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Abstract: In view of weak defect signals and large acoustic emission (AE) data in low speed bearing condition
monitoring, we propose a bearing fault diagnosis technique based on a combination of empirical mode decompo-
sition (EMD), clear iterative interval threshold (CIIT) and the kernel-based fuzzy c-means (KFCM) eigenvalue
extraction. In this technique, we use EMD-CIIT and EMD to complete the noise removal and to extract the
intrinsic mode functions (IMFs). Then we select the first three IMFs and calculate their histogram entropies as
the main fault features. These features are used for bearing fault classification using KFCM technique. The result
shows that the combined EMD-CIIT and KFCM algorithm can accurately identify various bearing faults based
on AE signals acquired from a low speed bearing test rig.
Key words: empirical mode decomposition - clear iterative interval threshold (EMD-CIIT), kernel-based fuzzy
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0 Introduction

Bearings operated at a speed less than 600 r/min are
referred to as low speed bearings[1]. The vibration sig-
nal generated by an incipient defect bearing operated at
low speed is usually weak and quite often contaminated
by a strong background noise. As a result, the impulse
generated by an initial bearing defect operated at low
speed is difficult to detect using the classical vibration
technique. To overcome this issue, acoustic emission
(AE) technique has been developed recently as an al-
ternative technique for low speed bearing monitoring.
AE has been proven to be an effective signal detection
technique for low speed bearing condition monitoring
(CM)[2-4]. A major advantage of AE technique is that
it is not affected by the mechanical operating noise as
well as the ambient noise due to the high frequency na-
ture of the technique[5]. It can thus be employed to
acquire useful bearing signals in low speed applications
for accurate bearing fault diagnosis even in the presence
of a strong ambient noise.

Signal processing, feature extraction and fault identi-
fication are the three major steps in low speed bearing
fault diagnosis. Because AE signals generated by a de-
fect typically have transient, non-stationary and non-
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linear characteristics, signal processing techniques ca-
pable of dealing with non-stationary, nonlinear signal
characteristics are needed in the analysis of AE signals.
Commonly employed non-stationary signal processing
techniques include wavelet transform (WT), wavelet
packet decomposition (WPD), Wigner-Ville distribu-
tion (WVD), empirical mode decomposition (EMD),
ensemble empirical mode decomposition (EEMD) and
EMD- clear iterative interval threshold (EMD-CIIT).
WT or WPD can be employed for multi-scale signal
analysis by stretching and translation operation to ex-
tract useful eigenvalues of non-stationary signals in
both time and frequency domains[6]. Though, deficien-
cies of WT technique have also been observed. For
instance, Feng et al.[7] pointed out that WT technique
has some inherited deficiencies such as how to select a
proper mother wavelet and the overlapping of wavelet
bases. EMD is another popular non-stationary signal
analysis technique for bearing fault diagnosis. It is
an adaptive technique suitable for decomposing non-
stationary signals from which the so-called intrinsic
mode functions (IMFs) are extracted from a signal to
highlight the local characteristics of the signal[8]. Com-
paring with EMD, EEMD can effectively alleviate the
mode aliasing problem of EMD[9], though it suffers from
computational complexity.

A major obstacle for AE applications in low speed
bearing CM is the large data volume generated during
the application which poses a challenge in data storage
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and data processing. Lin et al.[10] proposed a down
sample technique to resolve the large data issue of using
AE technique. Moreover, a weak defect AE signal pro-
duced by an initial bearing defect of a low speed ma-
chine also poses a problem in the data analysis. To
overcome this problem, a combined EMD-CIIT tech-
nique is utilized to enhance the strength of the defective
component in an AE signal. It has demonstrated that
EMD-CIIT can remove most of the noise in a signal
with a small computational expense[11].

Various entropies such as energy entropy, informa-
tion entropy, approximate entropy, sample entropy and
histogram entropy are often employed to construct the
feature vector of a signal[12-16]. For instance, the first
four entropies were successfully applied in various fields,
though the cumbersome iterative process in calculating
these entropies poses a problem when a large amount
of CM data need to be processed. Taking this into con-
sideration, histogram entropy developed originally for
image retrieval[16] is adopted in this study to extract
the fault features (i.e. eigenvalues) from the AE data
for low speed bearing fault diagnosis.

Once the eigenvalues are extracted from the AE sig-
nals, the next step in the proposed fault diagnosis al-
gorithm is to identify the fault patterns from the ex-
tracted eigenvalues using machine learning techniques.
Kernel-based fuzzy c-means (KFCM)[17] technique is a
kernel learning based technique which can be employed
for bearing fault classification. By mapping the eigen-
values into higher dimensional feature spaces, the tech-
nique can highlight and amplify the difference among
the fault features, so that various fault patterns can be
separated easily.

This study makes the full use of the advantage of AE
technique in detecting weak bearing defect signals of a
low speed machine operating in a noisy environment,
and proposes a signal processing and fault diagnosis
algorithm based on EMD-CIIT histogram entropy and
KFCM clustering. In this algorithm, a combined EMD-
CIIT is employed for noise removal and to extract the
IMFs from the raw AE data. Histogram entropies are
then calculated from the first three IMFs and classi-
fied using KFCM technique. The proposed algorithm
is validated using a set of experimental data acquired
from a low speed machine test rig. It is found that the
proposed algorithm can achieve a rather high accuracy
rate in the diagnosis process.

1 A Brief Introduction of EMD-CIIT
and KFCM Clustering Algorithm

1.1 Clear Iterative Interval-Thresholding
Traditionally, EMD-based denoising technique is to

decompose a signal into various IMF components and
then calculate the correlation coefficients of the IMFs
with the original signal. The IMFs having the largest

correlation coefficients with the original signal are re-
tained and the IMFs having smaller coefficients are con-
sidered as noise and are discarded[18]. Such denoising
process may lead to the loss of useful components. To
resolve this shortcoming, Kopsinis and Mclaughlin[19]

proposed an EMD interval threshold (EMD-IT) de-
noising method by comparing the extreme value in the
data interval defined by two subsequent zero-value data
points and the threshold value. When the extreme
value is larger than the threshold, all data within the
interval will be preserved, otherwise the data will be
discarded. It is worth noting that EMD-IT technique
can also lead to data losses during the process. EMD-
CIIT technique[11] has been developed to further im-
prove the denoising effect of EMD-IT method which is
employed in this study to remove the noise of the CM
data. It is shown in the subsequent analysis that EMD-
CIIT technique can effectively reduce the pseudo-Gibbs
effect encountered in the EMD-IT denoising process.
1.2 Weight Factor

The principle of EMD-CIIT technique for noise re-
moval is to use a weight factor to multiply the data so
that the data are above the threshold and the data vari-
ation is amplified. In this study, we propose a data de-
pendent weight factor (w(n)) to obtain a smooth noise
cancellation signal in the EMD-CIIT process:

w(n) =
⎧
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where, xm(n) is the value of the n-th data point of the
m-th IMF component; xext

m is the extreme value of the
data interval between two neighboring zero-value data
points; the threshold value T of the data is calculated
by T = σ

√
2lnN , σ is the standard deviation of the

data and N is the data length. The standard deviation
of the signal is estimated using a robust estimator on
the first IMF component (IMF1):

σ1 =
Median(|IMF1(n)|)

0.674 5
, (2)

n = 1, 2, · · · , N.

The standard deviations of the other IMFs are

σm =
√

σ2
1/(ρmβ), (3)

m = 2, 3, · · · , M,

where, σm is the standard deviation value of the m-th
IMF component; β and ρ are the parameters estimated
by a large number of independent noise realizations and
their IMFs, 0.719 and 2.01 are the suggested values for
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these two parameters[20]; M is the highest order IMF
component in the decomposition.

Under such approach, the data smaller than the
threshold value will be discarded, the data larger than
T but smaller than 3T will be reduced using the non-
linear weight factor given in Eq. (1), and the data sub-
stantially larger than 3T will be kept as they are.

Once the weight factor given by Eq. (1) is imple-
mented, a denoised IMF component becomes

xm(n) = xm(n)w(n). (4)

As the data near the threshold will increase at a
slower rate using the non-linear weight factor, the sig-
nal oscillation after the noise reduction will be much
smoother.
1.3 Histogram Entropy

After denoising the signal, the next step is to ex-
tract the feature representing the characteristic of the
signal. Histogram entropy of the signal is used to con-
struct the eigenvector of the AE signal in this study.
The histogram entropy is originally employed in image
retrieval which is adopted analogically in this study as
the characteristic feature of the AE signals is acquired
from a low speed bearing.
1.4 Fuzzy Kernel Clustering

The characteristic features of a defective low speed
bearing can be recognized by a classifier in the bearing
fault diagnosis process. In this study, KFCM algorithm
is employed as the classifier to identify the fault features
obtained from the previous section. KFCM algorithm
uses a kernel function to map the original feature space
to a higher dimension feature space. If the samples are
mapped directly to a higher dimension space and then
clustered, it can be a problem in determining the pa-
rameters and the form of the nonlinear mapping func-
tion, as well as the feature space dimension. The use of
the kernel function can effectively resolve this problem.

The clustering objective function of the KFCM algo-
rithm is given by

Jp =
K∑
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where, φ(xij) is the j-th dimension eigenvalue of the i-
th sample in the Gaussian kernel space; V kj is the j-th
dimension eigenvalue of the k-th class in the Gaussian
kernel feature space; K is the number of classes; I is
the number of samples; J is the dimension of the eigen-
values; uik is the membership degree of the i-th data
sample to the k-th class and uik ∈ [0, 1]; p is the weight-
ing index. The membership and the clustering centers

can be calculated in the Gaussian kernel space:
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I∑
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up
ikφ(xij)

/ I∑

i=1

up
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The category of a sample can be determined based
on the membership degree uik of each class xi. For
instance, if sample xi has the highest degree of mem-
bership for the k-th class, then xi belongs to the k-th
class.
1.5 Hamming Approach Degree

The fault types of the low speed bearing are recog-
nized by calculating the close degree of the test samples
and the fault clustering center. The eigenvectors are
composed of d characteristic parameters corresponding
to one pattern point on the d-dimensional feature space.
There are clustering properties among similar points.
The pattern points of different states have their own
clustering domain and clustering center. “Maximum
margin principle” is typically employed in the pattern
recognition within a population model. It is defined
that let An and B be the fuzzy sets, if there is a n-th
element which satisfies:

Y (An, B) =
max{Y (A1, B), Y (A2, B), · · · , Y (AN , B)}. (8)

Then An and B are considered to be the closest and
belong to the same category. This principle is termed
as the maximum margin principle. Hamming approach
degree is then deployed to calculate Y (A, B):

Y (A, B) = 1 − 1
N

N∑

n=1

|A(Sk) − B(Sk)|, (9)

where Sk is the characteristic parameter.

2 Bearing Fault Experiment and Diag-
nosis

A laboratory experiment was conducted on a low
speed bearing test rig shown in Fig. 1 to examine the
effectiveness of the EMD-CIIT histogram entropy and
KFCM algorithm proposed in this study. A single-row
roller element bearing (type ER16K) was used in the
experiment. There are 9 roller elements with a diam-
eter of 7.937 5 mm in the bearing. The mean diameter
of the bearing is 38.5064mm, and the contact angle is
9.08◦. Four types of bearing operation conditions (i.e.
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healthy bearing, ball fault, inner race fault and outer
race fault) were simulated in the experiment. The sim-
ulated bearing defects are shown in Fig. 2.

The shaft rotation speed was kept constant at
120 r/min during the experiment, and the sampling fre-
quency of the AE signal was set at 1.2MHz. The data
length for each data sample is 1 s, and 30 data samples
were acquired for each bearing fault type. An example
of the AE time waveforms corresponding to the four
bearing operation conditions is shown in Fig. 3.

From Fig. 3, it is difficult to differentiate the four
bearing operation conditions directly from the AE time
waveforms. The signals are then processed using the
combined algorithm proposed in the study. The EMD-
CIIT technique is employed first to remove the noise
by decomposing a signal into IMF components. Figure
4 shows the 13 IMF components (IMF1—IMF13) and

the remainder (R) of a signal representing the outer
race fault calculated by the EMD-CIIT.

Fig. 1 The low speed bearing test rig

Fig. 2 The simulated bearing faults in the experiment
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Fig. 3 The AE time waveforms corresponding to the four bearing operation conditions

The IMF components are arranged in the order from
the highest to the lowest frequency components. Only
the first three IMF components (IMF1—IMF3) which
have the highest correlations with the original signal
are retained in the process to reduce the computational
cost. Histogram entropies are calculated for these three
IMFs as the fault features. Four groups of feature data
containing 3×30 histogram entropies are obtained from
the first three IMFs for each of the four bearing oper-
ation conditions. 25 samples from each operation con-
dition are used as the test samples in the clustering
process, and the remaining 5 samples for each condition
are used as the validation samples in the fault diagnosis
process.

The clustering parameters in the recognition of eigen-
values of the data are set as follows: the number of the
clustering centers is 4, the weighting index is 2, and
the iteration termination tolerance is 10−6. The four
groups of 3 × 25 histogram entropy data are clustered
using KFCM algorithm. The calculated clustering cen-
ters from the process are listed in Table 1. The cluster
center for each of the four bearing operation conditions
differs from each other which implies that the histogram
entropy calculated from the IMFs using the EMD-CIIT
technique can be used as an effective feature for the low
speed bearing fault diagnosis. The three-dimensional
distribution of the eigenvalues after KFCM clustering
is shown in Fig. 5. It demonstrates that the data for
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Fig. 4 Time-domain waveforms of IMFs obtained by EMD-CIIT and EMD

each of the four bearing operation conditions are clus-
tered around the corresponding cluster center.

Table 1 Cluster centers of EMD-CIIT + EMD +
histogram entropy + KFCM

Cluster center L1 L2 L3

Outer race −5.531 3 −5.135 3 −4.909 9

Inner race −6.069 0 −5.794 1 −5.644 2

Ball −4.587 0 −4.381 5 −4.178 9

Healthy −5.647 5 −5.897 9 −6.435 0
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Fig. 5 Eigenvalues distributions of EMD-CIIT + EMD +
histogram entropy + KFCM

After the clustering, the remaining 4 sets of 3×5 his-
togram entropies are used as the validating samples and
calculated using the hamming approach degree to ex-
amine the reliability and effectiveness of the algorithm.
The results calculated based on the maximum margin
principle are listed in Table 2. It demonstrates that
only two outer race fault samples are misclassified as

the inner race fault. This is equivalent to an accuracy
rate of 90% using the proposed algorithm.

Table 2 Test results of EMD-CIIT + EMD + his-
togram entropy + KFCM

Sample

clustering

results

The close degree of the test samples and

the fault clustering center

Outer race Inner race Ball Healthy

1 0.620 2 0.736 2 −0.189 5 0.388 5

2 0.675 3 0.681 1 −0.134 4 0.309 4

3 0.968 8 0.387 0 0.159 7 0.229 3

4 0.946 2 0.354 0 0.192 7 0.196 3

5 0.806 3 0.162 7 0.384 0 0.005 0

6 0.256 0 0.899 6 −0.553 7 0.628 2

7 0.047 6 0.691 2 −0.762 1 0.551 8

8 0.536 4 0.820 1 −0.273 4 0.502 0

9 0.292 8 0.936 4 −0.516 9 0.596 8

10 0.266 6 0.910 2 −0.543 1 0.642 3

11 0.031 0 −0.612 6 0.840 7 −0.770 3

12 0.451 5 −0.192 1 0.738 8 −0.349 8

13 0.573 3 −0.070 3 0.617 0 −0.228 0

14 0.374 3 −0.269 3 0.816 0 −0.427 0

15 0.440 7 −0.202 9 0.749 6 −0.360 6

16 0.161 9 0.568 6 −0.647 8 0.963 2

17 0.264 2 0.499 9 −0.408 5 0.797 5

18 0.244 3 0.429 5 −0.312 1 0.701 1

19 0.264 1 0.496 0 −0.403 3 0.792 3

20 0.167 5 0.546 3 −0.642 3 0.968 7

Note: The green font represents that the faults are correctly
classified by the algorithm, and the red font represents that the
faults are misclassified by the algorithm.
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3 Conclusion

This paper presented a low speed bearing fault di-
agnostic technique using a combination of EMD-CIIT
denoising technique and KFCM cluster algorithm. The
algorithm first employed the EMD-CIIT to denoise the
AE signals acquired from the low speed bearing test
rig. The first three IMFs having the highest correla-
tion with the original signal were then retained and
their histogram entropies were calculated and used as
the eigenvectors in KFCM clustering. Finally, the clus-
tering center and the membership degree matrix de-
termined from KFCM clustering and the hamming ap-
proach degree algorithm were utilized to classify the
remaining dataset for bearing fault diagnosis. An ac-
curacy of 90% is achieved by the proposed algorithm in
the pattern recognition process. This implies that the
classification method can be employed for the low speed
bearing diagnosis and has the potential to be applied
in the real life situation.
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