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Abstract: Because of the completeness of concept lattices, the time complexity of constructing concept lattices
has become the main factor affecting the application of formal concept analysis (FCA). The key problems in
the research of concept lattices are how to improve the generation efficiency and how to reduce the space and
time complexity of constructing concept lattices. So far, reviews on lattice construction algorithms have not been
comprehensive. In view of this situation, we give a detailed review on two categories of construction algorithms:
batch methods and incremental methods. The first category is a formal context that cannot be updated once the
concept lattice has been constructed; the second category is a formal context that can be updated after a new object
being added to the formal context. We briefly introduce classical and improved construction methods, illustrate
the deficiencies of some algorithms and point out the improvements of the follow-up algorithms. Furthermore, we
compare and discuss several key algorithms, and also pay attention to the application of concept lattices. Finally,
two further research directions of concept lattices are proposed, including parallel construction methods of concept
lattices and research of heterogeneous data concept lattices.
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0 Introduction

The concept is introduced from philosophy into the
computer science initially[1]. A concept in philosophy is
defined as an ideological unit which is composed of two
parts: extent and intent. Based on philosophy, formal
concept analysis (FCA) was introduced by Rudolf Wille
in the early 1980s.

Like a concept in philosophy, a formal concept in
FCA is composed of two parts (extent and intent) too.
The extent of a formal concept is a set of objects which
belong to the formal concept. The intent of a formal
concept is a set of attributes which are shared by the ob-
jects. As the underlying core structure of FCA, concept
lattices essentially describe the relation between objects
and attributes and illustrate the generalization and uni-
versal instance relationship among concepts. The Hasse
graph of a concept lattice realizes the visualization of
data[2]. For the last two decades, as a powerful tool
in data discovery, concept lattices have played an im-
portant role extensively in various disciplines, such as
knowledge discovery, data mining and software engi-
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neering. However, with the rapid development of com-
puter technology, the amount of data on the Internet
increases exponentially, which results in the dramatic
increase of the time and space complexity. Therefore,
many improved construction methods of concept lat-
tices have been proposed. It is regretful that previous
reviews about construction methods of concept lattices
are not comprehensive.

Two categories of concept lattice construction meth-
ods, including batch generation and incremental gener-
ation methods, are given in this paper. We introduce
classical algorithms and point out the improvements of
the follow-up algorithms. Besides, we briefly explain
the deficiencies of some algorithms, compare and dis-
cuss several key algorithms, and also pay attention to
the application of concept lattices. Finally, two specific
ideas about future development directions of concept
lattices construction algorithms are proposed.

1 Preliminaries

In this section, we introduce basic FCA notions and
conventions. All definitions and propositions are re-
ferred to Refs. [3-4], where readers can get more de-
tailed description.

Definition 1 A formal context is a triple of sets,
K(U, A, I), where U is the set of objects, A is the set of
attributes and I ⊆ U × A represents a binary relation
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between U and A; (x, a′) ∈ I or xIa′ indicates that the
object x has the attribute a′.

A matrix can be seen as a formal context, where a row
is an object and a column is an attribute. An example
of a formal context can be seen as follows:

a b c d

1

2

3

4

⎡
⎢⎢⎢⎢⎣

1 0 1 1

1 1 0 1

0 1 1 0

1 0 1 1

⎤
⎥⎥⎥⎥⎦

.

Definition 2 For a set of objects X ∈ P (U) and
a set of attributes B ∈ P (A), the following mapping
relationships exist between X and B:

f(X) = {a′|a′ ∈ A, ∀x ∈ X, xIa′},
g(B) = {x|x ∈ U, ∀a′ ∈ B, xIa′}.

A formal concept of the formal context is a pair of
(X, B), if f(X) = B and g(B) = X . Here, X is the
extent of the formal concept and B is the intent of the
formal concept. The extent X represents a collection
of all objects covered by the concept, and the intent
B represents a collection of shared attributes by X .
Each concept describes a set of objects and their public
attributes. The concept, which contains all objects in
the formal context, is called a whole concept and the
concept with no objects is called a null concept.

Definition 3 The set of all concepts of K(U, A, I)
is denoted by CS(K). Let C1(X1, B1) and C2(X2, B2)
be two formal concepts of a formal context. If A1 ⊆ A2

or B1 ⊇ B2, then C1 is called a subconcept of C2

and C2 is called a superconcept of C1. This relation-
ship between C1 and C2 is denoted by (X1, B1) �
(X2, B2); (X1, B1) is called a lower neighbor (or a
child) of (X2, B2) and (X2, B2) is called an upper neigh-
bor (or a parent) of (X1, B1) if there is no concept
C3(X3, B3) satisfying (X1, B1) � (X3, B3) � (X2, B2).
All formal concepts of the formal context K with the
subconcept-superconcept relation constitute a complete
lattice, which is called the concept lattice of K. The
concept lattice of K is denoted by L(K).

Definition 4 Let (X1, B1) and (X2, B2) be two
concepts of a concept lattice. The upper and lower
bounds derived from (X1, B1) and (X2, B2) are defined
as follows:

(X1, B1) ∨ (X2, B2) = (g(B1 ∩ B2), (B1 ∩ B2)),
(X1, B1) ∧ (X2, B2) = ((X1 ∩ X2), f((X1 ∩ X2))).

Proposition Let K(U, A, I) be a formal context,
∀X , X1, X2 ⊆ U , ∀B, B1, B2 ⊆ A. Part propositions

are given as follows:

X1 ⊆ X2 ⇒ f(X2) ⊆ f(X1),
B1 ⊆ B2 ⇒ g(B2) ⊆ g(B1),
f(g(f(X))) = f(A), g(f(g(B))) = g(B),
(g(f(X)), f(A)) ∈ L(K),
(f(B), f(g(B))) ∈ L(K).

A Hasse graph of L(K) is connected by the concepts
of the concept lattice.

Figure 1 represents the concept lattice of the formal
context in Definition 1.

1#({1,2,3,4},∅)

8#(∅,{a,b,c,d})

2#({1,2,4},{a,d})

5#({2},{a,b,d}) 6#({1,4},{a,c,d}) 7#({3},{b,c})

3#({1,3,4},{c}) 4#({2,3},{b})

Fig. 1 Concept lattice of the formal text in Definition 1

2 Construction Methods of Concept
Lattices

The methods of constructing concept lattices are di-
vided into two categories: batch methods and incre-
mental methods. A batch generation method is a one-
time process, because changes of a formal context lead
to reconstructing the concept lattice. An incremental
generation method can accept changes of the formal
context. Incremental methods with flexibility are the
focal point of research of construction methods for con-
cept lattices.

In this section, classical batch methods and incre-
mental methods including their improved algorithms
are elaborated.
2.1 Batch Construction Methods

Batch methods, which include two tasks: generating
formal concepts and finding sub-concept/super-concept
relation between concepts, are the earliest proposed
methods. According to the task’s priority, batch meth-
ods are divided into two kinds of models, including task-
partition models and task-cross models. According to
the differences in construction process, batch methods
can be divided into three classes: top-down methods,
such as Bordat’s method[5]; bottom-up methods, such
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as Chein’s method[6] and enumeration methods, such
as Ganter’s method[7].

A task-partition model generates formal concepts
firstly and builds relation between concepts next, while
a task-cross model builds the relation when generating
formal concepts.

In this section, we proceed with discussing classical
and improved methods of task-partition and task-cross
models firstly.

Figure 2 represents two classification methods of
batch construction methods.

Batch
method

Top-down
methods

Button-up
methods

Enumeration
methods

Batch
method

Task-partition
models

Task-cross
models

Fig. 2 Two classification methods of batch construction
methods

2.1.1 Task-Partition Model
Classical task-partition models including

NextClosure[7] are proposed by Chein[6], Ganter and
Wille[7], Stumme et al.[8], Nourine and Raynaud[9],
Godin et al.[10], and so on. Among above algorithms,
NextClosure[7], Titanic[8] and Chein’s method[6] just
generate concepts without building relation between
concepts.

NextClosure is the most famous algorithm among all
the construction algorithms. In order to represent all
formal concepts of the formal context, the algorithm
uses a dictionary to sort all concepts without generat-
ing the Hasse graph. The bit vector is used to represent
the intent of a concept. The vector with an attribute
is tagged to 1, and the vector without an attribute is
tagged to 0. The size of the bit vector reflects the
ranking of the attribute set of a concept in the dic-
tionary. The attribute set of each formal concept can
be enumerated because of its uniqueness. From another
perspective, NextClosure is also based on closure opera-
tions to construct concept lattices[11-12]. The algorithm
does not need to save all generated concepts. It only
needs to calculate certain subsets of object sets with
judging whether the subsets are normal. NextClosure
constructs concept lattices by enumeration. The time
complexity of the algorithm is O(|G|2|M ||L|), where

|G| is the number of objects, |M | is the number of at-
tributes and |L| is the number of connections between
objects and attributes.

Titanic optimizes the process for generating formal
concepts with a technology to compute frequent item
sets. The technology can be used to acquire rules in
data mining. It is similar to calculating frequent sets
that the algorithm generates all formal concepts in the
top-down order layer by layer. Titanic calculates closed
sets with a weight function instead of the given closure
operator. Firstly, it tags the weight of the largest con-
cept to 1. Then it finds all concepts with a weight of
1, and generates the concepts iteratively layer by layer.
Compared with NextClosure, Titanic does not need to
enumerate every concept, so its time performance is
better than NextClosure. Considering that the stor-
age capacity of the lattice structure is quite large, Ti-
tanic only generates all concepts without building sub-
concept/super-concept relation between concepts.

Chein’s method adopts a bottom-up construction
method. Firstly, Chein’s method calculates the inter-
section of attribute sets for every conceptual pair in the
current layer from bottom. Then, each intersection will
be judged whether it is included in the previous con-
cept. If not, the intersection will be generated as the
intent of a new concept. Like above two algorithms,
Chein’s method just generates concepts with relation
not being built.

Unlike above discussed three algorithms, as an al-
gorithm of task-partition models, Alaoui’s method[10]

is just responsible for establishing parent-child rela-
tion, not for generating formal concepts. Therefore,
Alaoui’s method can be seen as a complement to al-
gorithms which just generate concepts. Obviously, it
takes O(|L|2) time to finish connecting between con-
cepts. Nourine’s method[9], which constructs a com-
plete concept lattice, not only generates concepts but
also establishes parent-child relation between concepts.
Parent-child relation can be indexed by searching a dic-
tionary sort tree. The tree is constructed as follows[12]:
the complementary sets of concepts’ extents can be seen
as a basic operating unit. Let F = {∪I∈KI|K ⊂ B} be
a union of subsets of B which is the complement sets
of extents for each individual attribute. Here, F gen-
erated from B is represented by the tree. Each path of
the tree represents an element in F , and the operation
with the same prefix shares partial path. After gener-
ating the dictionary sort tree, the covering graph of F
can be given by deriving conditions which satisfy the
coverage relation defined between two elements in F .
Then, the corresponding algorithm is given. The time
complexity to generate concepts of Nourine’s method is
O((|G| + |M |)|G|), and the time complexity to estab-
lish links is O((|G| + |M |)|G|) too. Nourine’s method
is superior to NextClosure and Chein’s method. Table
1 shows the comparison of above algorithms.
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Table 1 The comparison of task-partition models

Task-partition

model

Construction

method

Whether concepts

constructed

Whether

relation built

Whether Hasse

graph built
Time complexity

NextClosure Enumeration Yes No No O(|G|2|M ||L|)
Titanic Top-down Yes No No —

Chein’s method Bottom-up Yes No No O(|G|3|M |)
Nourine’s method — Yes Yes No O((|G| + |M |)|G||L|)
Alaoui’s method — No Yes — O(|L|2)

2.1.2 Task-Cross Model
Task-cross models include Bordat’s method[5],

Lindig’s method[11], and so on. There are two key
subprocesses of task-cross models[13]. One is to calcu-
late all the largest extended nodes of a concept; the
other is to determine whether the largest extended
nodes are generated firstly. According to different or-
ders to generate sub-concepts, task-cross models can
be divided into depth-first algorithms and breadth-first
algorithms. Depth priority, which is conducive to the
local part of data, can make full use of the cache to
improve the speed of program execution.

Bordat’s method[5] belongs to the top-down construc-
tion algorithms. It starts from the top concept, iter-
atively finds children of the current concept and es-
tablishes relation between parents and children. The
main idea of the algorithm is given as follows[12]. Let
(X1, X2) be the current concept. If B2 ⊆ B−B1 which
is a subset of the attribute set maintaining the prop-
erties of a complete binary group in X1, B1 ∪ B2 will
be the intent of a subset of (X1, X2). The problem of
the algorithm is that each binary group will be gener-
ated more than one time. What’s more, in order to
avoid duplication, checking whether each concept has
been generated can lead to time overhead. In the end,
a Hasse graph is constructed. The time complexity of
the algorithm is O(|G||M |2).

Lindig’s method[11] is a more efficient algorithm and
can be seen as a “bottom-up Bordat”. It generates the
bottom concept firstly. All upper concepts of a con-
cept, which is not generated before, will be generated.
In order to determine whether a concept is not gen-
erated quickly, an index tree of all generated concepts
is constructed. The efficiency of searching concepts in
Lindig’s method is higher than the efficiency of Bordat’s
method because Bordat’s method lacks the index tree
to determine whether a concept has been generated.
From the point of view of time complexity, searching
concepts takes O(|G||M |) time. In view of determining
and generating parents, the time complexity of Lindig’s
method is O(|G|2|M |). The time performance of the
discussed two algorithms of task-cross models depends
on the number of objects and attributes in a formal con-
text. Lindig’s method is superior to Bordat’s method
if the number of attributes is larger than that of ob-

jects; otherwise, Bordat’s method is superior to Lindig’s
method.
2.1.3 Improved Batch Construction Methods

With the development of concept lattices, many im-
proved batch construction methods have been pro-
posed. Xie Run et al.[14] proposed a hierarchical al-
gorithm based on the number of objects belonging to
concepts. The concepts in the same layer have the
same number of objects. The concepts of a temporary
sub-lattice are generated layer by layer, with a width
priority, to avoid generating duplicate concepts and to
speed up constructing concept lattices. Finally, true
sub-lattice concepts are selected. However, this method
can just connect two adjacent layers in the Hasse graph.
Building relation between concepts not in adjacent lay-
ers should be considered separately.

Xie Zhipeng[15] believed that task-cross models are
more efficient than task-partition models because infor-
mation acquired in the process of generating concepts
can be used. He took advantage of extended equiv-
alence classes to generate concept lattices in batches
quickly. Information of the extended equivalence class
for each concept is utilized. The definition of extended
equivalence classes is given as follows[15].

Definition 5 For a concept C of a concept lat-
tice, attributes b1, b2 �∈ Intent(C). Here, b1 and b2,
which are extended equivalently for C, are denoted
by (b1, b2) ∈ EQU EX(C), under the condition of
g(Intent(C) ∪ {b1}) = g(Intent(C) ∪ {b2}).

An extended equivalence class of concept C is a di-
vision of B − Intent(C) by the extended equivalence
relation EQU EX(C).

For a concept C, each of its largest extended equiva-
lence classes corresponds to each child of C. All direct
and indirect extended concepts of the child concept C1

are obtained by all indirect and direct extended con-
cepts of its parent C. It is similar to Lindig’s method
that an index tree is constructed to index the existing
concepts in the second step. The node in the tree cor-
responding to the existing concept will be returned. If
the concept does not exist, the corresponding node in
the index tree will be inserted. Compared with Bordat’s
method and Lindig’s method, the algorithm reduces the
time for finding direct extended nodes. During build-
ing relation between concepts, an edge is finished in the
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time O(|A|) with a tree structure as the index. Con-
sidering that the largest number of edges in a concept
lattice is |L||A|, the time complexity of constructing the
complete concept lattice is O(|A|2|L|).

In contrast with NextClosure, Kuznetsov[16] pro-
posed a more efficient concept construction method,
Cbo (close-by-one), based on closure operation. On
the basis of Cbo, fast Cbo[17] and parallel close-
by-one (PCbo)[18] have been developed. Cbo[16]

adopts a formal test and subset selection method, like
NextClosure[7]. The main improvement of Cbo is that
it introduces an intermediate structure to generate con-
cepts more effectively. The intermediate structure can
be a “tree” to save the set of concepts, and update and
construct the Hasse graph. A “stack” can replace the
“tree” without the need of constructing a Hasse graph.

Whether it is NextClosure or Cbo, in the case of
sparse data, generating a closure and detecting its reg-
ularity at each step, and coupling with the calculation
of the closure can bring about much time wasting. So,
Qi et al.[19] proposed an algorithm by narrowing search
space of closure gradually to construct concept lattices.
This method sets the power set of attribute sets as the
search space of initial closure. The initial separation of
the search space is defined as follows.

Definition 6 Let P (CR) be the power set of CR;
CORE ⊆ m, CR ⊆ M and ∀bi ∈ CR, max (CORE) <
bi; SS(CORE, CR) = {ss|ss = CORE ∪ cr, cr ∈ P (CR)}
is denoted by a search space, where CORE is a core set
of SS, and CR is a candidate set of SS[19].

The search space is further divided into smaller sub-
search space.

Definition 7 A search space SS(CORE, CR) is
given; SSi(COREi, CRi) = {ss|ss = COREi ∪ cr, cr
∈ P (CRi)} is a sub-search space defined by an attribute
bi (bi ∈ CR). Here, COREi = CORE ∪ {bi} is the core
set of SSi; CRi = {b′|bi < b′, b′ ∈ CR} is a candidate
set. Specially, SS0 is defined as SS0(CORE0, CR0) =
{CORE ∪ ∅}[19].

The union of regular closed sets of all sub-search
spaces is equivalent to the regular closed sets of the
original search space. The validity of a sub-search space
can be determined by judging whether the core set of
the sub-search space can generate a regular closed set,
and their results are consistent.

The main steps of the algorithm is given as follows[19].

Search space partition based concepts generation
(SSPCG)
Input: a formal concept K(U, A, I)
Output: all concepts of K(U, A, I)
Begin

Output the largest concept (U, ∅)
For (i = 1; i � the number of sub-search space; i++)

Mark attributes which can confirm the sub-search

space in CRi

If (SSi is a valid sub-search space)
Generate the largest concept of SSi

Futher shrink SSi until it cannot be divided; out-
put the smallest concept of SSi

End
Output the smallest concept (∅, A)

End

There are some ways to improve batch methods from
other special points of view. Zhang et al.[20] proposed
an algorithm based on the extension of inter-relevant
successive trees to construct concept lattices. The al-
gorithm takes advantage of the order of attributes to
construct an inter-relevant successive tree for a formal
context, with each attribute set being symbolized as a
string. The concepts are generated by searching the
inter-relevant tree, while the Hasse graph cannot be
generated. Cheng[21] found that a binary formal con-
text can be seen as a Boolean matrix. He introduced
the rank of attributes. The concepts are generated from
the attribute set B. The remaining concepts are gen-
erated by the intersection of those concepts, parents of
which are recorded. The Hasse graph is generated fi-
nally. The purpose of the intersection operation is to
narrow the object sets and to expand the attribute sets.
At last, this method is stratified according to the cardi-
nality of the object set for each concept. Since the par-
ents are recorded, this method, which not only builds
parent-child relation between adjacent layers but also
builds relation between concepts not in adjacent lay-
ers, forms a complete lattice structure. However, the
method has obvious shortcomings. Firstly, Cheng[21]

did not programme to implement this method. Sec-
ondly, in the case of large amount and uneven distri-
bution of data, almost every concept has to do inter-
section operation with other concepts, which results in
high labor costs. Compared with Cheng’s method[21],
Zhang et al’s method[20] can be applied more widely,
because inter-relevant successive trees are constructed
on the basis of texts which can be expressed in vari-
ous forms. Applied to formal contexts, inter-relevant
successive trees are not limited to binary relation for-
mal contexts. In the latest research, Li Xin et al.[22]

constructed concept lattices based on irreducible at-
tributes. This method not only generates concepts
which are also obtained by doing intersection operation,
but also builds relation between concepts. What is dif-
ferent from Cheng[21] is that Li Xin et al. thought each
object to do the intersection operation represents each
concept in a concept lattice and all concepts in the set
P J consist of a set of irreducible attribute concepts[22].
In this process, new concepts are connected with the
concepts in the original concept lattice. The time per-
formance is optimized because a new concept is only
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constructed by its higher “neighbors”.
2.2 Incremental Construction Methods

Among proposed batch methods, only a few methods
can generate Hasse graphs. Even some of them just gen-
erate concepts without building parent-child relation
between concepts. It is undeniable that parent-child re-
lation between concepts is vital for mining association
rules. Moreover, a formal context is not static usually,
which leads to batch algorithms being not suitable for
constructing concept lattices in change. Therefore, it is
imperative to develop incremental construction meth-
ods for concept lattices.
2.2.1 Classical Incremental Construction Methods

The basic idea of incremental methods is given as
follows[10]. The object to be inserted is intersected with
all the concepts in the original concept lattice, and dif-
ferent operations are performed according to the results
of the intersection. There are three main problems to be
solved during incremental construction[15]: judging the
type of concepts in the original concept lattice, avoiding
generating duplicate concepts, and updating edges.

Some typical incremental algorithms are given as
follows[12]: Godin’s method[10], GALOIS[23], and
AddIntent[24]. They are briefly described below.

Godin’s method is the most classical incremental al-
gorithm. The concepts in the original concept lattice
L(X, B, R) are divided into three categories when a new
object x∗ is inserted into L(X, B, R). The new concept
lattice is denoted by L∗ = (X ∪ {x∗}, B, R∗). The defi-
nitions of the three types of concepts in L(X, B, R) are
given below[15].

Definition 8 (Modified Nodes) If a node C satisfies
Intent(C) ⊆ f({x∗}), C is a modified concept. If C is
a modified node, it will be updated to (Extnet(C) ∪
{x∗}, Intent(C)) in L∗.

Definition 9 (Generator Nodes) If a node C1 =
(X1, B1) satisfies: � Itersection = B1 ∩ f(x∗) and for
any node C2 in L, Intent(C2) �= Intersection; � for
any node C3 satisfies C3 > C1 in L, Intent(C3) ∩ B1 �=
Intersection, where C1 is a generator node. The nodes
which are (Extent(C1) ∪ {x∗}, Intent(C1) ∩ f(x∗)) in
L∗ generated by generator nodes are called new nodes.
There is a one-to-one correspondence relationship be-
tween a generator node and a new node.

Definition 10 (Old Nodes) Nodes in L except gen-
erator nodes and modified nodes are called old nodes.

Table 2 shows a summary of the modifications re-
sulting from the updating process with respect to the
classification of nodes.

Table 2 A summary of modifications resulting from updating process according to the classification of nodes

Type of node Extent Intent Condition

Modified node C Extent(C) ∪ {x∗} No change Intent(C) ⊆ f({x∗})
Generator node C No change No change For any node C1 in L, C2 > C, Intent (C1) �=

Intersection, Intent (C2)∩B �= Intersection

Old node C No change No change Nodes except modified nodes and generator
nodes in L

New node generated by C Extent(C) ∪ {x∗} Intent (C) ⊆ f({x∗}) —

Godin also gave an improved algorithm. It is not
necessary to check all concepts in the concept lattice.
The algorithm just needs to check nodes which have
common attributes with new instances. On the basis
of Godin’s method, Xie Run[25] gave the judgment con-
dition of generator nodes: B0

∪
x∈If(x) after full investi-

gation of the concept lattice, where B0 is the attribute
set of the added object. The improved method reduces
the search range of generator nodes and speeds up the
updating process of the lattice.

GALOIS[23] is similar to the basic idea of Godin’s
method. The main differences are that when making
connections, GALOIS finds the minimum upper bound
and the largest lower bound of the new node and deletes
edges between them, and finally builds links with the
new node.

AddIntent traverses the concept lattice to search gen-
erator nodes from bottom up[24]. It traverses the neigh-

bor nodes of each node iteratively until finding a gener-
ator node C whose neighbor nodes do not contain the
intent of the new node Y . The largest time complexity
of AddIntent is O(|G|2|M |). However, a large number
of objects will lead to time waste. Moreover, repeated
traversing can happen when Y is the intent of some
nodes.
2.2.2 Improved Incremental Construction Methods

To judge the type of the node to be inserted quickly,
Xie and Liu[26] proposed a method to construct concept
lattices through a tree structure. This method can con-
strain the search range of new nodes and their children.
The left modifications are the same as Godin’s method.
Figure 3 shows the index tree corresponding to the con-
cept lattice in Fig. 1.

Considering previous incremental algorithms just
adding objects gradually, Li Yun et al.[27] proposed
an algorithm based on adding attributes. Like adding
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1#
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c

d
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d d

Fig. 3 The index tree corresponding to the concept lattice
in Fig. 1

objects, the algorithm also divides the nodes in the new
concept lattice L∗ into three types. � Old node: the
intersection of the extent of such a node and the added
node is empty. � Modified node: the extent of such a
node is included in the extent of the added node. The
intent of such a node will be updated to the union of
the intent of the original node and the added node. �
New node: when the intersection of the extent to be in-
serted and the extent of a node in the original concept
lattice does not appear, a new node should be added
into the lattice. The intersection is the extent of the
new node. The time and space complexity of this algo-
rithm is almost equal to that of Godin’s method. When
the number of objects is much larger than that of at-
tributes in the formal context, this method is superior
to Godin’s method.

The most important step in incremental constructing
concept lattices is to find generator nodes. It is known
that parents of a new node must be a new node or a
modified node in Godin’s method. At the same time,
a generator node must be a child of the new node cor-
responding to it. So, searching generator nodes can be
transformed into looking for the relationship between
generator and new nodes or generator and modified
nodes.

In Godin’s method, in order to search parents and
children of a new node, the algorithm needs to traverse
all the current node’s upper and lower nodes. On the
basis of Godin’s method, Shen et al.[28] took advan-
tage of the uniqueness of the primary key in a database
to judge whether the new node has existed. More-
over, the depth-first traversal of the graph can avoid
generating edges that do not satisfy the above condi-
tions. The complexity of traversal is higher than that
of Godin’s method. After the number of objects grow-
ing to a certain number, the time complexity of the
algorithm is significantly slower than that of Godin’s
method. Zhi[29] discovered that generating new nodes
is only related to newly generated nodes and has noth-

ing to do with the large number of previously gener-
ated concepts. Therefore, the search range will be nar-
rowed to generate new nodes[30]. In order to avoid re-
peated traversal, the new nodes are constructed to a
sub-lattice. The fast incremental construction method
proposed by Xie and Liu[26] still needs to search gener-
ator nodes, while Zhi’s method can determine whether
new nodes are generated from the closet parent nodes
directly. Thus, Zhi’s method is superior to Godin and
Xie Zhipeng’s method theoretically.

FastAddIntent proposed by Zou et al.[31] can
make two improvements on the basis of AddIntent.
� FastAddIntent does not repeat traversing the nodes
whose intent is Y . � The search range to look for par-
ents is narrowed to Cd = {(g(D), f(g(D)))|D ∈ Md},
where Md = {F |B ⊂ F, |F | = |B| + 1}. The most time
AddIntent takes for searching generator nodes in a di-
agram graph is O(|G|2|M |), while the most time taken
by Zhi’s method is O(|G||M |2). Considering that the
number of objects is always much larger than that of
attributes in general, FastAddIntent has a greater as-
cension to AddIntent. The whole time FastAddIntent
takes for constructing concept lattices is O(|G||M |2|L|)
while that of AddIntent is O(|G|2|M ||L|).

There are other improvements to incremental con-
struction algorithms from other angles. Liu et al.[32]

classified the objects with the same attributes into one
category on the basis of the classification idea of rough
sets. Due to this, the formal matrix of a formal context
has been put forward. Based on the formal matrix, a
concept lattice’s construction method is given theoret-
ically. It is a pity that the method has not been imple-
mented and the idea of classification is also relatively
simple. Incremental construction methods mentioned
previously just handle problems of adding one object
or attribute. In view of this situation, Zhan and Liu[33]

put forward a method that can process multiple added
objects or attributes incrementally at a time. They
built two patter trees, called C-tree and T-tree. C-tree
represents the new added transactions and T-tree rep-
resents the formal context corresponding to the transac-
tion database. Firstly, this method removes each single-
branch mode in T-tree, and then projects C-tree to ob-
tain the projection tree. At last, the C-tree reorganized
according to the projection tree is acquired. In the
above process, each single-branch mode disassembled
from the T-tree contains more than one transaction, so
the algorithm realizes batch processing in incremental
construction methods.

Whether it is incremental or batch construction, con-
cept lattices are all constructed from starch with the
completed partial lattice being the basis for the calcu-
lation of the added node. Outrata[34] proposed an ef-
ficient algorithm for updating the concept lattice, i.e.,
calculating the change of the concept lattice directly
from the change of the input data[34]. The algorithm is
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used for computing the set of all concept lattices. It is
significantly faster than recomputing all concepts or the
whole concept lattice over again. Moreover, it performs
comparably to existing incremental algorithms[34].

Incremental construction algorithms usually update
concept lattices for adding objects or attributes, while
sometimes some objects or attributes in the formal con-
text need to be deleted in reality. In this case, incremen-
tal methods for deleting objects or attributes are put
forward. It is worthwhile to point out that there is a
fundamental difference between algorithms for deleting
objects gradually and attributes’ reduction theory[35]:
attributes’ reduction theory concerns the smallest sub-
set which belongs to the set of attributes of the original
concept lattice, so the concept lattice represented by
the smallest subset is isomorphic to the original concept
lattice. Deleting objects gradually concerns the changes
of the concept lattice after deleting some objects or at-
tributes. Therefore, the changed concept lattice is not
necessarily isomorphic to the original one.

Carpineto and Romano[36] proposed RemoveObject,
and Zhang et al.[37] put forward DeleteObject. In
DeleteObject, formal concepts of the original concept
lattice are divided into three categories. � Old
concept: the extents of old concepts do not include
those of concepts to be removed. � Modified concept:
concepts of this class are removed from the concept
lattice. � Removed concept: concepts of this class are
similar to the new concepts in incremental algorithms
for adding objects. After removing them, edges
associated with these concepts are readjusted. Main
steps of DeleteObject are given as follows.

DeleteObject
Input: the original concept lattice; the object to be
removed
Output: the lattice L(K|−{g}) after removing g
Begin

Find the lowest concept containing g, and then add
it into the candidate set CSc

For (i = 1; i � the number of elements in CSc; i++)
For the element C in CSc, all unvisited parents of

C are added to CSc

If (C is a concept to removed)
Remove C
Adjust edges associated to C

Else
Mark all parents of C as modified concepts

End if
Output the lattice L(K|−{g}) removing g

End

The main steps of RemoveObject are similar to those
of DleteObject. But in the first step, RemoveObject
traverses the whole concept lattice instead of looking for

the lowest concept containing g. When judging whether
a concept is a deleted concept or not, both DeleteOb-
ject and RemoveObject need to traverse all lower con-
cepts of the removed concept (X, B) to look for the de-
structor concept in the lattice L∗ (corresponding to the
generator concept in incremental algorithms for adding
objects). This process compares X-{g} with the extent
of each lower concept of (X, B). In the worst case, this
process takes the time O(|G||M |). After deleting con-
cepts, it is a much time consuming procedure for the
intents being compared several times during adjusting
the relationship of edges.

3 Application of Concept Lattices

Since the concept lattice was proposed, its applica-
tion has focused on software engineering, data min-
ing, information retrieval, etc. In software engineer-
ing, concept lattices provide theoretical support for
object-oriented programming, software re-engineering,
software reuse, etc., achieving a series of achievements.
For example, the interface hierarchy is very important
for coders to understand and analyze class libraries in
the field of object-oriented programming which is very
popular[15]. As a part of the IGLOO, Godin et al.[38]

inserted new classes one by one to generate a concept
lattice or other form of structure which can help coders
better understand the hierarchy of the library based
on the specification of the class library. In software
re-engineering, code needs to be modular. Lindig and
Snelting[39] constructed a concept lattice by analyzing
the relationship between the process and global vari-
ables, and explained how to get the structure of mod-
ule in the lattice structure which can be used to eval-
uate the cohesion and coupling between module candi-
dates. In data mining, extracting association rules from
data is one of its core contents. Godin and Missaoui[40]

proposed an algorithm for extracting implication rules
from concept lattices based on the theory of concept
lattices, and used the theory of dependencies on func-
tions in relation databases to deal with implications
of rules. Pasquier et al.[41] proposed Duquelme-Guigue
basis used for extracting deterministic association rules.
They also proposed proper basis and structural basis for
extracting approximating association rules. This work
was based on the discovery of all frequent item sets.
What’s more, information retrieval is also an important
area for success application of concept lattices. Krohn
et al.[42] applied concept lattices to document retrieval.
Whenever a keyword is input, the documents related
to it are sorted. The first 10 results form a document-
term formal context, and then the weight matrix where
each element represents the weight of each term in a
particular document is assigned to the formal context.
Finally, a concept lattice containing search results is
formed. The concept lattice as well as the weight matrix
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is useful to guide the order and direction of information
retrieval. With the deepening of FCA and concept lat-
tice research, application fields of concept lattices ex-
pand. Cole and Eklund[43] applied concept lattices to
analyze and visualize a medical database with 1 962 at-
tributes and 4 000 prescription summaries. Kent and
Bowman[44] built a system called Nebula and corre-
sponding interfaces which are based on concept lattices
for digital library.

It is worth noting that it is necessary to extend
concept lattices so as to better apply concept lattices
to some specific fields. A weighted concept lattice is
formed when different weights are assigned to the at-
tributes because the degree of attention to attributes
is different. Some applications pay more attention to
attribute sets rather than object sets. In this case, the
object set can be replaced by its potential. The result-
ing concept lattice is called quantitative concept lattice.
There are still many similar situations, which will not
be listed here.

However, no matter how wide the application scope
of concept lattices is, time and space complexity of con-
structing concept lattices will grow exponentially once
the scale of the formal context in the application is ex-
panded. How to construct concept lattices efficiently is
still the main factor affecting the development of appli-
cation. The utilization of new methods and techniques
to construct concept lattices is the premise of apply-
ing concept lattices to larger data. In addition to the
two types of concept lattice construction methods stud-
ied in this paper, Valtchev and Missaoui[45] proposed a
method that constructs a concept lattice by combin-
ing its sub-lattices whose formal contexts are split from
the original formal context. How to construct concept
lattices by combining sub-lattices in a parallel environ-
ment which can be efficient provides researchers with
new ideas. At the same time, in practice, affairs are
always in a changing process. These changes include
updating of concepts in a formal context, generation of
new concepts, and adjustment of relationships. How to
maintain the concept lattice timely and dynamically to
cope with these changes also affects the application of
concept lattices. Therefore, the application of concept
lattice still needs long-term work.

4 Future Prospects

However, some experiments to evaluate the perfor-
mance of algorithms are not included in the paper. In
the future, we are going to select some representative
classical and improved algorithms to carry out exper-
iments. The space and time complexity will be com-
pared to verify whether improved algorithms are effec-
tive. At the same time, experimental results will be
analyzed to judge whether the algorithm has room for
improvement and verified experiments will also be done.

For a long time, the development of concept lattices
has been relatively slow for the reason that construc-
tion algorithms for concept lattices are always restricted
by the complexity of time and space, especially for
a large amount of data. However, it should not be
overlooked that concept lattices show the most essen-
tial relationship between concepts, while machine learn-
ing mainly draws information from large amounts of
data. In contrast with concept lattices, information
obtained through machine learning is relatively super-
ficial. Moreover, the structure of a concept lattice is
quite stable. As long as the formal context does not
change, the lattice structure will not change regardless
of the construction method adopted. The range of ap-
plication of concept lattices is quite broad. In addition
to playing an important role in data mining and soft-
ware engineering, concept lattice can also be applied
to web log mining, web text management medium, etc.
The research combined with the ontology has become
a major direction of concept lattice research. The con-
struction of concept lattices is the premise and foun-
dation of all applications of concept lattices, so it is
necessary to continue developing efficient construction
algorithms. So, we give two further research directions
on the construction methods of concept lattices:

(1) Parallel construction of concept lattices. The gen-
eral concept lattice construction algorithms are imple-
mented in the environment with one CPU. With the
massive increase of the amount of data, the time and
space complexity of the algorithms will greatly increase.
With the rapid development of multi-CPU computers,
parallel construction of concept lattices has room for
improvement. There are differences between parallel
construction and distributed construction. The dis-
tributed construction is still in the environment with a
single CPU, while the parallel construction divides con-
struction tasks to many CPUs to complete, effectively
improving the efficiency of construction. At present,
there are some parallel construction methods, such as
the concept lattice construction based on search space
partition proposed by Qi et al[19]. Because the divided
search space is relatively independent, it is very bene-
ficial to parallel construction. But the research of par-
allel construction also has the following problems: how
to coordinate subtasks, how to ensure the interaction
between subtasks, how to divide the task granularity,
etc. On the basis of parallel construction, multi-process
can be a further research point.

(2) Research on the concept lattices for heteroge-
neous data. Most of the data in practice is heteroge-
neous, while the data in the concept lattices is always
Boolean. Data structure in formal contexts is single.
In order to meet the construction requirements of con-
cept lattices, data usually needs to be preprocessed in
real applications. Whether the data is manual pre-
processed or computer-pre-processed, it will increase
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the time consumption inevitably. Some of research has
focused on other structural data, such as multivalued
data and interval data. However, concept lattices’ con-
struction for heterogeneous data has never made a big
breakthrough. Therefore, the study of the construction
of concept lattices for heterogeneous data will play an
important role in practical application.

5 Conclusion

Concept lattices has not only made great progress
in construction methods in more than 30 years since
it was put forward, but also developed other research
directions, such as attributes’ reduction, and rule ac-
quisition. At the same time, it has been widely used in
machine learning, pattern recognition, computer net-
work and other fields. No matter how the concept lat-
tices develop, the lattice construction methods must be
the foundation of the concept lattice research, but the
overview of the concept lattice construction algorithms
is not comprehensive. Therefore, this article has done
the work of the following several aspects.

(1) Firstly, we introduce some basic theory knowledge
of concept lattices, and then introduce two kinds of
algorithms in detail: classical batch and incremental
construction algorithms. At the same time, we compare
several classical batch algorithms from several aspects.

(2) We introduce the main improved batch and in-
cremental methods, and expound some important algo-
rithms in detail. For a more intuitive representation of
advantages and disadvantages of these methods, we an-
alyze and compare the time complexity, improvement
principle and improvement ideas of these algorithms.
Furthermore, construction algorithms for removing ob-
jects which have not got enough attention are also in-
volved in this paper.

(3) We also pay attention to the application of con-
cept lattices. We not only enumerate some concrete
examples of main application areas of concept lattices,
but also introduce several extended concept lattices
for adapting to specific application areas. At last, we
present some requirements of the application on con-
cept lattices in addition to high time-and-space com-
plexity of construction methods of concept lattices.
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