27MPa under the same con-
ditions. The lower the sand-cement ratio is, the higher
the cement content in the filling slurry is, and a large
amount of cementitious materials are generated to fill
and wrap the tailings particles in the middle of the cur-
ing period of the backfill. The increase of the slurry
mass fraction means that the water content in the slurry
is reduced, which is more conducive to the cementation

and setting of the slurry, so it has a higher medium-
term strength.
2.3.3 Interaction Between Sand-Cement Ratio and

Curing Temperature on Strength of CTB
Figure 8 shows the response surface diagram and con-

tour diagram of the 28d strength of the backfill under
the interaction of sand-cement ratio and curing temper-
ature, and the mass fraction is a fixed factor. Reducing
the sand-cement ratio and increasing the curing tem-
perature can significantly improve the later strength
of the backfill. The influence of sand-cement ratio on
the strength of backfill is more obvious in low tem-
perature environment than in high temperature envi-
ronment. When the curing temperature is 10 ◦C, the
sand-cement ratio is reduced from 10 to 6, and the fill-
ing strength is increased by 111.6%. When the curing
temperature is 20 ◦C, the sand-cement ratio is reduced
from 10 to 6, and the filling strength is increased by 89%
That is, if the backfill wants to obtain the ideal strength
at low temperature, the cement content needs to be
increased. The decrease of sand-cement ratio means
that the cement content in the filling slurry increases,
the hydration reaction of cement at low temperature is
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Fig. 7 Influence of interaction between mass fraction and sand-cement ratio on strength

2.305

2.169

2.033

1.897

1.761

1.625

1.489

1.353

1.217

1.081

0.945

20

18

16

14

12

10

C
ur

in
g 

te
m

p
er

at
ur

e/
°C

Curing temperature/°C
6 7 8 9 10

Sand-cement ratio

Sand-cem
ent ratio

(b) Contour map(a) Response surface

UCS/MPa
2.305

2.169

2.033

1.897

1.761

1.625

1.489

1.353

1.217

1.081

0.945

UCS/MPa
2.2

1.8

1.4

1.0

0.6

U
C

S/
M

P
a

0.2
6

7
8

9

10 12 14 16 18 20

Fig. 8 Influence of interaction between sand-cement ratio and curing temperature on strength

slow, and the amount of cementitious material is less,
which leads to the decrease of backfill strength. The in-
crease of curing temperature under high cement content
is more conducive to the hydration reaction of cement,
and the strength of backfill is significantly improved.
2.4 Strength Optimization of Backfill Based on

RSM-BBD
The 7 d, 14 d and 28 d UCS requirements of CTB

shall not be less than 0.8MPa, 1.0MPa and 1.5MPa
respectively. Considering that the underground tem-
perature is in the range of 10—20 ◦C, to meet the
requirements of backfill strength under different tem-
peratures, it is necessary to select the matching mix
proportion according to different underground temper-
atures. When the underground temperature is lower
than 15 ◦C, adopting the mix proportion that meets
the strength requirements obtained by curing at 10 ◦C.
When the underground temperature is higher than
15 ◦C, adopting the mix proportion that meets the

strength requirements obtained by curing at 15 ◦C. In
this way, it can ensure that the backfill strength meets
the requirements at different underground tempera-
tures without causing waste filling materials. By us-
ing Design-Expert software to solve the strength model
of backfill, the best mix proportion under the target
strength can be obtained, seen in Table 5 and Fig. 9.

3 Strength Prediction of Backfill Based
on ANN-PSO Model

3.1 Construction of ANN-PSO Strength Pre-
diction Model

3.1.1 ANN Prediction Model
Back propagation (BP) is an efficient type of

ANN[26-28]. The nonlinear relationship between input
value and output value is established by training sample
data. The neural network includes input layer, hidden
layer and output layer. In this paper, the four factors
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Table 5 Optimal mix proportion of CTB

Applicable temperature/◦C
Optimum mix proportion Mix proportion rounding

Sand-cement ratio Mass fraction/% Sand-cement ratio Mass fraction/%

� 15 7.92 68.99 8.00 69.00

< 15 8.75 70.73 9.00 71.00
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of curing temperature, sand-cement ratio, slurry mass
fraction and curing time can affect the strength of back-
fill, so the number of input layer neurons is 4; the out-
put value of output layer is the compressive strength
of backfill, so the output layer contains 1 neuron; the
selection of the number of hidden layer neurons directly
affects the prediction accuracy of the model, but it is
not accurate at present[29,30]. Therefore, this paper es-
tablishes the BP neural network model of 8 different
hidden layer neurons (5—12) to determine the most
accurate calculation model. When BP neural network
is running, the input signal is processed layer by layer
from the input layer to the output layer through the
hidden layer. If the expected output cannot be ob-
tained in the output layer, the error back-propagation
is turned on, and the weight and threshold value are
modified according to the error, so that the predicted
output is constantly close to the expected output.

In this model, Levenberg-Mrquardt algorithm is used
in the input layer, and transfer functions logsig and
purelin are used in the hidden layer and output layer,
respectively. The training times are set at 3 000, the
learning rate is taken as 0.2, and the momentum coef-
ficient is taken as 0.7.
3.1.2 Optimization of ANN Model by PSO Algorithm

Due to the low precision of ANN model, PSO algo-
rithm is considered to optimize ANN model[31-34]. PSO
algorithm is a powerful global optimization algorithm,
which simulates the predation behavior of birds. In
PSO, each bird represents a “particle”, and each par-
ticle contains two attributes: position and speed[35,36].
In this paper, the particle position represents the ini-
tial weight and threshold of the network, and the ve-
locity represents the amplitude of the initial weight

and threshold each time they are updated. The spe-
cific steps of PSO algorithm to optimize ANN initial
weights and thresholds are as follows: ① The topo-
logical structure of BP neural network is established.
② Particle position and velocity initialization. Initial-
ization is accomplished by generating a group of parti-
cles with random positions and velocities (random solu-
tions). ③ Calculate the fitness value of particles. The
fitness value is calculated by the fitness function. In
this paper, the mean square error (MSE) is used as the
fitness function. The smaller the MSE value is, the
better the particle is. ④ Particle speed and position
update. Based on this step, the better particles can be
captured continuously, so as to approach the optimal
particles continuously. The update formulas of particle
speed (Vd) and position (Xd) are

Vd(t + 1) =ω(t)Vd(t) + c1r1(Pd(t) − Xd(t))+
c2r2(Gd(t) − Xd(t)), (5)

Xd(t + 1) =Xd(t) + Vd(t + 1), (6)

where r1 and r2 are evenly distributed random num-
bers in [0, 1]; c1 and c2 are learning factors, which are
taken as 1.8; w is inertia weight; Pd(t) is the optimal
position of the particle itself; Gd(T ) is the optimal po-
sition of the population; Xd(t) is the current position
of the particle. The particle swarm size of PSO algo-
rithm is 300, the particle length is 21, and the number
of iterations is 100. After the iteration, the weights and
thresholds of the optimal particles become the optimal
initial weights and thresholds of the neural network.
3.1.3 ANN-PSO Intelligent Prediction Model

The ANN-PSO optimization model was constructed
to predict the strength of backfill with different curing
temperature and mix proportion.
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3.2 Analysis of Prediction Effect of ANN-PSO
Model

There are 17 groups of experiments in Table 3, but
there are 5 groups of repeated experiments. Therefore,
there are 13 groups of non repeated experiments in Ta-
ble 3. Each group can get three strength values of
7 d, 14 d and 28 d, that is, there are 39 non repeated
strength samples in Table 3. From the 39 samples of
non-repetitive data of the RSM-BBD experiment, 31
samples were randomly selected as the training set and
8 samples were used as the test set, the training set
was used to debug and train the ANN-PSO model, and
the test set was used to evaluate the prediction per-
formance of the model. The mean relative estimation
error (MRE) and the coefficient of determination (R2)
were used to evaluate the prediction effect of the ANN-
PSO model. The closer the MRE value is to 0 and the
closer the R2 value to 1, the better the prediction effect
of the model is. The calculation formulas are

MRE =
1
n

n∑

i=1

∣∣∣∣
yi − pi

yi

∣∣∣∣ × 100%, (7)

R2 = 1 −

n∑

i=1

(yi − pi)2

n∑

i=1

(yi − ȳi)2
, (8)

where yi, pi are the experimental value and the pre-
dicted value respectively, and ȳi are the average value
of the experimental value.

Figure 10 shows the relationship between different
numbers of hidden layer neurons and the MRE and
R2 of the test set. The MRE of the model optimized
by PSO algorithm is significantly lower than that of
the model without PSO optimization, with the maxi-
mum reduction value of 19.6%. At the same time, after
the optimization of PSO algorithm, the goodness of fit
of the model has been significantly improved, and the
maximum increase of R2 value is 0.091. The perfor-
mance of the above two evaluation indexes comprehen-
sively illustrates the effectiveness and superiority of the
PSO algorithm in optimizing ANN. In addition, with
the increase of the number of hidden layer neurons, the
MRE value of the prediction model first decreases and
then increases, and the R2 value first increases and
then decreases. The reason is that when the number
of hidden layer neurons is too small, it is impossible to
establish an effective mapping between input and out-
put to express the nonlinear relationship between them.
When the number of hidden layer neurons is too large,
the complexity of the network will be greatly increased,
which will lead to over fitting phenomenon and reduce
the prediction accuracy. When the number of neurons
is 9, the minimum MRE value is 1.95% and the max-
imum R2 value is 0.992. At this time, the model has
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Fig. 10 Prediction performance of ANN model

the best predictive performance.
The network structure of the final prediction model

is 4-9-1 structure, as shown in Fig. 11.

Sand-cement
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...x4

Fig. 11 Network structure of ANN model

Figure 12 shows the comparison between the strength
predicted by ANN-PSO model and the experimental
value. It can be seen from Figs. 12(a) and 12(c) that
the predicted values of the training set and the test set
are in good agreement with the experimental data, and
the corresponding MRE values are 2.18% and 1.95%
respectively. Figures 12 (b) and 12(d) show that the
regression results of the training set and the test set
are better, with R2 values of 0.988 and 0.992 respec-
tively. The above results comprehensively show that
the model is well trained, avoids insufficient fitting and
overfitting, can accurately express the nonlinear rela-
tionship between various influencing factors and com-
pressive strength, and has a good effect on the predic-
tion of the strength of the backfill.
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3.3 Application of ANN-PSO Strength Predic-
tion Model

The ANN-PSO model was used to predict the
strength of mix proportion in Table 5, and the strength
experiment of the CTB under the corresponding mix
proportion was carried out to obtain the strength val-
ues of 7, 14 and 28 days to verify the accuracy of the
prediction model and the rationality of the mix pro-
portion. The results are shown in Fig. 13. The results
show that the experimental values and predicted val-
ues of mix proportion in Table 5 meet the strength re-
quirements, and the error rates of predicted values are

less than 3.2% compared with the experimental values.
Based on the intelligent model, the high-precision pre-
diction of the strength of the CTB is realized. The
intelligent prediction model can also be used to quickly
and flexibly adjust the mix proportion according to the
actual demand of filling, reduce the tedious indoor test
work, and greatly improve the applicability of the filling
slurry under different strength requirements. It should
be noted that the intelligent model constructed in this
paper is suitable for specific conditions, and its advan-
tage over the regression model is that it can better deal
with the nonlinear relationship; the accuracy of the in-
telligent model depends on the number of samples, and
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the higher the number of samples, the better the pre-
diction accuracy of the model.

4 Conclusion

In this paper, we discussed the influence of different
factors on the strength of CTB, and built an intelligent
strength prediction model. The following conclusions
can be made based on the research results:

(1) Based on RSM-BBD experiment, a multi-element
nonlinear strength model was established with sand-
cement ratio, slurry mass fraction and curing tempera-
ture as influencing factors. The P value of the strength
model was very small (P < 0.000 1), indicating that the
model has high reliability. The minimum value of F test
of the model was F = 77.72 > 3.41, which shows that
the model is significant and statistically significant, and
can better reflect the relationship between the compres-
sive strength of CTB and the influencing factors.

(2) The influence of single factor and multi factor in-
teraction coupling on the strength of CTB was studied.
The results show that curing temperature has a signif-
icant effect on the early strength of CTB, the slurry
mass fraction and the sand-cement ratio have a sig-
nificant impact on the strength of CTB in the whole
curing period. The interaction coupling effect of the
slurry mass fraction and the curing temperature has a
significant impact on the early strength of CTB. The in-
teraction coupling effect of the slurry quality concentra-
tion and the sand-cement ratio has a significant impact
on the medium-term strength of CTB. The interaction
coupling effect of the sand-cement ratio and the cur-
ing temperature has a significant impact on the later
strength of CTB.

(3) In this paper, the ANN-PSO intelligent strength
prediction model was established, and the MRE value
and R2 value are 1.95% and 0.992 respectively, which
has a good prediction effect on the strength of CTB.
The mix proportion of CTB suitable for different envi-
ronmental temperatures was proposed and the strength
prediction was carried out. The strength error rate was
less than 3.2% compared with the actual value.
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