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Abstract: With rigorous dynamic performance of mechanical products, it is important to identify dynamic
parameters exactly. In this paper, a response surface plotting method is proposed and it can be applied to identify
the dynamic parameters of some nonlinear systems. The method is based on the principle of harmonic balance
method (HBM). The nonlinear vibration system behaves linearly under the steady-state response amplitude, which
presents the equivalent stiffness and damping coefficient. The response surface plot is over two-dimensional space,
which utilizes excitation as the vertical axis and the frequency as the horizontal axis. It can be applied to observe
the output vibration response data. The modal parameters are identified by the response surface plot as linearity
for different excitation levels, and they are converted into equivalent stiffness and damping coefficient for each
resonant response. Finally, the HBM with first-order expansion is utilized for identification of stiffness and damping
coefficient of nonlinear systems. The classical nonlinear systems are applied in the numerical simulation as the
example, which is used to verify its effectiveness and accuracy. An application of this technique for nonlinearity
identification by experimental setup is also illustrated.
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0 Introduction

Most practical assembled structures do not com-
ply with an assumption of linearity, and the difficulty
of modeling mainly is caused by less understanding
of structural nonlinearity®. Frictional contact and
micro-slip within assembled structures would introduce
complex nonlinearities into mechanical products. Dy-
namic analysis has highlighted the importance of non-
linearity identification, and the nonlinear effects can not
be neglected!%7]. The investigation of nonlinear mech-
anism within mechanical products has become an im-
portant research field[®l. So it is necessary to identify
structural nonlinearity and predict output vibration re-
sponse during product design stage.

It needs to develop a new technique to extract nonlin-
ear element. Vibration test is necessary for nonlinearity
identification and mathematical model update. Mathe-
matical model not only needs to represent physical mer-
its, but also to predict its dynamic response exactly.
Some promising methods show fairly satisfactory re-
sults. Prawin et al.l® presented a new technique based
on null subspace analysis for detection of nonlinearity,
and the structural nonlinearity could be estimated by
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using ambient vibration data. Effectiveness of the pro-
posed approach was demonstrated by using carefully
designed numerical examples. Noél et al.'% identified a
real aerospace structure with strong nonlinearity, which
included typical jumps, modal interactions, force relax-
ation and chattering during impacts. Alejo et al.[']
developed an experimental identification method based
on frequency response function (FRF) decoupling and
optimization algorithm to model bolted joint interface.
It is easy to obtain the FRF in the vibration test pro-
cedure, so frequency domain techniques are more ad-
vantageous. Goge et al.l'?) utilized the linear plotting
method to aircraft experimentally. The method can
be implemented on large scale structures, but it is only
used for detection of nonlinearities rather than quantifi-
cation. Sadati et al.l'3 introduced an optimum equiva-
lent linear frequency response function (OELF) to iden-
tify dynamic parameters of nonlinear joint. The OELF
method has the advantage of using standard vibration
tests, but it is restricted to complicated iterative pro-
cedures. The linearization method was improved by
Ozer et al.'4. Sherman-Morrison inversion was used
to obtain equivalent stiffness and damping dependent of
response amplitude, and the values of equivalent stiff-
ness and damping were calculated at different exci-
tation frequency. Feldman and Braun!'dl dealt with
the identification of nonlinear vibration systems based
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on measured signals for free and forced vibration
regimes via Hilbert decomposition. Different identifi-
cation methods based on experimental procedure have
their own advantages and drawbacks.

In this study, response surface plot is developed to
identify nonlinear parameters by experimental data
in frequency-domain. Numerical and experimental
analyses are applied for simulation. The identifica-
tion method mainly depends on the basic idea that
non-linear structures exhibit linear behavior under
steady response amplitudel®'¥. Equivalent stiffness
and damping coefficient can be obtained for each exci-
tation level. The accurate stiffness and damping func-
tion of response amplitude are constructed by fitting,
which is used to describe nonlinear behavior for nonlin-
ear identification by harmonic balance method (HBM).

1 Response Surface Plot

1.1 Equivalent Stiffness and Damping

If the dynamic behavior of engineering structures is
an isolated nonlinear mode, the governing equation of
a nonlinear system can be expressed as

mi + ct + kx + n(x, z) = f(t), (1)

where, m,c and k are the mass, stiffness and damp-
ing of the linear part, respectively; x is the response
displacement; f(t) is the external force; n(z, &) is the
nonlinear force, which means interior nonlinear spring
or damping force. The proposed procedure bases on
the idea that most vibration energy is concentrated in
the excitation frequency w, and the vibration response
can be regarded as linearity under steady response
amplitude['912 | If a nonlinear structure is excited by
harmonic excitation, the force value is expressed as

f(t) = Fe, (2)

where, F' represents the excitation amplitude; w is the
excitation frequency. The vibration response amplitude
can be rewritten as

x(t) = Xelwtv), (3)

where, X denotes the amplitude; 1) denotes the phase
information of response. When Eq. (3) is substituted
into nonlinear force n(x, ), the nonlinear spring and
damping element can be presented by linear describ-
ing function k(X) or ¢(X) by HBM with first-order
expansion. The application of HBM gives parameters
dependent of response and it is regarded as equivalent
stiffness and damping[*®l. As for generalized nonlinear-
ity, the derivation of equivalent stiffness and damping
can be conducted by Egs. (4) and (5), and nonlinear
stiffness and damping are linearized at that specific re-
sponse amplitude. The equivalent stiffness and damp-

ing can be written as k(X) and ¢(X) as!'314
1 2n
k(X) = ﬁ/o ng(z) sin ¢dP, (4)

2m
o(X) = WLX/O ne(x) cos PdP, (5)

where & = wt + 1, and ni(z) and n.(&) present the
nonlinear spring and damping forces. For the purpose
of explanation, classical cubic stiffness will be presented
as an example. Considering the motion equation of a
linear damped system, Eq. (1) can be given as

mi + ci + kx 4+ aa® = f(t), (6)

where « is nonlinear stiffness. The nonlinear force
n(z,#) = az® can be approximated by Fourier expan-
sion with first-order expansion by Eq. (4), and the de-
scribing function is presented as

3
k(X) = ZaX27 (7)
so Eq. (6) can be rewritten as
. . 3
ma + ¢t + k—|—ZaX x = f(t). (8)

Equivalent stiffness varies with response amplitude,
and it provides an approximation of nonlinear inte-
rior force and presents some equivalent amplitude-
dependent modal parameters. From Eq. (8), resonant
frequency and damping ratio can be extracted for each
steady response as

wn(X) = \/(k + gozX2>/m, 9)

¢(X) = 0/2, / (k + ZaXz)m. (10)

Modal parameters shift with response amplitude ac-
cording to Egs. (9) and (10). If the variation of modal
parameters with respect to response amplitude is ob-
tained, the nonlinear receptance can be written as

A
wn(X)? = w? + 2i((X)wws (X))’

H(w, X) = (11)

where A is the modal constant of the system. Nonlin-
ear receptance seems linear corresponding to the steady
response and generates effectively quasi linear behav-
ior. Harmonic response prediction at desired excitation
needs iteration, and convergent value will be considered
as the calculation result!*6l.
1.2 Procedure

As the nonlinear FRF mainly depends on ex-
terior excitation level, it shifts due to inherent
nonlinearity(!™9!. If experimental FRFs are measured,
vibration response is calculated at different excitation
levels. And the vibration response data is plotted
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against w and f as discrete points by a repeatable
surface. Surface plot can be used for observation of
vibration response data for different excitation levels.
The resonant frequency wy,(X) or damping ratio ¢(X)
shift for different forcing levels when approaching reso-
nances, which provides evolution of resonant frequency
and damping ratio with resonant amplitude X. First,
it needs to calculate the (modal) mass of the system.
Then, the modal quantities need to be converted into
spatial quantities. Equivalent stiffness and damping
can be obtained for each excitation level correspond-
ing to X. The equivalent stiffness can be obtained
by multiplying the (modal) mass extracted from the
inverse receptance by the resonant frequency. Equiv-
alent damping can be extracted by using relationship
(X)) = 2¢(X)mw,(X). Extraction tools may be ap-
plied separately for different excitation levels. The
equivalent stiffness and damping varies with steady re-
sponse and can be considered as amplitude-dependent.
The discrete stiffness and damping can be fitted as suit-
able basis function as k(X) and ¢(X). Fitting results
can be employed to characterize the nonlinear element
according to stiffness and damping function by HBM
with first-order expansion. Equivalent stiffness and
damping by standard vibration test and nonlinearity
extraction can be carried out for each excitation, which
fits the stiffness and damping function to describe non-
linear behavior and identify nonlinearity. The nonlinear
parameter identification method is clearly presented by
response surface plot procedure as shown in Fig. 1.

|Nonlinear structure|

v
Nonlinear Normal Response surface
hypothesis vibration test plot vibration test
v

Stiffness and
damping function

Equivalent stiffness
and damping

Fig. 1 Flowchart of nonlinear parameter identification by
response surface plot

—> Curve fitting |«

2 Application to Numerical Case Study

Typical nonlinear numerical models are applied to
validate the procedure by simulation process. It is used
for nonlinear parameter identification. The purpose is
to show its application by numerical analysis. The gov-
erning equation of the dynamic response of the system
is presented as

mi + ck + kx + nk(x) + n(&) = f(t). (12)

The solution of the nonlinear motion system is calcu-
lated by using a Runge-Kutta method ode45 in MAT-
LAB software. The time-domain response lasts for
enough time to ensure a steady-state response that is
required. The important frequency is chosen as the

excitation frequency. Utilizing the response and excita-
tion data and transforming them into frequency by fast
fourier transform (FFT), the response surface plot is
obtained against w and f for calculating the equivalent
stiffness and damping.
2.1 Cubic Stiffness

Classical Duffing oscillator is classical polynomial
stiffness, which is usually used to describe nonlinearity
for engineering structures. The nonlinear spring force
kn123 is presented by

mi + 1@ + k1o + kniz® = f(1). (13)

The equivalent stiffness function is
3 2
KX) = byt Sk X2, (1)

where ky1 is the cubic stiffness. If ky; > 0, it is hard-
ening. If k,; < 0, it is softening. The response surface
plot for softening cubic stiffness is shown in Fig. 2. It
can be observed that the shift of peak response fre-
quency is obvious with increasing excitation level. The
resonant frequency dwindles simultaneously with re-
sponse amplitude in Fig. 3. Equivalent stiffness (k) is
obtained according to the procedure in Section 1.2, and
a consistent decrease of equivalent stiffness is observed
by a quadratic law in Fig. 4(a). The equivalent stiffness
reveals underlying linear characteristic and the linear
equivalent damping (¢) can be seen in Fig. 4(b).
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Fig. 2 Response surface plot for cubic stiffness
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2.2  Quintic Stiffness
The quintic stiffness with hardening nonlinearity is

ma + coft + kox + kpoa® = f(t), (15)

where kyo is the nonlinear quintic stiffness. According
to Eq. (4), the equivalent stiffness is obtained as

E(X)=ky + ngQX‘*. (16)
The increase of resonant frequency can be observed
by the response surface plot in Fig. 5, which shows
hardening polynomial stiffness via resonant frequency
shift trend. It is seen from Eq. (16) that equivalent
stiffness increases with the response level. It is propor-
tional to displacement amplitude to the fourth power by
equivalent linearity plot in Fig. 6(a). The linear damp-
ing can be seen in Fig. 6(b).
2.3 Coulomb Damping
The Coulomb damping model is a type of static fric-
tion model. It affects significantly if the excitation level
is not very high. The plot in Fig. 7 is the simulated
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result of vibration response data considering Coulomb
friction.

mi + c3 + ksx + Frsgn(z) = f(t), (17)

where F} is the friction force. The equivalent damping
of Coulomb damping can be defined as according to

Eq. (5):

4F
e(X)=c3+ p—— (18)

The linear stiffness is plotted in Fig. 8(a). The sig-
nificant decrease in damping with hyperbolic trend es-
pecially for small response amplitude is an indication
of Coulomb damping shown in Fig. 8(b).
2.4 Piecewise Stiffness

Piecewise stiffness is the combination of linear stiff-
ness, which shows different stiffness for different re-
sponse amplitudes. Its spring characteristic can be seen
by

ma'é+049'c+k5x+(k4—k5)b=f(t), r>b
mi + cad + kqgx = f(¢), |z| < b
mx + cqt + kst — (k‘4—k‘5)b=f(t), r<-b

, (19)
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The equivalent stiffness of the system is
. . . . . . ke + k7
where b is the transition point of piecewise stiffness. k(X) = 5 (22)

sAnd its equivalent stiffness is obtained by Eq. (4):
k(X) =ks—

ks = ka [2 sin™! <§> + %\/ﬂ - b2] (20)

TT

The piece stiffness can be observed by the plot in
Fig. 9. A small shift of resonant frequency occurs for
the case of piecewise stiffness in comparison with poly-
nomial stiffness. When the excitation level is low, it
behaves linearly. And the resonant frequency is con-
sistent as stiffness value is k4. With the increase of
excitation level, the response amplitude is close to the
region of stiffness k5 and the system becomes nonlinear.
The transition of stiffness from k4 to ks occurs that can
be seen in Fig. 10.
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2.5 Bilinear Stiffness

The stiffness is changed at the zero point for bilinear
stiffness. For the positive displacement, the stiffness is
ke; while for the negative displacement, the stiffness is

kr.
x>0
. 21
x<0} (1)

mi + cs& + kex = f(1),
mi + ¢t + krx = f(t),

The surface plot of bilinear stiffness can be seen in
Fig. 11. It shows that the amplitude-dependent reso-
nant frequency is nearly a constant, and there is no
change for the equivalent stiffness with increasing re-
sponse amplitudes. But the nonlinear behavior can be
observed in the time-domain response, since the posi-
tive response amplitude is lower than the negative re-
sponse amplitude seen in Fig. 11(d). And the stiffness
ke and k7 can be obtained according to the positive and
negative responses.

2.6 Combined Nonlinearity

Some real structures usually have combined nonlin-
earity for industrial application. Quadratic damping is
the most common polynomial damping and the equiv-
alent damping of quadratic damping ci + c,&|Z| is

8c,V
3n

cX)=c+ (23)
where, ¢, is the nonlinear damping; V + Xw is the ve-
locity amplitude. Two different types of non-linearities
are considered simultaneously as

mi + e + cupd|@| + ks + kngz® = f(t). (24)

3 Identification Results and Experimen-
tal Study

The stiffness and damping function of response am-
plitude of combined nonlinearities system is shown in
Fig. 12. The good match between equivalent stiff-
ness/damping and the fitted curve as a function of
response is shown as above. From these cases, it can
be clearly sure that response surface plotting technique
adopted in this paper introduces a desired accuracy for
nonlinearity characterization. It is based on the as-
sumption that it responds at the same frequency as the
excitation. And the equivalent stiffness or damping is
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similar to HBM with first-order expansion. According
to the numerical results, parameter identification for
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different numerical models can be obtained in Table 1,
which reveals that it is able to identify the nonlinear
stiffness and damping with small relative error.

The basic procedure of this method has already been
verified with classical nonlinear case studies numer-
ically. The application of response surface plotting
method is demonstrated by experimental setup. The
mechanical joint has a significant influence on the dy-
namics of assembly and introduces an uncertain nonlin-
earity along the mechanical joints. Experimental appli-
cation for nonlinear identification begins with the con-
struction of specimen with 6.2kg, which is used as a
counterweight before. The experimental setup is shown
in Fig. 13. The specimen rests on a cushion by four
mechanical joints with fixed boundary condition. The
concentrated mass is excited by external force by an
electromagnetic shaker, which exerts sine-sweep excita-
tions. Because the shaker can regulate the excitation
levels and frequency range as needed easily, the attach-
ment point of the force bar stinger is located at the

Fig. 13 Experimental setup
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Table 1 Identification results and its relative error
Nonlinear type Parameter value Identification Error/%
Cubic stiffness a k1 =2000N/m k1 =2001.9N/m 0.095
c1 =15N-s/m c1 =1.505N -s/m 0.3
En1 = —5 x 106 N/m? En1 = —4.930 x 106 N/m? 1.4
Quintic stiffness F k2 = 2000 N/m k2 = 2001.9N/m 0.06
co =15N"-s/m co =1.504N -s/m 0.26
X kn2 = 9 x 10" N/m® kn2 = 8.914 x 100 N/m® 0.95
. Fy
Coulomb damping — ks = 2000 N/m ks =2001.7N/m 0.085
c3=4N-s/m ¢c3 =4.18N-s/m 4.5
e Fr = 0.3N Fr = 0.286 N 4.3
Piecewise stiffness k4 =2000N/m k4 =2010.7N/m 0.54
ks = 2150 N/m ks =2142.1N/m 0.35
i X cs =15N " s/m c4 = 147N -s/m 2
F
Bilinear stiffness ke = 4000 N/m ke = 4081 N/m 2.0
k7 = 5000 N /m k7 = 5144N/m 2.8
[ X c5 =1.5N-s/m c5 =1.61N-s/m 7.3
F
Combined nonlinearity Quadratic kg =2000N/m ks =2001.2N/m 0.06
damping kns = 8 x 106 N/m3 kng = 7.72 x 10 N/m3 3.44
X cg =1.5N-s/m cg =1.52N-s/m 1.3
cne = 5N -2 /m? cne = 5.013N? - 52 /m? 0.25

input point. And the dynamic response of mass is mea-
sured by printed circuit board (PCB) acceleration sen-
sor. All the measurements and excitation are measured
by M+P data pickup in the horizontal direction. The
first mode is the rigid in the horizontal direction.

It can be seen from Fig. 14 that the first resonant
frequency is around 50.4 Hz, which is well separated
from other resonances. The middle point is marked
by 2 as the excitation point, and the left and right re-
sponse points are marked by 2 and 3. The obtained

0 100 200 300 400 500
Frequency /Hz
Fig. 14 Measured FRF data in the horizontal direction of
3 accelerometers

FRFs (h12, h22, and h32) also prove that the system
dynamic is dominated by the first mode only. As the
three ‘FRFs’ are close to each other according to three
accelerators’ output, it proves that the first mode is the
system in the horizontal direction. This section will
introduce the identification of nonlinearity by experi-
mental setup. Sine-sweep vibration test is utilized, and
the excitation frequency is chosen to vary close to the
first natural mode. The excitation amplitude is main-
tained at a constant level for frequency range, and the
steady-state response of the mass and its corresponding
force signal are recorded. And the output of vibration
response is obtained. The response surface plot to ex-
tract linear and nonlinear behaviors will be presented
in Fig. 14. It can be seen from Fig. 15 that the reso-
nant frequency shifts to the left side, which reveals a
softening nonlinear stiffness.

ni(r) = 7.244 x 10°z — 1.1770 x 10"z ||+
1.7613 x 10™2® — 1.4568 x 10"%23|z|+
4.697 x 10*1 25, (25)
ne(2) = 322 + 7.8791 x 10*2|@|—
4.3747 x 10933 4+ 7.6782 x 107&3|¢|.  (26)
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The fitting function of response can be approxi-
mated in terms of ordinary orthogonal polynomials for
the non-smooth nonlinearity seen in Fig. 15, and the
nonlinear stiffness and damping forces can be calculated
by HBM. Equations (25) and (26) are the stiffness and
damping forces identified by response surface plot. A
theoretical model ma + ng(z) + n.(&) = f(t) is used
for predicting. The modeling contains linear and non-
linear stiffness and damping. The measured responses
and the calculated ones are compared in Fig. 16. It can
be seen that the identified mathematical model reveals
the softening stiffness and the hardening damping well.
It shows that it has the ability to identify system with
certain ideal accuracy for a given excitation. Predic-
tion should be within the range of the force levels. A
broader range of excitation values is not recommended
because the nonlinearity is not a specifical function with
smooth property.
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i~ >

<
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30 35 40 45 50 55 60 65
Frequency/Hz

Fig. 16 Comparison between measured and predicted re-
sponses for FF'=1,3,9N

4 Conclusion

Nonlinearities in structural dynamics are common in
complex and real structures. The response surface plot
is proposed for identification and quantification of non-
linearity, which can be calculated by resulted FRFs and
excitation level. In this procedure, vibration response
data are obtained by normal vibration test and plot-
ted as discrete points of vibration response, which is
called as response surface plot. The response surface
plot can be regarded as the displacement response over
excitation and frequency, and the shift of resonant fre-
quency and amplitude change can be observed by the
resulted response surface plot. The equivalent stiffness
and damping is obtained corresponding to resonant re-
sponse amplitude. By fitting the equivalent stiffness
and damping with suitable basis functions, the param-
eters or mathematical model with the unknown element
can be identified by HBM. The procedure of response
surface plot is validated by several classical nonlinear
numerical cases and experimental application for its
effectiveness and accuracy. This technique is simple
and practical, which can deal with some nonlinearity
with distorted FRF, such as jump. It is hopeful that
this technique can be applied to some real structures
and help engineer to characterize its nonlinear property
without complex equipment and instrument.
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