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Abstract: Environmental perception is a key technology for autonomous driving. Owing to the limitations
of a single sensor, multiple sensors are often used in practical applications. However, multi-sensor fusion faces
some problems, such as the choice of sensors and fusion methods. To solve these issues, we proposed a machine
learning-based fusion sensing system that uses a camera and radar, and that can be used in intelligent vehicles.
First, the object detection algorithm is used to detect the image obtained by the camera; in sequence, the radar
data is preprocessed, coordinate transformation is performed, and a multi-layer perceptron model for correlating
the camera detection results with the radar data is proposed. The proposed fusion sensing system was verified
by comparative experiments in a real-world environment. The experimental results show that the system can
effectively integrate camera and radar data results, and obtain accurate and comprehensive object information in
front of intelligent vehicles.
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0 Introduction

Autonomous driving technology can reduce the rate
of traffic accidents and provide convenience to people.
Therefore, this technology has gradually become the
research focus of scholars worldwide. Four important
aspects in autonomous driving technology are environ-
mental perception, localization, path planning, and mo-
tion control[1]. Among them, the perception and under-
standing of the environment, that is, the environmental
perception technology, is the focus of the autonomous
driving system, and the accurate and reliable percep-
tion of the environment is the basis for ensuring the
safety of intelligent vehicles.

Each sensor has advantages and disadvantages.
Thus, the use of a single sensor in an environmental
perception system results in the obtainment of limited
information. In order to ensure that detailed infor-
mation about the road ahead can be acquired in real
time and accurately, the perception system of intelli-
gent vehicles often adopts multi-sensor fusion to realize
the complementation of different sensors[2], thereby ob-
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taining more complete information and improving the
ability of the environmental perception system.

Currently, there are two problems with fusion sens-
ing systems. The first is the choice of sensors, which
is a prerequisite for the good performance of the fusion
sensing system. A reasonable sensor selection is essen-
tial to realize the complementarity of advantages and
disadvantages of each sensor. The second is the choice
of the fusion method. A reasonable fusion method can
make full use of the strengths of each sensor, thereby
improving the accuracy of the fusion sensing system. In
addition, the cost of the sensors must be considered in
practical applications.

At present, the commonly used sensors for intelli-
gent vehicles include ultrasonic radar, cameras, radar,
light detection and ranging (LiDAR), and infrared de-
tectors. Ultrasonic radar is low in price and simple
in data processing, but it is easily affected by temper-
ature and weather with small measurement distance;
LiDAR has very high ranging accuracy, strong direc-
tionality, and very fast response speed, but the cost
is very high, and it is easily affected by the weather;
the cost of infrared detectors is very low, but it is also
easily affected by the weather, unable to detect dis-
tant objects and pedestrians. The image resolution of
the camera is high, with rich information. With the
rapid development of deep learning in recent years, the
accuracy of object detection of the camera has been
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considerably improved, but various methods based on
cameras face difficulties to obtain accurate speed of the
object. In contrast, the radar can obtain accurate dis-
tance and speed of the object, and has strong robust-
ness to the environment. Therefore, the camera and the
radar have complementary advantages and are inexpen-
sive. By combining the results of these two sensors, the
category, position, and speed of various traffic objects
around the intelligent vehicle can be obtained. There-
fore, in this study, the camera and radar were selected
to construct the environment perception system of in-
telligent vehicles.

The output information needs to fuse the informa-
tion of the two types of sensors chosen: the camera and
the radar. In multi-sensor fusion, multiple sensors are
first used separately to observe, and then the data ob-
tained by the different sensors are fused according to
established rules to obtain more accurate object infor-
mation. There are three types of multi-sensor fusion:
pre-fusion, middle-fusion, and post-fusion.

Pre-fusion refers to the direct fusion of the original
data at the input layer; middle fusion refers to the ex-
traction of features from the data returned by each
sensor, and fusion of the extracted features; in post-
fusion, the original data are preprocessed first, the ob-
ject features are extracted and identified, and only the
identified object is fused. As the data obtained by the
camera and radar are not homogeneous, pre-fusion and
middle fusion cannot be applied. However, they can be
utilized to obtain clear object-level information after
preprocessing. Therefore, the post-fusion method was
selected in this study.

Regarding the association method of the data of the
camera and radar, traditional methods often project
radar object data into the image plane. Alessandretti
et al.[3] proposed a method for image and radar fu-
sion for vehicle detection. In this method, the object
data detected by the radar are projected into the image
plane, the object data of radar are used to generate a
region of interest on the image, and then vehicle detec-
tion is conducted in this area. However, this method
has poor accuracy.

Chavez-Garcia and Aycard[4] proposed a method
of multi-sensor fusion based on cameras, radar, and
LiDAR. In this method, LiDAR is used to screen ob-
jects, generate regions of interest in the image, and
detect pedestrians in this area. Then, the detected
pedestrian and vehicle are fused with the object de-
tected by the radar to distinguish between stationary
and moving objects. Kim et al.[5] also proposed a
data fusion method based on cameras, radar, LiDAR,
and global positioning system (GPS). The methods de-
scribed above use many sensors, which cause a series of
problems, such as joint calibration and time alignment,
and also increase the cost.

Pang et al.[6] proposed a camera and LiDAR data

fusion method based on a deep learning network, pro-
viding a new idea of multimodal fusion, which inspired
our idea of the fusion of camera and radar data. How-
ever, the 3D detection data obtained by LiDAR are
also obtained through a deep learning network and have
many available parameters, whereas the data obtained
by radar are not processed through a deep learning net-
work and have fewer available parameters. Therefore,
using a deep learning network to fuse the data from the
camera and radar is not suitable.

Based on the issues discussed above, a multi-layer
perceptron (MLP) model for data fusion between cam-
era and radar was proposed in this study, which is more
suitable for the problem of fewer available parameters
for radar, and whose cost is low. Moreover, a complete
environment perception system was constructed for an
intelligent vehicle based on a camera and a radar, and
a comparison experiment in a real vehicle environment
was conducted. The experimental results show that the
system can accurately perceive the intelligent vehicle
environment.

1 Object Detection of Images

Aiming at the problem of object detection, tradi-
tional object detection algorithms include Adaboost[7],
histogram of oriented gradients, support vector ma-
chine based algorithms[8], and deformable parts
model[9]. However, the accuracy of these algorithms
is limited. The accuracy of object detection algorithms
has been considerably improved since the proposition
of the structure of the convolutional neural network
(CNN). The classification-based object detection algo-
rithms include R-CNN[10], fast R-CNN[11], and faster
R-CNN[12]. These methods extract the feature to se-
lect the candidate area from the image input, and then
use the classifier and the position to identify the ob-
ject in the feature space, which is equivalent to per-
forming a two-step operation. Thus, these algorithms
have a low speed. The regression-based object detec-
tion algorithms include YOLOv1[13], YOLOv2[14], and
YOLOv3[15]. These algorithms directly use the entire
picture as the input of the network and return the
bounding box and the category of the object on the
divided grid. Because these algorithms are fast and pro-
vide real-time results, they are suitable for autonomous
driving. Therefore, in this study, the YOLOv3 algo-
rithm was used for object detection.

The structure of the YOLOv3 object detection algo-
rithm is illustrated in Fig. 1. The Conv2D BN Leaky
shown in the lower-left corner of the figure refers to the
convolution (Conv) + batch normalization (BN) + ac-
tivation function (Leaky ReLU). In Resblock Body, n in
Resn represents the number of Res-Units contained in
this residual block. Each grid unit of YOLOv3 can pre-
dict three bounding boxes, and each bounding box can
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Fig. 1 YOLOv3 structure

predict five parameters: x, y, w, h, and the confidence
of the prediction, where (x, y) are the pixel coordinates
of the center of the bounding box in the image, w repre-
sents the width of the bounding box, and h represents
the height of the bounding box. In addition, YOLOv3
can predict the probability of 80 categories; thus, the
output size of the tensor is 3 × (5 + 80) = 255.

YOLOv3 is trained end-to-end, and its loss function
is shown in
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In Eq. (1), λcrd represents the weight of localization
error; λnbj represents the weight of classification error;
SG represents the grid size; Nb represents the number of
anchor boxes in each grid; Iobj

ij represents whether the
jth anchor box of the ith grid is responsible for this ob-
ject, if responsible for Iobj

ij = 1, otherwise Iobj
ij = 0; Inbj

ij

represents whether the jth anchor box of the ith grid
is not responsible for this object; x̂j

i and xj
i represent

the predicted and true x-coordinates, respectively; ŷj
i

and yj
i represent the predicted and true y-coordinates,

respectively; ŵj
i and wj

i represent the predicted and

true bounding box widths, respectively; ĥj
i and hj

i rep-
resent the predicted and true bounding box heights,
respectively; Ĉj

i and Cj
i represent the predicted confi-

dence and the true confidence, respectively; P̂ j
i and P j

i

represent the predicted and true category probabilities,
respectively; c represents the object category obtained
by image detection, and C is the classes. After training,
the value of the total loss function is minimized.

In this study, the YOLOv3 object-detection algo-
rithm was used for detection. The used camera is the
AXIS vehicle-mounted front-view camera. The detec-
tion result of a test conducted on a highway is shown
in Fig. 2.

Truck

Car

Fig. 2 Object detection

2 Preprocessing of Radar Data

Because the radar and camera are not in the same
coordinate system, the radar data cannot be directly
combined with the camera data. Therefore, coordi-
nate transformation was applied to transform the data
from the radar coordinate system to the camera coor-
dinate system. In practical applications, the position



564 J. Shanghai Jiao Tong Univ. (Sci.), 2021, 26(5): 561-568

and posture are usually combined into a coordinate
system. The relative position between the two coor-
dinate systems can be described by a translation vector
plus a rotation matrix. The rotation matrix is used
to describe the posture of the coordinate system rela-
tive to the reference system, and the translation vector
is used to describe the translation of the origin of the
coordinate system relative to the origin of the refer-
ence system. When translation and rotation transfor-
mations occur simultaneously, suppose that the vector
determining the origin of the coordinate system {B} is
APBORG, and the rotation matrix of {B} relative to the
reference system {A} is A

BR, as shown in Fig. 3.
Here, the transformation relationship from a coordi-

nate system {B} to a reference coordinate system {A}

is used as follows:
[

AP

1

]
=

[
A
BR APBORG

0 1

][
BP

1

]
. (2)

As it is complicated to use the rotation matrix to repre-
sent the posture, another representation method is of-
ten used in practical applications, which only requires
three elements. As shown in Fig. 4, the coordinate sys-
tem {B} is set to coincide with the reference coordinate
system {A}; {B} is first rotated around an axis x̂A by
angle γ (roll angle), rotated around an axis ŷA by angle
β (pitch angle), and finally rotated around the ẑA axis
by an angle α (yaw angle), where α, β, and γ are also
called Euler angles.
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Fig. 3 Coordinate system translation and rotation transformations
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The coordinate system transformation relationship of
this method is expressed as a rotation matrix:

A
BRxyz(α, γ, β) =

⎡

⎢⎢⎣

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ

⎤

⎥⎥⎦ , (3)

where cα is the abbreviation of cosα, sα is the abbre-

viation of sinα, and the other parameters follow this
definition.

In practical applications, in which the inverse solu-
tion is often applied, that is, using a rotation matrix,
the equivalent Euler angle relationship is derived. A
known rotation matrix is

A
BRxyz(α, β, γ) =

⎡
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r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤

⎥⎥⎦ , (4)
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where α, β, and γ can be calculated by

α = arctan 2(r21/cβ, r11/cβ)

β = arctan 2(−r31,
√

r2
11 + r2

21)

γ = arctan2(r32/cβ, r33/cβ)

⎫
⎪⎪⎬

⎪⎪⎭
. (5)

In this study, through joint calibration, a transforma-
tion matrix from the radar to the camera was obtained.
Then, the transformation matrix was expressed in the
form of Euler angles and the translation parameters
from the x, y and z axes, and the inverse calculation
was performed using Eq. (5) to obtain α, β, γ, and the
translation parameters.

The data returned by the radar are in the form of a
set of arrays, the readability is relatively poor, and in-
formation cannot be obtained intuitively. In this study,
the radar data were preprocessed and transformed to
the camera coordinate system. The process of prepro-
cessing is shown in Fig. 5.

Initialization

Output results

Remove invalid data

Transform to camera
coordinate system

Convert relative speed
to absolute speed

Remove stable object

Fig. 5 Preprocessing process

The Delphi forward-looking side radar was used in
this study. After receiving the object data of the radar,
the position information of the obtained object is ex-
pressed as a position vector relative to the radar:

Po = [Pox Poy 0 1]T, (6)

where (Pox, Poy) are the coordinates of the detected ob-
ject. After transform to the camera coordinate system,
the new obtained position vector is expressed as

Pt = [Ptx Pty 0 1]T, (7)

where (Ptx, Pty) are the object coordinates after trans-
form. A schematic of Ptx and Pty is shown in Fig. 6.

The radar can also determine the speed of an object.
Because the radar is installed on the car, the obtained
speed is the relative speed vr of the object relative to
the car, which should be converted to absolute speed
va, as follows:

va = vr − vc, (8)

y

Pty

Ptx x
Camera

Object

Car

Fig. 6 Schematic diagram of top view

where vc is the speed of the car. Then, the preprocessed
data result Or of each object is the output in the form
of an array:

Or = {Ptx, Pty, va}. (9)

After the described processing, the radar data can
be converted from the radar coordinate system to the
camera coordinate system.

3 MLP Model for Camera and Radar
Data Association

An MLP is a common model in machine learning. It
usually adds one or several hidden layers between the
input and output layers. Each hidden layer has several
units to learn the features better. The general struc-
ture of an MLP is shown in Fig. 7. After each layer,
an excitation function is typically used to learn nonlin-
ear features. The commonly used activation functions
include ReLU, sigmoid function, and tanh.

Input_layer Hidden_layers

n layers

. . .

Output_layer

Fig. 7 MLP model

Backpropagation is often used to update the model
parameters, and refers to defining a loss function for the
output layer, minimizing the loss function, adopting a
gradient descent method, and updating the parameters
of each layer model, as expressed in

Wl := Wl − η
∂E

∂Wl
, (10)
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where Wl represents the parameter value of each layer,
E represents the loss function for the output layer, and
η represents the learning rate.

In the data association model in this study, the input
is (xcen, ycen, xrad, yrad), where (xcen, ycen) are the pixel
center coordinates of the camera object detection, and
(xrad, yrad) are the coordinates of the object detected
by the radar. There are two hidden layers in the middle,
and each hidden layer contains four units. The activa-
tion function is ReLU, as shown in φ(X) = max (0, X).
The output layer has one unit. In order to determine
whether the camera detection object and the radar de-
tection object are the same, the output layer uses the
sigmoid function to limit the output value to the range
of [0, 1], as shown in S(X) = [1+exp(−X)]−1. The loss
function uses the binary cross-entropy. The structure
of the MLP model used in this study is shown in Fig. 8.

S(X)

ReLUReLUReLU

yrad

xrad

ycen

xcen

Fig. 8 Network model used in this study

The training dataset of the model was collected in the
campus environment of Shanghai Jiao Tong University,
and the positive and negative samples were evenly dis-
tributed. The accuracy of the final model on the train-
ing dataset was 97.5%, and the accuracy of the valida-
tion dataset was 93.75%. The model training process
is shown in Fig. 9, where a represents the accuracy and
t is the number of iterations.
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Fig. 9 Model training process

4 Fusion Perception System and Exper-
iment

The structure of the fusion perception system built in
this study is shown in Fig. 10. It communicates through
the message subscribing and publishing of the robot op-
erate system (ROS). For ROS, the information of the
camera object detection and the information obtained
after the preprocessing of the radar are published, the
two types of information are received, and then the fu-
sion model is called for judgement. If it is considered to
be the same object, the camera object detection data
are associated with the radar data, and the informa-
tion of the position, speed and category of the object is
output. The format of the output information is

OPSC = {c, xbd, ybd, Ptx, Pty, va}, (11)

where (xbd, ybd) represent the center coordinates of
the bounding box obtained by the object detection
algorithm.

Input
camera data

Input
radar data

Publish results

Y

N

{c, xbd, ybd} {Ptx, Pty, va}

Publish
none

YOLOv3 object
detection

Fusion test model:
the same object

Preprocess

Fig. 10 Structure of the fusion sensing system

The CyberTiggo autonomous driving platform was
used and a real-world experiment was conducted at
Shanghai Jiao Tong University and highway. The re-
sults of the fusion perception system are presented in
Fig. 11.

In the actual application of the camera and radar
data association, the method of projecting the radar
data to the pixel coordinate system and using a static
threshold for judgment is often adopted. In this study,
comparative experiments were conducted using the two
methods based on projection.

The first comparison method (Comparison 1) con-
sisted of projecting the radar data to the pixel coor-
dinate system through the external parameter matrix,
internal parameter matrix, and distortion coefficients,
and then determining whether the projection point is in
the bounding box of the detected object. If it is in the
bounding box, it has the same goal. The external pa-
rameter matrix is the transformation matrix from the



J. Shanghai Jiao Tong Univ. (Sci.), 2021, 26(5): 561-568 567

Car Car

Car
Car

Car

Truck

Car

Person

Fig. 11 Results of the fusion perception system (speed values in m/s)

radar to the camera coordinate system, as mentioned
previously. The internal parameter matrix represents
the relationship between the camera and the pixel co-
ordinate systems. The distortion coefficients include ra-
dial and tangential distortions, which can be obtained
by camera calibration.

The second comparison method (Comparison 2) con-
sisted of projecting the radar data to the pixel coordi-
nate system, adopting the method of joint Gaussian
probability distribution, and setting a threshold. If
the probability of the center of the bounding box to
be within the probability distribution is higher than
this threshold, then the object is the same. The joint
Gaussian probability distribution is given by

P (bc) =
exp

(
− (bc − μ)TΣ−1(bc − μ)

2

)

(
√

2π)n|Σ| 12
, (12)

where

bc = [xbd ybd]T,

bc ∼ N2(μ, Σ),

μ = [μx μy]T,

(μx, μy) are the coordinates of the radar data projected
to the pixel coordinate system, and Σ is a positive def-
inite matrix of 2 × 2, representing the covariance.

The accuracy of the three methods was determined,
as shown in Table 1.

By analyzing the results of the three methods, it can
be observed that the first comparison method has a very
good effect on the nearby target with a large bounding

Table 1 Accuracy of the methods evaluated

Method a/%

Ours 97.5

Comparison 1 96.0

Comparison 2 92.5

box. It ensures that the projection point of the radar
data is projected onto the bounding box. However, for
distant objects with a small bounding box, the projec-
tion points of radar data can be easily projected outside
the bounding box owing to errors in joint calibration,
which leads to missed detection.

In the second comparison method, the effect of us-
ing the probability distribution to set the static prob-
ability threshold is highly dependent on the choice of
threshold. An excessively large threshold would result
in several missed detections, whereas a small threshold
would result in several false detections. For near and
far objects, the suitable thresholds are evidently differ-
ent. Camera and radar are more accurate in detecting
nearby objects and are more suitable for smaller thresh-
olds. The detection error for distant objects is larger,
and they are more suitable for larger thresholds.

The advantage of the method proposed in this study
for fusion judgment using the MLP model is that it
does not require the setting of a threshold. The train-
ing process of the MLP can automatically adjust the
required parameters based on the results to avoid the
problem caused by the selection of the threshold, and
the accuracy of the judgment is improved.
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5 Conclusion

Multi-sensor fusion is often used in the environmen-
tal perception systems of intelligent vehicles. However,
multiple sensors face problems such as the choice of
sensors and fusion methods. In order to solve these
problems, a machine learning based fusion sensing sys-
tem that uses a camera and a radar was proposed,
which can be used in intelligent vehicles. First, the
YOLOv3 object detection algorithm was used to de-
tect the image obtained by the camera, convert the ob-
tained radar data to the camera coordinate system, and
then perform preprocessing. Second, an MLP model
for correlating camera detection results and radar data
was proposed to obtain accurate and comprehensive
object information in front of intelligent vehicles. Fi-
nally, the proposed fusion perception system was veri-
fied through a comparative experiment in a real-world
environment. The experimental results show that com-
pared with other methods, the method proposed in this
study can accurately fuse the camera and radar results.
The proposed environmental perception system in this
study can be further improved by collecting more data
to improve the model in the proposed environmental
perception system, conducting more real-world exper-
iments to verify the generalization of the model, and
adding more sensors to the environmental perception
system to improve its perception ability.
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