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Abstract: Lung cancer is the leading cause of cancer deaths worldwide. Accurate early diagnosis is critical
in increasing the 5-year survival rate of lung cancer, so the efficient and accurate detection of lung nodules,
the potential precursors to lung cancer, is paramount. In this paper, a computer-aided lung nodule detection
system using 3D deep convolutional neural networks (CNNs) is developed. The first multi-scale 11-layer 3D fully
convolutional neural network (FCN) is used for screening all lung nodule candidates. Considering relative small
sizes of lung nodules and limited memory, the input of the FCN consists of 3D image patches rather than of whole
images. The candidates are further classified in the second CNN to get the final result. The proposed method
achieves high performance in the LUNA16 challenge and demonstrates the effectiveness of using 3D deep CNNs
for lung nodule detection.
Key words: lung nodule detection, computer-aided detection (CAD), convolutional neural network (CNN), fully
convolutional neural network (FCN)
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0 Introduction

Lung cancer is the leading cause of cancer deaths
worldwide. The 5-year survival rate of it can be im-
proved drastically from 17% to 57% when diagnosed at
a localized stage rather than at the distant stage; how-
ever, more than one half of lung cancers are diagnosed
at the distant stage[1]. This raises a need for the early
diagnosis of lung cancer. One of the potential precur-
sors to lung cancer is the presence of lung nodule, the
detection of which is closely related to the diagnosis
of lung cancer. At present, spiral computed tomogra-
phy (CT) is regarded as one of the most appropriate
tools for the screening of lung nodules[2]. However,
it is a tedious work for the radiologists to detect the
lung nodules manually in hundreds of CT slices among
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numerous patients. In the recent decades, computer
aided detection (CAD) systems for lung nodules have
been developed to assist the radiologists by automati-
cally locating the possible nodules, thus improving the
accuracy and efficiency.

A lung nodule CAD system mainly consists of two
stages: lung nodule detection stage and false posi-
tive reduction stage, and they are referred to as the
first and second stages respectively. In the first stage,
many lung nodule candidates are detected from hun-
dreds of CT slices in one CT scan to achieve high
sensitivity. Li et al.[3] developed three selective en-
hancement filters based on Hessian matrices for specific
shapes. Each of the filters can simultaneously enhance
a specific object such as dot-like lung nodules and sup-
press other objects such as line-like blood vessels and
plane-like airway walls. To estimate the nodule loca-
tions and exclude false positives, Tan et al.[4] further
developed the filter method by using the maxima of
divergence of the normalized gradient of the image in
3D. Messay et al.[5] used multiple gray level thresh-
olds and corresponding specific morphological opening
operation to obtain 15 intermediate candidate masks.
These masks were further processed with an expert
filter based on size and compactness followed by a
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logically OR operation to obtain the final candidate
mask. Setio et al.[6] combined three algorithms specif-
ically designed for solid nodules[7], subsolid nodules[8]

and large nodules[9]. All candidates from different al-
gorithms were combined and then candidates located
closer than 5mm were merged. The number of lung
nodule candidates detected in the first stage is much
larger than the number of true nodules. These candi-
dates are classified as true lung nodules or non-nodules
in the second stage. Some handcrafted features are
used in the second stage; the design of these features
is mainly based on intensity, texture, shape and con-
textual information of lung nodules. Ciompi et al.[10]

developed the bag-of-frequencies descriptor, which has
scale-invariant and rotation-invariant properties, to de-
scribe nodule morphology. Tan et al.[4] used 45 features
including gauge derivative invariant features, classical
geometric or shape descriptors and regional or grey-
value descriptors. Recently, convolutional neural net-
work (CNN) methods increasingly pervade the area of
false positive reduction for lung nodule detection. Setio
et al.[6] developed multi-view CNNs whose input was a
set of 2D patches from 9 different oriented planes to
reveal 3D spatial information to some degree. Dou et
al.[11] used 3D CNNs to take full advantage of the 3D
spatial information. The networks were fed with dif-
ferent sizes of patches to incorporate different levels of
contextual information. Both methods achieved lead-
ing results in lung nodule detection[6,11].

Lung nodules can appear with substantial variations
in intensity, shape, size and context. It is therefore hard
to develop pre-defined rules or features for their detec-
tion. Some methods, developed for specific types of
nodules, can be combined to improve the nodule detec-
tion sensitivity in the first stage[6]. However, the num-
ber of false positives increases rapidly with the number
of detected nodules, thus demanding more efforts to
exclude all non-nodule candidates in the second stage.
Though much work has been done in obtaining the
lung nodule candidates, there remains a need for an
efficient method that can detect various types of nod-
ules with a relatively small number of false positives.
Some researchers in recent years have focused on ap-
plying CNNs in false positive reduction in lung nodule
detection, but not many of them have explored using of
CNNs in generating lung nodule candidates. The aim
of this work is to develop a framework based solely on
CNNs for lung nodule detection. The lung nodule can-
didates are obtained using a 3D multi-scale fully con-
volutional neural network (FCN). The 3D CNN is used
to distinguish the true nodules from other non-nodule
candidates. To the best of our knowledge, this is a pi-
oneer work that exploits 3D FCN for detecting lung
nodule candidates; it also provides a general procedure
for exclusively using CNNs for medical image detection
tasks, besides lung nodule detection.

1 Method

The whole computer-aided lung nodule detection sys-
tem is mainly divided into two stages. In the first stage,
a 3D FCN is used to screen all possible lung nodules in
the CT images. Excessive candidates are obtained in
this stage to achieve a high sensitivity of lung nodules.
The candidates are further classified in the second stage
to get the final result.
1.1 Preprocessing and Lung Segmentation

The lung CT images used here have various slice
thicknesses ranging from 0.6 to 2.5mm and spatial res-
olutions ranging from 0.46 to 0.98mm. The images are
resampled to 1mm isotropic voxel spacing. The pixel
intensity is rescaled from (−1 000, 400HU) to (0, 1)[6].
The rough lung region is segmented on the basis of in-
tensity and morphology. The region is then dilated 3
times by a disk kernel with a radius of 5 to ensure that
all lung nodules especially juxta-pleural nodules are in-
cluded in this region.
1.2 Lung Nodule Candidate Detection

The lung nodule candidates are obtained using a
multi-scale 3D FCN. The inputs of the networks are
the 3D CT image patches and corresponding lung nod-
ule masks. A score map with the sizes equal to the
patches can be obtained in the testing stage. The pixel
value in the score map represents the possibility of be-
ing a lung nodule. The nodule candidates are obtained
from the score maps.
1.2.1 Architecture of 3D FCN

A multi-scale 11-layer deep network originally devel-
oped by Kamnitsas et al.[12] is adopted for brain lesion
segmentation. There are 8 convolution layers, each fol-
lowed by batch normalization[13] and PRELU[14]. The
structure of the network is shown in Fig. 1, where
the convolution kernels are described in the form of
“nk×s3

k”, nk is the number of kernels and sk is the ker-
nel size. In order to incorporate local and larger con-
textual information of the lung nodules, the network
is designed to have two pathways for different image
scales. The feature maps of the two pathways are con-
catenated after the second fully connected layer. More
details about the analysis of the network can be found
in Ref. [12].
1.2.2 Patch Extraction and Data Augmentation

The lung CT images are normalized to have zero-
mean and unit variance[15]. The creation of nod-
ule mask is based on the precise lung nodule bound-
ary information provided in the Lung Image Database
Consortium and Image Database Resource Initiative
(LIDC-IDRI) database[16-17]. In the nodule mask, the
value of the lung nodule pixels annotated by at least
3 radiologists is set to be true while the value of other
pixels is set to be false. As shown in Fig. 2, 25 pixel
× 25pixel × 25 pixel and 57 pixel × 57 pixel × 57 pixel
patches are extracted from the same position of the
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Fig. 1 Structure of 3D multi-scale FCN
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Fig. 2 Structure of CNN

resampled images with 1 mm isotropic resolution. Here,
the 25pixel × 25 pixel × 25 pixel patches are used as the
input of the first pathway while the 57pixel × 57 pixel
× 57 pixel patches are down-sampled by a factor of 3
and then used as the input of the second path way.
The corresponding 9 pixel × 9 pixel × 9 pixel center
part of the 25 pixel × 25 pixel × 25 pixel area is seg-
mented from the nodule mask and used as the labels of
the network. The positive samples and negative sam-
ples are randomly selected from the lung nodule regions
and the lung regions respectively; equal numbers of pos-
itive samples and negative samples are used to prevent
class-imbalance[12].
1.2.3 Post Processing

In the test stage, the 3D FCN directly accepts 3D
patches and outputs a 3D score map corresponding to
the center part of the input patch. Sliding window
strategy is used to get the whole score map. The value
in the score map represents the possibility of being a
nodule. An empirical set threshold of 0.25 is used in
this map. Afterwards, regions smaller than 8 pixels are
removed. The centers of the remaining connected com-
ponents are calculated and regarded as the candidate
positions of lung nodules.
1.3 False Positive Reduction

We extract and obtain 3D patches which are centered
on the candidate positions obtained in the first stage.
If the distance from a patch center to any true nodule
center is less than the nodule radius, the label of the
patch is set to 1; otherwise, this label is set to 0. The

patches and labels are used to train a CNN. In the test
stage, the CNN is used to classify all the lung nodule
candidates.
1.3.1 Architecture of 3D CNN

The structure of the CNN is shown in Fig. 2. Rec-
tified linear units (ReLUs) are used after every con-
volutional layer and the first fully connected layer[18].
Dropout layers are adopted after the second and fourth
convolution layers as well as after the first fully con-
nected layer to prevent overfitting[19].
1.3.2 Patch Extraction and Data Augmentation

Three geometric transformations (translation, rota-
tion and flipping) are used for data augmentation. The
center of the candidate can be translated by 1mm in
each axis or by 2 mm in one of three axes, which results
in a total of 30 kinds of translations. Meanwhile, the
samples can be rotated by 90◦, 180◦, 270◦ or flipped
around one of the three axes. The total number of ro-
tation and flipping combinations is 9. Under the com-
bination of these three transformations, a total of 270
different combinations can be generated.

The number of the candidates is about 63 times of
the number of true nodule samples. In order to prevent
the prediction bias, the number of positive samples and
the number of negative samples have to be balanced.
In the training stage, transformations of pre-calculated
types are randomly selected to ensure that the number
of positive samples and the number of negative samples
are equal, while in the testing stage all samples are
augmented by 9 times.
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2 Experiments

2.1 Dataset
We use the dataset released by the LUNA16 chal-

lenge. The data of the challenge comes from the LIDC-
IDRI database which contains chest CT scans of 1 010
patients. All the CT scans in the LIDC-IDRI database
are read in a two-phase reading procedure by four expe-
rienced radiologists. The lung nodule annotations are
independently determined by each radiologists in the
first reading phase called blinded read. Then in the sec-
ond reading phase, every radiologist can review the re-
sults of the other radiologists in the first reading phase
and determines the final annotations of the nodules.
The CT scans are acquired with different kinds of ma-
chines and protocols, and thus they have various slice
thicknesses and spatial resolutions. In the challenge,
888 CT scans are selected by excluding scans with slice
thickness larger than 2.5mm or with inconsistent slice
spacing[6]. The nodules annotated by at least 3 radiolo-
gists and with diameters larger than 3mm are regarded
as true nodules while other nodules are considered as
irrelevant findings.
2.2 Evaluation

The proposed method is evaluated by the detection
sensitivity and false positives (FPs) per scan. A can-
didate is regarded as a true nodule, if the distance of
its center to the nodule center is not larger than the
approximate radius of the nodule. Free receiver oper-
ating characteristic (FROC) analysis is performed and
a 95% confidence interval is computed using bootstrap-
ping with 1 000 bootstraps[20]. The competition per-
formance metric (CPM) is also calculated[21], which is
defined as the average sensitivity at 7 predefined false
positive rates: 1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs per
scan.
2.3 Experimental Setup

The FCN used in the first stage is implemented us-
ing Theano[22-23]. In the training stage, the network
is trained for 20 epochs, each of which consists of 20
subepochs. In each subepoch, 1 000 training samples of
image patches are generated from 50 random CT scans.
The configuration of the network is similar to that of the
DeepMedic model[12]. The learning rate is initialized as
0.001 and halved at 12, 15, 17 and 19 epochs. Besides,
RMSProp is chosen as an optimizer and L1 = 10−6 and
L2 = 10−4 are used as regularization constants[24].

In the second stage, the CNN is implemented using
Theano[22-23] and Keras (https://keras.io). The learn-
ing rate is initialized as 0.01 and the weight decay is set
to be 1×10−6. The mini-batch gradient descent is used
as an optimizer with the batch size set to 150. Training
is stopped under the condition that the accuracy on the
validation dataset does not improve for 4 epochs. The
average prediction of the last 7 models is used as the
final result.

2.4 Results
At the first stage, a sensitivity of 96.88% is achieved

(1149/1186) with 84 FPs per scan. All the candidates
are further classified in the second stage. The FROC of
the whole stage is depicted in Fig. 3, where the dashed
curves show the 95% confidence interval estimated by
bootstrapping. The CPM score is 0.882. The sensitiv-
ity achieved at 2.2 FPs per scan is 93.93%. Figure 4
shows the distributions of the nodule sizes of detected
and missed nodules both in the first and second stages.
Figures 5 and 6 show some missed nodules in the first
and second stages, respectively, where the nodule con-
tours are annotated in red lines. Missed nodules in
the second stage are defined as the nodules detected in
the first stage and with a possibility of being a nodule
less than 0.5 in the second stage. Missed nodules are
mainly juxta-pleural nodules, juxta-vascular nodules,
and nodules with irregular shape or non-solid nodules.
Some false positives are shown in Fig. 7. Figure 8 shows
some detected nodules, where the detected nodules are
annotated in green lines while ground truth nodules are
annotated in red lines.
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Fig. 5 Some missing nodules in the first stage

Fig. 6 Some missing nodules in the second stage

Fig. 7 Samples of false positive detections annotated in green lines

Fig. 8 Samples of detected nodules and their corresponding ground truth nodules

3 Discussion

In the study, a lung nodule detection CAD system
using 3D deep CNNs is developed. In the first of two
stages, an FCN focuses on screening all possible lung
nodules, and then a CNN in the second stage aims at
reducing false positives. The FCN is used instead of a
ruled-based screen method to detect different types of
lung nodules. A detailed comparison with other meth-
ods for lung nodule candidate detection is shown in
Table 1. Compared with other methods, the proposed
method can achieve relatively high sensitivity with low
FPs per scan in lung nodule detection stage. Mean-

while, it can also provide the contours of nodules. The
successful application demonstrates the effectiveness of
using FCN for lung nodule candidate detection. Table
2 lists the performances of some CAD schemes for lung
nodule detection on the LIDC database. The perfor-
mance of the proposed scheme is comparable with that
of other methods in the literature.

There remains some future works to improve the sys-
tem. Firstly, more experiments are needed to study
how to determine the best input size, output size, the
depth of the network and the ratio of positive and neg-
ative samples used in the FCN. Secondly, the complete
lung nodule detection can be divided into two parts:
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Table 1 Comparison among different methods for lung nodule candidate detection on the LIDC datasets

Source Year Number of scans Number of nodules Agreement level Sensitivity/% FPs per scan

This paper − 888 1 186 3 96.9 84

Ref. [25] 2017 502 698 3 94.0 102

Ref. [6] 2016 888 1 186 3 93.3 269

Ref. [26] 2015 865 1 147 3 78.0 43

Ref. [27] 2014 84 148 1 97.9 271

Ref. [4] 2011 125 126 3 96.8 458

Table 2 Comparison among different CAD schemes for lung nodule detection on the LIDC database

Source Year Number of scans Number of nodules Agreement level Sensitivity/% FPs per scan

This paper − 888 1 186 3 93.6(95.5∗) 4

Ref. [11] 2017 888 1 186 3 −(90.7∗) 4

Ref. [25] 2017 502 698 3 88.9 4

Ref. [6] 2016 888 1 186 3 87.9(90.1∗) 4

Ref. [28] 2015 98 631 2 85.2 3.1

Ref. [27] 2014 84 148 1 97.5 6.8

Ref. [29] 2014 108 68 3 75.0 2

Ref. [30] 2013 84 103 1 80.0 4.2

Ref. [31] 2012 84 148 1 97.0 6.1

Ref. [4] 2011 125 80 4 87.5 4.0

∗ The nodules annotated by fewer than 3 radiologists are not regarded as false positives.

lung nodule candidate detection and false positive re-
duction. These two parts are not independent. We
try to achieve an end-to-end lung nodule detection sys-
tem. Thirdly, the system can only output the location
of nodules. But in the real lung nodule screening, the
follow-up requirements of pulmonary nodules with dif-
ferent types and sizes are different. In the future, the
type, size and characteristic of the nodule can be ana-
lyzed to provide recommendations for follow-up.

4 Conclusion

A CAD system for lung nodule detection using 3D
deep CNNs is proposed. An FCN is selected to screen
lung nodule candidates, and then a CNN is developed
to classify the candidates. Experimental results in the
LUNA16 challenge demonstrate the effectiveness of the
proposed method for lung nodule detection.
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