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Abstract: The detection of multiple acoustic disturbances by optical fiber is a hot research topic in the field
of optical fiber sensing. This paper considers adopting an optical distributed acoustic sensing (DAS) system to
detect multiple acoustic disturbances, proposes a new approach to processing the DAS signal based on time-space
average in frequency domain, and overcomes the randomness of DAS time domain signal. Finally, it obtains a
functional model of single-frequency (50—1 000 Hz) sound pressure level and DAS signal intensity, and also the
cut-off frequency of acoustic disturbance is detected by DAS system.
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0 Introduction

Optical fiber sensors[1-4] have the advantages of no
radiation interference, strong anti-electromagnetic in-
terference and high measurement sensitivity. They are
widely used in structural monitoring, acoustic wave
detection, aerospace and many other fields. Cole et
al.[5] suggested that sounds can be detected by fiber
optics, followed by the use of Mach-Zehnder interfer-
ometer (MZI) to detect the acoustically induced phase
disturbances in fiber. Kurmer et al.[6] used a Sagnac
interferometer to detect a single acoustic disturbance
on a sensing fiber, but could not detect multiple acous-
tic perturbations. Taylor and Lee[7] used a variation
of backscattered coherent Rayleigh noise (CRN) gen-
erated by acoustic interference to detect multiple per-
turbations. This technique enables frequency detection
and sound source localization, but cannot quantify the
magnitude of the disturbance. Masoudi et al.[8] ini-
tially studied the relationship between acoustic pertur-
bations and fiber strains. The distributed acoustic sens-
ing (DAS) system has the advantages of multi-point de-
tection and accurate positioning. Golacki et al.[9] veri-
fied that the DAS system[10] can detect the disturbance
of sound waves to the fiber in the reverberation room.
Stajanca et al.[11] proposed a DAS signal processing
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method based on frequency-domain time-average, but
did not quantify the DAS signal and the sound pressure
level.

This paper considers using the DAS system to detect
multiple acoustic disturbances and adopts a time-space
average method in frequency domain to make the quan-
titative analysis. The basic principle of the DAS system
for detecting acoustic disturbances is detailed in Section
1, followed by a description of experimental layout in
Section 2. The experimental results are given in Sec-
tion 3, it also analyzes and discusses the results there.
Finally, the conclusions are summarized.

1 Principle of DAS System

The DAS system is based on a coherent Rayleigh
scattering. The detection principle is shown in Fig. 1,
where PD is the photoelectric detector, ADC is the ana-
log to digital converter, and EDFA is the erbium-doped
fiber amplifier. The phase-optical time domain reflec-
tometer (ϕ-OTDR) technology is applied to the DAS
system. A highly coherent light pulse acts as a probe
light entering the sensor fiber through the circulator.
When the intrusion occurs, the refractive index of the
fiber changes, causing the phase change of the back-
scattered Rayleigh scattered light. Due to the inter-
ference, the back-to-Rayleigh scattered light intensity
changes accordingly, and the detector detects the reflec-
tion from different positions of the fiber and extracts a
weak perturbation signal[12-13].

In the single-mode fiber, according to the one-
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Fig. 1 DAS system detection principle

dimensional impulse response model of the fiber back-
ward Rayleigh scattering[14], the incident laser is a rect-
angular pulse, the fiber is injected at time t = 0, and
the back-range Rayleigh scattering wave amplitude can
be obtained[14]:
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where, i is the number of scattering centers; N is the
number of scattering centers; ai is the amplitude of the
i-th scattering wave; a is the attenuation coefficient of
the fiber; c is the speed of light in vacuum; n is the

refractive index of the fiber; τi =
2nli
c

is the time delay
of the i-th scattering wave, li is the length of the fiber
from the i-th scattering center to the input; F is the
frequency; rect(·) is the rectangular function; w is the
pulse width.

The modulation frequency of acousto-optic modula-
tor (AOM) is f . After continuously injecting m pulses,
the input will obtain a continuous backward Rayleigh
scattering wave with a period of T = 1/f , and its am-
plitude is expressed as
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where, k is the number of pulses.
Then the backward Rayleigh scattered light power is

p(t′) = |e(t′)|2 = pa(t′) + pb(t′), (3)

where, pa(t′) represents the sum of the optical powers of
each independent backscatter center for a large number
of scattering centers; pb(t′) is caused by interference

and has a sawtooth ripple. When the sawtooth ripple
is generated by cos(2πF (τi − τj)), the phase difference
is

∅ij = cos(2πF (τi − τj)) = 4πFn(li − lj). (4)

When the optical fiber is disturbed by sound, the
phase difference between the two interfering scattered
waves changes: ∅ij = 4πF (n+Δn)(li− lj). This results
will lead to a change in the backward Rayleigh light in-
tensity pb(t′). The detection and the localization of the
acoustic disturbance can be achieved by detecting the
intensity variation of the back-reverse Rayleigh scat-
tered light signal before and after the disturbance.

2 Experimental Arrangement

The experimental scheme is shown in Fig. 2. The
DAS system is placed in the reverberation chamber.
As shown in Fig. 2(b), the anechoic chamber has a net
volume of 1 200m3. The 6 sides are fully covered with
sound-absorbing cusps. There is only a direct sound
in the room and no reflection of sound waves. The
influence of environmental background noise on the ex-
periment is reduced. The laser light from a narrow
linewidth laser operating at 1 550 nm in a DAS system
is modulated to produce an optical pulse with a pulse
width of 50 ns and a repetition rate of 20 kHz into the
sensing fiber.

A 1 km sensing fiber of standard mode fiber including
a 3m section where acoustic disturbance is imposed by
using a speaker. The speaker is placed under the fiber,
and the fiber is kept in a relaxed state. The lowest
point of the fiber is 0.6m from the speaker.

The background noise level of the muffler room is
lower than 40 dB, the frequency is lower than 100Hz,
the sound pressure level of the speaker output sound
wave is 60—85dB, and the frequency range is 50—
5000Hz. In order to improve the sensitivity and the
linear stability of the system[9], the detection time of
the DAS is 3min.
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Fig. 2 Experimental schematic and experimental photos

3 Results and Analysis

The 3D diagram of Fig. 3 shows the fast fourier
transformation (FFT) of the DAS output for a 50 dB
sound pressure level at a frequency of 200Hz. The fre-
quency, the location, and the amplitude of the peak in
this 3D diagram are accurately indicating those of the
speaker. The DAS signal with a frequency between 20
and 1 000Hz is accumulated and then the space average
is performed:

DP(t) =
1

b2 − b1

b2∑

p=b1

D(t), (5)

where, b1, b2 are the starting and end positions of the
sensing fiber in response to the acoustic disturbance;
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Fig. 3 3D plot of FFT of the DAS output for the data
points at 866 m

p is the position of the sensing fiber in response to the
acoustic disturbance; D(t) is the DAS time domain
signal.

The fiber contains all the energy of the post-excited
coupling by accumulating. Because the experiment is
performed in the muffler chamber, this energy is di-
rectly coupled into the fiber without any reflection.

As shown in Fig. 4, the DAS system is capable of
detecting disturbance of acoustic disturbance with dif-
ferent sound pressure levels (60—85dB) and different
frequency (50—1000Hz) on the fiber. However, the
randomness of the time domain signal is obvious, and
the long-term cumulative average can reduce the influ-
ence of randomness. In order to verify that the random-
ness is reduced, the DAS signal is processed by time-
average on the basis of space-average (Dpt(p, t)), and
the accumulated time is 3 min.

In order to reduce the influence of the DAS signal ran-
domness in the time domain on the quantizing sound
pressure level and the DAS signal intensity, the accumu-
lated DAS signals are processed by time-average based
on space-average.

Dpt(p, t) =
1
n

n∑

t=0

DP(t). (6)

The relationship between 20 lg Dpt(p, t) (denoted as
Dpt(s)) and sound pressure level (denoted as s) at dif-
ferent frequencies is shown in Fig. 5.
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Fig. 4 2D plot of time domain of the DAS output for the data points between 865 and 867 m
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Fig. 5 Relationship between s and Dpt(s)

As shown in Fig. 5, the DAS signal is correlated with
s and F . The functional model of s and Dpt(s) is ob-
tained.

Dpt(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1.38s− 12.69, F = 50 Hz
0.46s + 42.28, F = 100 Hz
0.15s + 84.85, F = 500 Hz
− 0.21s + 64.35, F = 1 000 Hz

. (7)

The coefficients of determination (R-square) of
Eq. (7) are 0.74, 0.78, 0.88 and 0.82 respectively. A
good linear relationship verifies that such data process-
ing is reasonable. The long-term cumulative average
can reduce the influence of randomness. In order to
verify that the randomness is reduced, the accumulative
times of 30, 60, and 180 s were compared. Different ac-
cumulative times have different effects on the R-square,
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as shown in Table 1. The long-term cumulative aver-
age increases the R-square and reduces the influence of
randomness.

Table 1 Comparison of different accumulative
times

Cumulative time/s
R-square

50 Hz 100 Hz 500 Hz 1 000 Hz

30 0.55 0.61 0.52 0.75

60 0.57 0.71 0.76 0.78

180 0.74 0.78 0.88 0.82

As shown in Table 2, the paper compares with similar
studies. In order to meet the practical application, this

paper improves the experimental environment and the
fiber laying method, and proposes a new approach to
processing the DAS signal based on time-space average
in frequency domain. Finally, it got the quantitative
result.

The fiber is disturbed by white noise of different
sound pressure levels. The DAS signal spectrum is
shown in Fig. 6(a) when s = 85dB. Low frequency
coupling coefficient is much larger than high frequency.
The high frequency part and the low frequency part
are respectively made tangent, and the cutoff frequency
corresponding to different sound pressure levels can be
obtained. As shown in Fig. 6(b), cut-off frequency of
DAS responses to different sound pressure levels. The
trendline divides Fig. 6(b) into two regions including
the signal region and the no signal region.

Table 2 Comparative analysis with similar studies

Experimental
environment

Fiber arrangement Data collection Data processing Spatial and
frequency
resolution

Relationship between
sound pressure level
and sensing signal in-
tensity

General laboratory Bare fiber is laid on
polyethylene sheet

A point on the fiber FFT 1m, 100 Hz No quantification

Reverberation
room

Bare fiber overhead
laying

4 m fiber length FFT and space
average

1m, 1Hz No quantification

Anechoic chamber Bare fiber overhead
laying

3m fiber length FFT and time-
space average

1m, 1Hz Quantification
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Fig. 6 Frequency response of DAS

4 Conclusion

The DAS system demonstrated in this paper is capa-
ble of quantitatively measuring single-frequency (50—
1000Hz) multiple acoustic disturbances. DAS signal

intensity varies with space, time, and acoustic fre-
quency. The randomness of time domain signals is over-
come by using the approach to processing the DAS sig-
nal based on time-space average in frequency domain.
A functional model of sound pressure level of single-
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frequency and DAS signal intensity is established. Due
to the unique nature of the coupling of fiber and sound,
the cut-off frequency of the DAS system to detect the
acoustic disturbance is obtained. This paper provides
the basis for the DAS system to detect and warn a gas
pipeline leakage.
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