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Abstract: The attitude tracking control problem of a rigid spacecraft with actuator saturation is investigated
in this paper. A finite-time attitude tracking control scheme is presented by incorporating sliding mode control
(SMC) and adaptive technique. Specifically, a novel time-varying sliding mode manifold is first developed that
aims at regulating the attitude tracking error to equilibrium point within a certain finite time. Moreover, it can
be specified a priori by the designer according to the mission requirement. Subsequently, an adaptive controller is
derived by using the SMC in conjunction with adaptive technique. The designed controller is capable of ensuring
that the state trajectories reach to sliding regime within a finite time, and hence that attitude tracking error can
converge to zero in a finite time with the aid of the developed sliding dynamics, despite the presence of exogenous
disturbances, unknown inertia properties and saturation nonlinearities. Finally, the simulation experiments are
carried out to demonstrate the effectiveness of the proposed control scheme.
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0 Introduction

The attitude tracking control of a rigid spacecraft
has attracted a great deal of interest during the past
decades, owing to its extensive applications in aerospace
engineering. In this direction, many advanced nonlinear
control strategies have been proposed to improve the
control performance, such as adaptive control[1], slid-
ing mode control (SMC)[2-3], and H∞ inverse optimal
control[4]. Among them, SMC as an effective approach
has been extensively applied to attitude tracking con-
trol of spacecraft, largely because of its rapid response
and insensitivity to uncertain parameters and distur-
bances.

Although SMC is able to guarantee good control per-
formance for spacecraft attitude tracking maneuvers, it
can only provide infinite-time convergence in general.
In practice, guaranteeing the convergence of the atti-
tude tracking error to equilibrium point within a finite
time is more desired for some high demanding real-time
missions. Jin and Sun[5] presented an alternative solu-
tion to finite-time attitude tracking control by means
of terminal SMC (TSMC). However, one caveat is that
most of the existing TSMC schemes are discontinuous
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and have a singularity problem. Zou et al.[6] proposed
a finite-time control scheme to overcome the singularity
problems by terminal sliding mode and neural network
technique.

Besides, control input saturation is also a practical
problem that deserves more attention in the design of
attitude tracking controller[7]. From a practical view-
point, actuator saturation may give rise to undesirable
performance degradation or lead to system instabil-
ity. Analysis and design of attitude systems with in-
put saturation nonlinearities were studied in Refs. [8-
11]. Many finite-time attitude control methodologies
with actuator saturation have been designed on the as-
sumption that some system states are bounded. To
date, finite-time control design for spacecraft applica-
tions with explicit consideration of actuator saturation
is still an open problem.

In this paper, we address the problem of attitude
tracking control with finite-time convergence for a rigid
spacecraft subjected to input saturation and the pres-
ence of exogenous disturbances. A valid solution is pre-
sented by incorporating SMC and adaptive technique.
Specifically and firstly, a novel time-varying sliding
mode manifold is developed that aims at achieving the
finite-time convergence of the attitude tracking error.
Meanwhile, the discontinuity and singularity of TSMC
are avoided. Subsequently, a special auxiliary system is
introduced to overcome the input saturation. Then an
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adaptive controller is derived, which is capable of en-
suring that the state trajectories reach to sliding regime
within a finite time, and hence that attitude tracking
error can converge to zero in a finite time. It is shown
that the control algorithm developed is robust against
exogenous disturbances and adaptive to unknown iner-
tia properties. In particular, by incorporating a novel
time-varying forcing function into the sliding dynam-
ics, the attitude tracking error is proven to converge
to zero within a pre-determined time, and the terminal
time as an explicit parameter can be specified a priori
by the designer according to mission requirement. Fi-
nally, the effectiveness of the proposed control scheme
is illustrated via simulation experiments.

1 Problem Formulation

1.1 Dynamic Model of Rigid Spacecraft
The finite-time attitude tracking task of a rigid space-

craft is focused in this paper, and the kinematic and
dynamics equations of motion in terms as quaternion
are describe by

q̇v =
1
2
(q×

v + q4I3)ω

q̇4 = −1
2
qT

v ω

⎫
⎪⎬

⎪⎭
, (1)

Jω̇ = −ω×Jω + τ + Td, (2)

where, q = [qT
v q4] ∈ R

4 denotes the attitude orien-
tation of the rigid-body spacecraft with respect to an
inertial frame, and I3 ∈ R

3×3 denotes the identity ma-
trix; x× represents a skew-symmetric matrix, and for
∀x = [x1 x2 x3], x× is defined as

x× =

⎡

⎢
⎢
⎣

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤

⎥
⎥
⎦ ;

ω denotes the angular velocity body-fixed frame of
spacecraft in the body frame with respect to the in-
ertial reference frame; J ∈ R

3×3 denotes the inertia
matrix of spacecraft; τ represents the control torque
produced by the actuator; Td ∈ R

3 represents the ex-
ternal disturbance.
1.2 Relative Attitude Dynamics

In order to pursue the attitude tracking control prob-

lem, the error quaternion qe =

[
qT

ev

qe4

]

∈ R
3 ×R is given

by

qe = q ⊗ q∗
d =

[
qd4qv − q4qdv + q×

v qdv

qd4q4 + qT
dvqv

]

, (3)

where, q∗
d is the conjugate quaternion of qd, and qd =

[
qT

dv

qd4

]

∈ R
3 × R denotes the desired attitude ori-

entation; similarly, its motion is governed by q̇dv =
0.5(q×

dv +qd4I3)ωd and q̇d4 = −0.5qT
dvωd, and ωd is the

desired angular velocity. On the basis of the above def-
inition, the open-loop attitude tracking dynamics can
be obtained as[12]

q̇ev = Qωe

q̇e4 = −1
2
qT

evωe

⎫
⎬

⎭
, (4)

Jω̇e = −ω×Jω + J
(
ω×

e Cωd − Cω̇d

)
+ τ + Td, (5)

where

Q = 0.5
(
q×

ev + qe4I3

)
,

C = (q2
e4 − qT

evqev)I3 + 2qevq
T
ev − 2qe4q

×
ev

denotes the corresponding rotation matrix satisfying
‖C‖ = 1 and Ċ = −ω×

e C; ωe ∈ R
3 is the relative

angular velocity between the body-fixed frame and the
inertial reference frame.

In order to facilitate the control law derivation, ma-
nipulation of Eqs. (4) and (5) results in[12]

M∗q̈ev + Nq̇ev + P TH = P T (τ + Td) , (6)

where P is the inverse matrix of Q,

M∗ = P TJP ,

N = P TJṖ − P T(JP q̇ev)×P ,

H = (P q̇ev)×J(Cω̇d) + (Cωd)×J(P q̇ev)+

(Cωd)×J(Cωd) − JP (ω×
e Cωd − Cω̇d).

The transformed system has the following properties.
Property 1 M∗ is symmetric positive definite.
Property 2 The matrix M∗ − 2N is a skew sym-

metric satisfying xT(Ṁ∗ − 2N)x = 0 for ∀x ∈ R
3.

Assumption 1 There exists a positive but un-
known scalar Jmax such that ‖J‖ � Jmax.

The inertia matrix is time-varying and uncertain due
to the fuel consumption and/or the unfolding of solar
array and some other factors, but remains positive def-
inite and bounded all the time. Therefore, it is reason-
able to assume that ‖J‖ � Jmax.

In this work, we seek to present a finite-time con-
trol law for spacecraft attitude tracking maneuvers
to achieve the finite-time convergence of the attitude
tracking error, in the presence of external disturbances,
unknown inertia properties and input saturation.
1.3 Relevant Lemma

The system is considered as

ẋ = f(x, t), f(0, t) = 0, x ∈ R
n,
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where f : U → R
n is continuous on an open neighbor-

hood U of the origin. Assume that the above system
has a unique solution in forward time for all initial con-
ditions.

Lemma 1[13] For the system mentioned above,
given a Lyapunov function V (x), real numbers α ∈
(0, 1), c > 0 and 0 < η < ∞ such that

V̇ (x) � −cV α(x) + η,

then the trajectory of system is practical finite-time
stable. And the states of system converge to a residual
set described as

V α(x) � ηc(1 − θ), ∀t � T

in a finite time. The convergence time T is given by

T � V 1−α(x0)
λθ(1 − α)

,

where λ and 0 < θ < 1 are positive constants, and
V (x0) is the initial value of V .

Notation Throughout this paper, we use ‖·‖
for the Euclidean norm of vectors and the in-
duced norm for matrices. For a given vector x =
[x1 x2 x3]T ∈ R

3, define xα = [xα
1 xα

2 xα
3 ]T,

sgn(x) = [sgn(x1) sgn(x2) sgn(x3)]T and sigα(x) =
[xα

1 sgn(x1) xα
2 sgn(x2) xα

3 sgn(x3)]T, where α ∈ R.
Lemma 2[14] Considering symmetric and positive

matrix B ∈ R
3×3, maximum positive constant λmax

and minimum positive constant λmin, it is bounded as
λmin ‖x‖2 � xTBx � λmax ‖x‖2, ∀B, x ∈ R

3.

2 Control Law Design and Stability
Analysis

With time-varying SMC and adaptive techniques, an
adaptive controller is designed to achieve finite-time at-
titude tracking under input saturation.

For the attitude tracking dynamics, a novel time-
varying sliding mode surface is designed as

s = [s1(t) s2(t) s3(t)]T = q̇ev + kqev − f(t), (7)

where k is a positive scalar to be determined by de-
signer, and f(t) = [f1(t) f2(t) f3(t)]T is the forcing
function in sliding mode dynamics with its analytical
form of

f(t) =
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̇ev(0) + kqev(0), 0 � t < tm
[
1 − ρ(1 − e−k(t−tm))

]
(q̇ev(0)+

kqev(0)) cos
π(t − tm)
2(tf − tm)

, tm � t < tf

0, t � tf

. (8)

In Eq. (8), q̇ev(0) and qev(0) refer to the initial values
of q̇ev and qev, respectively; f(t) is continuous, and its
first derivative is 0 or bounded in switch points (this
property is a basic requirement for the existence of a
sliding control); ρ is constant parameter; tf is the ter-
minal time specified by the designer according to the
mission requirement, and system states will reach the
sliding manifold within finite time tm using the designed
controller. It is obvious that s = [0 0 0]T when t = 0.

Lemma 3 Consider the time-varying sliding man-
ifold s defined in Eq. (7). If an effective control law
ensures that the state trajectories originating from the
sliding regime reach the sliding manifold within tm and
hold on it thereafter, then the tracking errors q̇ev and
qev converge to zero at the time tf , and for all t � tf ,
qev ≡ 0 and q̇ev ≡ 0.

Proof If the designed controller ensures s to be
zero within finite time tm and stays zero for all t � tm,
it follows that

q̇ev + kqev = f(t), ∀t � tm. (9)

For t � tm, the tracking error and sliding mode sur-
face s need to be verified in two separate periods. To
show the convergence of q̇ev +kqev, we first analyze the
response in time interval tm < t � tf .

For tm < t � tf , solving Eqs. (8) and (9) yields

qev(t)ekt
∣
∣t
tm

=(1 − ρ)p1

∫ t

tm

ekτ cos
π(t − tm)
2(tf − tm)

dτ+

ρektmp1

∫ t

tm

cos
π(t − tm)
2(tf − tm)

dτ,

where p1 = q̇ev(0) + kqev(0). Then, the expression of
qev(t) from tm to tf can be obtained as

qev(t) =qev(0)e−k(t−tm)+
1
p

[
(1−ρ)p1k cos

π(t−tm)
2(tf−tm)

+

(1 − ρ)p1π

2(tf − tm)
sin
π(t − tm)
2(tf − tm)

−

(1 − ρ)p1ke−k(t−tm)
]
+

2ρe−k(t−tm)p1(tf − tm)
1
π

sin
π(t − tm)
2(tf − tm)

,

where p = k2+
π

2(tf − tm)
. In order to ensure qev(t) = 0

when t = tf , the constant ρ in the forcing function can
be resolved as

ρ =

qev(0)e−k(tf−tm) +
p1e−ktfπ

2p(tf − tm)
− p1kektm

p

p1ektfπ

2(tf − tm)
− p1kektm

p
− 2e−k(tf−tm)p1(tf − tm)

π

. (10)
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With the choice of constant parameter ρ calculated in
Eq. (10), the sliding mode manifold can force qev(tf) =
0. Further, the response of q̇ev(t) at the time t = tf
needs to be verified; obviously, q̇ev(t) can be obtained
as q̇ev(tf) = 0 corresponding to q̇ev(tf) + kqev(tf) =
f(tf) = 0. Then, solving Eq. (9) we can obtain
q̇ev(t) = 0 and qev(t) = 0 with the continuity of qev(t)
and lim

t→tf
qev(t) = 0 for t > tf . Hence, qev(t) ≡ 0 and

q̇ev(t) ≡ 0 can be gained for all t � tf with the above
indication, that is, we conclude the finite-time conver-
gence. Then proof is completed.

Remark 1 Compared with other time-varying slid-
ing mode surfaces, the forcing function f(t) can guar-
antee the finite-time convergence of the system states
to equilibrium point.

In order to design the finite-time fault-tolerant atti-
tude tracking controller, an auxiliary tracking error is
introduced as[15]

er = s − q̇ev. (11)

By Eqs. (6) and (11), the open-loop dynamics of s
can be defined as

Mṡ + Cs = P Tτ + P Td + R, (12)

where the variable d = ū + Td is the total interference;
R = M∗ėr + Cer − P TH , and it can be transformed
as

R = P TY (·)θ. (13)

In Eq. (13), θ ∈ R
6 is a constant vector defined as θ =

[J11 J13 J13 J22 J23 J33]T with Jij being the element
of J ; Y (·) ∈ R

3×6 is the known regression matrix:

Y (·) =L(P ėr) + L(Ṗ er) + (Per)×L(ωe)−
ω×

e L(Cωd) − (Cωd)×L(ωe + Cωd)+

L(ω×
e Cωd − Cω̇d),

where L(·) is an operator defined by

L(x) =

⎡

⎢
⎢
⎣

x1 x2 x3 0 0 0

0 x1 0 x2 x3 0

0 0 x1 0 x2 x3

⎤

⎥
⎥
⎦ .

In Eq. (12), P Td + R denotes an uncertainty function
containing external disturbances and uncertainty of sys-
tem.

Considering actuator input constraints, the control
torque τ = [τ1 τ2 τ3] has an upper limit and a lower
limit. Hence, the control law is designed as

u = sat(v, umax),

where, v is the input signal of controller; umax = τmax is
a known constant which is the maximum torque the ac-
tuator can produce; sat(v, umax) denotes the nonlinear

saturation characteristic of the actuator and is of the
form as sat(ui) = sgn(ui)min{|ui|, umax} for i = 1, 2, 3.

For convenience of input constraint effect analysis,
the auxiliary design system is given by

ẋa = −xa
(Ps)TΔu

‖xa‖2
− k2xa − k5sigr(xa), (14)

where
Δu = u − v,

k2, k5 and r are positive scalars to be designed; xa ∈ R
3

is the state of the auxiliary design system.
Note that introduction of proceeding auxiliary sys-

tem is to handle input saturation. The auxiliary system
designed in Eq. (14) is presented to analyze the effect of
saturation constraint, and auxiliary xa is used to design
the following control law to help in providing stability
analysis to the closed-loop attitude system.

Theorem 1 Consider the attitude tracking control
system given in Eq. (6). The control law u implemented
with v and the updating law are firstly designed as

v = −k1sigr(Ps) − b̂ϕsgn(Ps)−
k3(Ps) − k4xa, (15)

˙̂
b = δ1(ϕ‖Ps‖ − λ1b̂), (16)

where k1, k3, k4, δ1 and λ1 are positive control gains,
and ϕ = [‖Y (·)‖F 1]; the adaptive value b̂ is the es-
timate of the unknown parameter b, b = [‖θ‖ dm],
and dm is the upper bound of disturbance d (it is time-
invariant but unknown scalar). Suppose that the con-
trol parameters are chosen such that

k3 > 0.5, k2 > 0.5k2
4.

If controller parameters are chosen properly such that
the system states reach the sliding manifold in a fi-
nite time tm, then the finite-time convergence of relative
tracking error is achieved as qev ≡ 0 for t > tf .

Proof Consider the following Lyapunov function
candidate:

V1 = 0.5sTM∗s +
1

2δ1
b̃Tb̃ + 0.5xT

a xa, (17)

where b̃ = b− b̂. Taking the time derivative of V1 leads
to

V̇1 = sTP Tv + sTP T(d + R) − 1
δ1

b̃T ˙̂
b + xT

a ẋa. (18)

Applying Assumption 1, Property 1, Property 2,
Lemma 2 and Eq. (15) yields

V̇ = sTP T
(
− k1sigr(Ps) − b̂ϕsgn(Ps)−

k3(Ps) − k4xa

)
+ sTP T(d + R)−
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1
δ1

b̃T ˙̂
b + xT

a ẋa + sTP TΔu �

− k1‖Ps‖1+r − sTP Tb̂ϕsgn(Ps) − k3‖Ps‖2−
k4s

TP Txa + ‖Ps‖2(d + R)−
1
δ1

b̃T
(
δ1ϕ‖Ps‖ − λ1b̂

)
+

xT
a

(
− xa

(Ps)TΔu

‖xa‖2
− k2xa − k5sigr(xa)

)
+

sTP TΔu �
− k1‖Ps‖1+r+

(b − b̂)Tϕ ‖Ps‖ − k3‖Ps‖2 − k4s
TP Txa−

b̃Tϕ‖Ps‖ + λ1b̃
Tb̂ − k2‖xa‖2 − k5‖xa‖1+r−

k4(Ps)Txa,

so −k4(Ps)Txa can be established by using Young’s
inequality:

−k4(Ps)Txa � 1
2
‖Ps‖2 +

k2
4

2
‖xa‖2.

It follows that

V̇ � − k1‖Ps‖1+r + λ1b̃
Tb̂ − k3‖Ps‖2−

k2‖xa‖2 − k5‖xa‖1+r − k4(Ps)Txa �
− k1‖Ps‖1+r + λ1b̃

Tb̂ − k3‖Ps‖2−

k2‖xa‖2 − k5‖xa‖1+r + 0.5‖Ps‖2 +
k2
4

2
‖xa‖2 �

− k1‖Ps‖1+r − (k3 − 0.5)‖Ps‖2−
(
k2 − k2

4

2

)
‖xa‖2 − k5‖xa‖1+r + λ1b̃

Tb̂.

For ∀γ ∈ (0.5, 1), the term λ1b̃
T
i b̂i, i = 1, 2, satisfies

λ1b̃
T
i b̂i = − λ1b̃

T
i (b̃i − bi) � −υ[(b̃i)2](1+κ)/2+

[
λ1(2γ − 1)(b̃i)2

2γ

](1+κ)/2

−

λ1(2γ − 1)
2γ

(b̃i)2 +
γλ1

2
(bi)2,

where υ =
(
λ1

2γ − 1
2γ

)(1+κ)/2

and κ ∈ (0, 1).

Two cases are considered to further deal with the
above inequality.

Case 1 If

λ1(2γ − 1)
2γ

(
b̃i

)2

� 1,

it is obvious that
[
λ1(2γ − 1)

2γ
(b̃i)2

](1+κ)/2

− λ1(2γ − 1)
2γ

(b̃i)2

︸ ︷︷ ︸
χ

� 0

holds, due to 0.75 < (1 + κ)/2 < 1.
Case 2 If

λ1(2γ − 1)
2γ

(b̃i)2 < 1,

in terms of the characteristic of a power function, the
term χ is bounded within a certain range of [0, ρ], with
ρ � 1.

Hence, we can easily get

λ1b̃
Tb̂ � − υ

2∑

i=1

[(b̃)2](1+κ)/2 + 3ρ + 0.5λ1γbTb �

− υ(b̃Tb̃)(1+κ)/2 + 3ρ + 0.5λ1γbTb.

Let κ = r and suppose that the control parameters
are chosen such that

k3 >
1
2
, k2 >

k2
4

2
.

Then, we can easily get

V̇ � − k1‖Ps‖1+r − υ(b̃Tb̃)(1+r)/2+

3ρ + 0.5λ1γbTb − k5‖xa‖1+r �
(1+r)/2

√
2/λmax(J)k1(0.5sTM∗s)(1+r)/2−

(1+r)/2
√

2δ1υ

(
1

2δ1
b̃Tb̃

)(1+r)/2

−
(1+r)/2

√
2k5(0.5xT

a xa)(1+r)/2 �
− cV (1+r)/2 + η,

where

c = min
{

(1+r)/2
√

2/λmax(J)k1,
(1+r)/2

√
δυ,

(1+r)/2
√

2k5

}
,

η = 3ρ + 0.5λ1γbTb,

λmax(J) is the maximum eigenvalue of J .
It is then concluded from Lemma 1 that V1 is finite-

time stable and converges to the origin satisfying

V (1+r)/2 � η/(1 − θ0)β1,

where θ0 ∈ (0, 1], β1 is a positive scalar.
A time variable is given by

Treach � V
1−r
2 (x0)

β1θ0
1 − r

2

.

Based on the above analysis and the properties of
sliding mode manifold, it can be concluded that: if the
residual set is sufficiently small, V (t) can be approx-
imately defined as V (t) ≡ 0 for all t � Treach; if we
choose proper tm such that tm � Treach, the tracking
error vector will converge to equilibrium point within
specified time tf , and it is designed according to mission
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requirement, that is, lim
t→tf

qev = 0, lim
t→tf

q̇ev = 0. Hence,

we have completed the proof of Theorem 1.
Remark 2 In this paper, there exists a singularity

problem for the proposed controller in auxiliary sys-
tem Eq. (14) when xa = 0. Considering that all of the
trajectories of the closed-loop attitude system are prac-
tical finite-time stable, the auxiliary system is modified
to overcome the singularity problem:

xa = −xa
(Ps)TΔu

‖xa‖2 + ε
− k2xa − k5sigr(xa),

where ε is a small positive scalar.

3 Numerical Simulation

Numerical simulation is carried out to demonstrate
the effectiveness of the proposed control scheme. The

inertia matrix is set as J =

⎡

⎢
⎢
⎣

20 0 0

0 17 0

0 0 15

⎤

⎥
⎥
⎦ kg ·m2; the

products of inertia are small than 0.5 kg · m2; ΔJ =
diag(1, 1.5, 1.5) kg · m2, umax = 0.2 N · m.

The external disturbance is given as[16]

d = 10−4

⎡

⎢
⎢
⎣

3 cos (10ω0t) + 4 sin (3ω0t) − 10

3 cos (5ω0t) − 1.5 sin (2ω0t) + 15

3 sin (10ω0t) − 8 sin (4ω0t) + 10

⎤

⎥
⎥
⎦ N · m,

where ω0 = 0.1. The maximum allowable control
force Fmax = 1 N is assumed to impose on the ac-
tuators. The initial condition is set as qev(0) =
[−0.2 0.5 0.1

√
0.7]T, with initial ωe(0) =

[−0.02 0.01 0.02]T.
The control parameters are chosen as

k1 = 1, k2 = 2, k3 = 1.5, k4 = 1, k5 = 2,

tm = 30 s, tf = 180 s, r = 0.9, δ1 = 2, λ1 = 0.1.

Time responses of attitude tracking error and angular
velocity error are shown in Figs. 1 and 2, respectively.
It is observed that, by implementing the proposed con-
troller, the attitude tracking mission is achieved at
t = 180 s as determined in the controller, that is, the
attitude errors and angular velocity errors converge to
zero at tf . Meanwhile, angular velocity errors converge
to zero rapidly. Although actuators are faulty, the de-
sired target is guaranteed. The steady errors of angular
velocity are less than 2 × 10−5 rad/s.

Furthermore, the time response of control torque of
actuator is shown in Fig. 3 which has interferences and
actuator magnitude constraints. Hence, the proposed
finite-time controller is not only robust against external
disturbances and adaptive to unknown inertia proper-
ties, but also able to account for input saturation.
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Fig. 1 Time response of attitude tracking error
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Fig. 2 Time response of angular velocity error
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Fig. 3 Time response of control torque of actuator

4 Conclusion

In this paper, an adaptive attitude tracking con-
trol strategy has been presented for a rigid spacecraft
with an unknown inertia matrix. The proposed con-
trol scheme is capable of guaranteeing that the attitude
tracking error can converge to equilibrium point within
a certain finite time which can be specified a priori by
the designer according to specific mission requirements.
Moreover, it is proven that the control algorithm de-
veloped is not only robust against the external distur-
bances and adaptive to the unknown inertia properties,
but also able to accommodate the saturation nonlinear-
ities simultaneously. The effectiveness of the proposed
control scheme is further illustrated by the numerical
simulation.
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