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Abstract: Performance degradation and random shock are commonly regarded as two dependent competing risks
for system failures. One method based on effective service age is proposed to jointly model the cumulative effect
of random shock and system degradation, and the reliability model of degradation system under Nonhomogeneous
Poisson processes (NHPP) shocks is derived. Under the assumption that preventive maintenance (PM) is imper-
fective and the corrective maintenance (CM) is minimal repair, one maintenance policy which combines PM and
CM is presented. Moreover, the two decision variables, PM interval and the number of PMs before replacement,
are determined by a multi-objective maintenance optimization method which simultaneously maximizes the sys-
tem availability and minimizes the system long-run expect cost rate. Finally, the performance of the proposed
maintenance optimization policy is demonstrated via a numerical example.
Key words: degradation, random shock, Nonhomogeneous Poisson processes (NHPP), imperfect preventive main-
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0 Introduction

Performance degradation is one common characteris-
tic of general product. As the service time increases, its
performance degrade continuously and its failure rate
increases gradually. At the same time, the system re-
ceives the random shock of different magnitudes, which
can accelerate the system failure. Degradation and ran-
dom shock are two major causes for system failure, and
they also have a certain correlation. Random shock will
accelerate degradation of system performance or result
in failure directly. On the other hand, with the sys-
tem degradation, the possibility of system failure due
to the shock increases. In other words, the system with
serious degradation is more vulnerable to fail.

System degradation has attracted great interests over
the last decades in the reliability field. In Refs. [1-
3], Gamma process is employed to capture the ran-
dom character of the system performance degradation.
Gamma process which has continuous nonnegative in-
crement is naturally suitable to model degradation pro-
cesses in which deterioration is considered to be a series
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of tiny increments. When the performance degrades to
a pre-specified threshold, the system is considered to
have failed. Reference [3] divides the operation cycle
of the system into two stages through a predefined sys-
tem degradation threshold. It assumes that there are
different shock failure rates in different stages to solve
the system reliability model under the combined action
of shock and degradation. References [4–5] adapt the
effective service age to model system reliability. The
effective service age is linearly related to the work-
ing time. Since the service age threshold follows ex-
ponential distribution, the system failure rate in its
whole life cycle is constant, which cannot capture sys-
tem degradation feature. Also, due to the memoryless
character of exponent distribution, random shock un-
der the model will not affect the failure rate of the sys-
tem, which fails to describe the acceleration of random
shock on the system degradation. References [6–8] as-
sume that the parameters in the degradation expression
follow normal distribution and the random shocks fol-
low the homogeneous Poisson process. When the sum
value of inherent and shock-caused degradation exceeds
the preset threshold, the system is considered to have
failed. References [9–10] adopt the nonhomogeneous
Markov process to describe the ageing characteristic of
components and solve the system reliability using gen-
eral generating function. However, when the state
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number of components is greater than three, the
steady-state probability solution of the nonhomoge-
neous Markov process becomes very complicated.

Maintenance is recognized as being of both theoreti-
cal and practical importance in the reliability engineer-
ing field. Generally, there are two types of maintenance
actions, preventive maintenance (PM) and corrective
maintenance (CM)[9-11]. Maintenance strategy can also
be divided into two candidates, the maintenance policy
upon service age and upon working conditions[1-3]. Ref-
erence [5] only considers PM without CM. It means that
if the system fails, it will stay on the failure state with-
out any maintenance action until the next regular re-
pair time. This type of maintenance strategy will cause
highly system availability reduction due to the rising
failure rate during the later stage. Reference [9] studies
a service-age-based maintenance strategy, and only re-
placement action is taken into account. When service
age of the system exceeds the predefined value, or the
system performance reaches to the preset threshold, it
will be replaced. It simplifies the service age as the ac-
tual service duration, and finally optimizes the system
maintenance cost using the preset threshold of service
time and degradation as the decision variables. The
maintenance strategy of Refs. [6-8] belongs to the con-
dition based maintenance (CBM) strategy which car-
ries out the periodic examination on the system during
the replacement cycle. When the working conditions of
the system meet the requirements, no any maintenance
measure is adopted. If any working condition fails to
meet the requirements, the system is replaced. If the
system fails at the interval of two examinations, it keeps
the failure state until the next examination.

How to excellently schedule maintenance plan is an
optimization issue. The commonly used optimization
objectives include long run maintenance expected cost
rate, system steady-state availability and system effi-
ciency. They can also be divided into single objective
optimization and multi-objective optimization accord-
ing to the number of the optimization objectives. Ref-
erences [3], [6–8] and [10] adopt the optimization objec-
tive of long run maintenance cost rate, which belongs
to the single objective optimization. Reference [5] takes
the long run expected cost rate and availability as the
optimization objectives and Ref. [6] takes expected cost
rate and system efficiency as the optimization objec-
tives, which belong to the multi-objective optimization.

To describe the impact of performance degradation
and random shock on the system reliability, this paper
first puts forward the concept of effective service age,
and then models the system inherent degradation and
external random shock respectively. The system reli-
ability model is finally obtained by jointly considering
these two competing risks accounting for system fail-
ure. Moreover, it proposes a maintenance strategy con-
sisting of PM and CM, and presents a multi-objective

optimization plan for maximizing system availability
and minimizing long run expected cost rate. Finally,
it analyzes the reliability of the system under different
maintenance decisions and verifies the rationality of the
models and the optimization effect of the maintenance
decision based on one numerical example.

1 System Modeling

1.1 Reliability Model of Degradation System
The actual working time of the system is defined as

t and its effective service age is denoted as Tv(t) =

a +
∫ t

0

δ(x)dx, in which a is the initial service time be-

fore delivery to customer and δ(x) is a nondecreasing
function, representing the impact of the system work-
ing environment on its effective service age. In the ideal
working environment, it can be assumed δ(x) = 1, that
means the effective service age is equal to the actual ser-
vice time. When δ(x) is a monotone increasing function
of variable x, it represents the accelerated aging process
of the system under higher working load.

When the effective service age reaches a predefined
threshold S, the system is considered to have failed.
Assuming that the threshold S follows exponential
distribution[4] with parameter of μ, S : exp(μ), then
the reliability function of the degradation system is

Ro(t) = P{Tv(t) < S} =

P

{
a +

∫ t

0

δ(x)dx < S

}
=

exp
(
−μ

[
a +

∫ t

0

δ(x)dx

])
. (1)

1.2 Random Shock Modeling
It is assumed that the random shock follows the Non-

homogeneous Poisson process (NHPP), which is written
as {N(t), t � 0}, the shock strength is assumed as λ(t),

mean value is l(t) = E[N(t)] =
∫ t

0

λ(x)dx and the ar-

rival time of the ith shock is denoted as Ti. The impact
of the shock on the system reliability is described by
(p(t), q(t)) mixed shock model. Each shock makes the
system directly fail with the probability of p(t) and in-
creases the change rate of effective service age with the
probability of q(t) = 1− p(t), which means that shocks
will accelerate aging performance of the system. The
increment of the change rate of the effective system ser-
vice age by the ith shock is expressed by the random
variable wi. M(t) is the moment generating function of
wi and M(t) is assumed to be derivable.
1.3 System Reliability Modeling Under Com-

peting Risk of Degradation and Random
Shock

Under the combined action of system degradation
and external random shock, the system lifetime is
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expressed by the random variable Y , so the system reli-
ability function is the conditional probability under the
effect of shock, expressed as

P{Y > t|N(t); w1, w2, · · · , wN(t)} =
N(t)∏
j=1

q(Tj) exp
{
− μ

(
a +

∫ t

0

[
δ(x)+

N(t)∑
j=1

wj1[Tj ,∞)(x)
]
dx

)}
=

exp
{
−μ

[
a +

∫ t

0

δ(x)dx

]}
×

exp

⎧⎨
⎩

N(t)∏
i=1

ln q(Ti) − μ

∫ t

0

N(t)∑
j=1

wj1[Tj,∞)(x)dx

⎫⎬
⎭ , (2)

where 1[Tj,∞)(x) =

{
1, x ∈ [Tj ,∞)
0, x �∈ [Tj ,∞)

is the indicator

function, and thus

∫ t

0

N(t)∑
j=1

wj1[Tj ,∞)(x)dx =

N(t)∑
j=1

wj(t − Tj) = t

N(t)∑
j=1

wj −
N(t)∑
j=1

wjTj ,

and the system reliability is

P{Y > t|N(t); w1, w2, · · · , wN(t)} =

Ro(t) exp

⎧⎨
⎩

N(t)∏
i=1

ln q(Ti) − tμ

N(t)∑
j=1

wj + μ

N(t)∑
j=1

wjTj

⎫⎬
⎭ .

Hence, the system reliability function under the com-
bined action of shock and degradation is expressed as

R(t) = P{Y > t} =

Ro(t)E
[
exp

{ N(t)∏
i=1

ln q(Ti)−

tμ

N(t)∑
j=1

wj + μ

N(t)∑
j=1

wjTj

}]
. (3)

It can be known from Eq. (3) that the system relia-
bility function can be considered as being consisting of
two parts which are connected in series. First part is
the inherent reliability of the system denoted by Ro(t),

the second part E
[
exp

{ N(t)∏
i=1

ln q(Ti) − tμ

N(t)∑
j=1

wj +

μ

N(t)∑
j=1

wjTj

}]
(written as Rs(t)) represents the impact

on system reliability caused by random shock. We as-
sume that the random shock N(t) follows NHPP. It can
be readily converted into Homogeneous Poisson pro-
cess (HPP) through time scale transformation. Define
N∗(t) = N(l−1(t)), {N∗(t) : t � 0} is a HPP with in-
tensity 1. Under this new time scale, the arrival time of
the shock is T ∗

j = l(Tj), j � 1. Given s = l(t), following
result can be obtained.

Rs(t) = E
[
exp

{ N∗(s)∏
j=1

ln q(l−1(T ∗
j ))−

l−1(s)μ
N∗(s)∑
j=1

wj + μ

N∗(s)∑
j=1

wj l
−1(T ∗

j )
}]

=

E
[
E

[
exp

{ N∗(s)∏
j=1

ln q(l−1(T ∗
j ))−l−1(s)μ

N∗(s)∑
j=1

wj+

μ

N∗(s)∑
j=1

wj l
−1(T ∗

j )
}∣∣∣N∗(s) = n

]]
=

∞∑
n=0

E
[
exp

{ N∗(s)∏
j=1

ln q(l−1(T ∗
j )) − l−1(s)μ

N∗(s)∑
j=1

wj+

μ

N∗(s)∑
j=1

wj l
−1(T ∗

j )
}∣∣∣N∗(s) = n

]
P (N∗(s) = n). (4)

Given N∗(s) is equal to n, it is readily to know that
{T ∗

j }, j = 1, 2, · · · , n and {V ∗
(j)}, j = 1, 2, · · · , n have

the same joint distribution, and {V ∗
(j)}, j = 1, 2, · · · , n

are the order statistics of n independent random vari-
ables {V ∗

j }, j = 1, 2, · · · , n which follow the uniform
distribution in [0, s][4]. Denote U = V1/s, therefore U
is a random variable with uniform distribution in [0, 1].
The conditional expectation in Eq. (4) can be solved as
following.

E
[
exp

{ n∑
j=1

ln q(l−1(Vj))−

l−1(s)μ
n∑

j=1

wj + μ
n∑

j=1

wj l
−1(Vj)

}]
=

E
[
exp

{ n∑
j=1

(ln q(l−1(Vj))+

wjμ(l−1(Vj) − l−1(s)))
}]

=

{E[exp{ln q(l−1(V1))+wjμ(l−1(V1)−l−1(s))}]}n =

{E[exp{ln q(l−1(sU))+wjμ(l−1(sU)−l−1(s))}]}n =

{E[E[exp{ln q(l−1(sU))+

wjμ(l−1(sU) − l−1(s))}|U = u]]}n =
{ ∫ 1

0

exp{ln q(l−1(su))}

E[exp{wjμ(l−1(su)l−1(s))}]du
}n

, (5)
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where E[exp{wjμ(l−1(su)−l−1(s))}] = M(μ(l−1(su)−
l−1(s))). M(t) is the moment generating function of wj .
Through variable substitution x = l−1(l(t)u), l(t)u =

l(x), u =
l(x)
l(t)

,
du

dx
=

l′(x)
l(t)

, then the following can be

obtained.
∫ 1

0

exp{ln q(l−1(su))}×

E[exp{wjμ(l−1(su) − l−1(s))}]du =∫ 1

0

exp{ln q(l−1(su))}M(μ(l−1(su) − l−1(s)))du =
∫ t

0

exp{ln q(x)}M(μ(x − t))dx =

1
l(t)

∫ t

0

q(x)λ(x)M(μ(x − t))dx. (6)

Substituting Eq. (6) into Eq. (5) and Eq. (5) into
Eq. (4), Rs(t) can be obtained, which represents the
impact part of random shock on the system reliability.

Rs (t) =
∞∑

n=0

[
1

l(t)

∫ t

0

q(x)λ(x)M(μ(x − t))dx

]n

×

P{N∗(s) = n} =
∞∑

n=0

[
1

l(t)

∫ t

0

q(x)λ(x)M(μ(x − t))dx

]n
sn

n!
e−s =

e−s
∞∑

n=0

1
n!

[∫ t

0

q(x)λ(x)M(μ(x − t))dx

]n

=

exp
{
− l(t) +

∫ t

0

q(x)λ(x)M(μ(x − t))dx
}

.

Therefore the combinative reliability of the system is:

R(t) =Ro(t)Rs(t) =

exp
{
−μ

[
a +

∫ t

0

δ(x)dx

]}
×

exp
{
−l(t) +

∫ t

0

q(x)λ(x)M(μ(x − t))dx

}
=

exp
{
− μa − l(t) +

∫ t

0

(−μδ(x)+

q(x)λ(x)M(μ(x − t)))dx
}

. (7)

And the failure rate function is

h(t) = − d
dt

ln(R(t)) =

λ(t) + μδ(t) − d
dt

∫ t

0

q(x)λ(x)M(μ(x − t))dx.

As assumed in section 1.2, the derivative of M(t)

exists, so

d
dt

∫ t

0

q(x)λ(x)M(μ(x − t))dx =
∫ t

0

d
dt

(q(x)λ(x)M(μ(x − t)))dx + q(t)λ(t) =
∫ t

0

q(x)λ(x)M ′(μ(x − t))dx + q(t)λ(t).

Moreover, the system corresponding failure rate func-
tion is

h(t) =λ(t) + μδ(t) − q(t)λ(t)−∫ t

0

q(x)λ(x)M ′(μ(x − t))dx. (8)

2 System Maintenance Model and Op-
timization

This paper proposes a mixed maintenance strategy
model including PM and CM, in which PM refers to
regular repair and maintenance of the system and CM
refers to the corrective maintenance after the failure
occurs. The maintenance strategy optimization is the
multi-objective optimization and the optimization ob-
jectives are maximization of availability and minimiza-
tion of expected maintenance cost rate.
2.1 Maintenance Assumptions

(1) Maintenance interval of PM is expressed by T , the
total maintenance cost is denoted by Cp, and mainte-
nance time is expressed by Tp.

(2) The system will be replaced at the Nth times of
PM with the renewal cost of Cr. Tr represents the time
needed for system renewal and NT refers to the system
renewal cycle.

(3) CM is implemented when the accidental failure
occurs between two PMs. The cost of CM is denoted
by Cc. The maintenance time is expressed by Tc which
is a random variable. The time of CM does not affect
the PM interval T . For example, a failure occurs be-
tween the intervals of PMs and the maintenance time
is T ′

c. PM interval remains unchanged and the effective
working time of the system between the intervals of PM
reduces to be T − T ′

c.
(4) We assume that PM is imperfect, system relia-

bility after PM will be improved, but it will not re-
cover to the new state. To capture the effect of the
imperfect maintenance, the recover factor α is intro-
duced. After each time of regular maintenance, the
service age threshold of the system will increase. After
the ith time of regular maintenance, it is written as Si,
Si = S/αi, α < 1, where α depends on the maintenance
effect of PM. With the impact of degradation and ran-
dom shock, system failure rate will rise gradually. PM
can be adopted periodically to improve system failure
rate. After N times of PM, the system will be replaced
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by a new one, and the failure rate reduces to the initial
state. At this time, the system is considered as entering
a new cycle.

(5) We adopt the assumption that CM is minimum
maintenance, which is carried out after the accidental
failure. In other words, after CM, system returns to
working state, and its failure rate is restored to the
previous value before recent failure.

(6) The costs of different kinds of maintenance are
assumed to meet Cr > Cc > Cp and the maintenance
times meet E[Tc] > E[Tr] > E[Cp].

As mentioned above, S is an exponential distribution
random variable with parameter μ, so Si follows the ex-
ponential distribution with parameter μα(i−1), namely,
Si : exp(μαi−1), it is readily to get the system reliabil-
ity function Ri(t) and the failure rate function hi(t) in
the ith regular maintenance cycle.

Ri(t) = exp{αi−1(−μa) − l(t)+∫ t

0

(−μαi−1δ(x)+

q(x)λ(x)M(μαi−1(x − t)))dx}, (9)

hi(t) = λ(t) + μαi−1δ(t) − q(t)λ(t)−∫ t

0

(q(x)λ(x)M ′(μαi−1(x − t)))dx, (10)

t ∈ (Ii−1, Ii].

2.2 Maintenance Optimization
In this paper, we will discuss the maintenance op-

timization issue which includes two optimization ob-
jectives, maximization of steady-state availability and
minimization of expected maintenance cost rate. After
N times of PM, the system will be replaced directly and
return to the new state. According to the renewal re-
ward theory, the steady-state availability of the system
can be expressed as the ratio of the working time ex-
pectation in a renewal cycle E[Tavailable] to the renewal
period expectation E[Trenew], as shown in Eq. (11). The
expected maintenance cost rate can be expressed as the
ratio of the expected cost E[Crenew] to the renewal pe-
riod expectation E[Trenew], as shown in Eq. (12). The
decision variables are the PM interval T and the times
of PM in one renewal cycle N .

A(N, T ) =
E[Tavailable]
E[Trenew]

=

NT − E[Tc]E[Nc]
NT + (N − 1)E[Tp] + E[Tr]

, (11)

C(N, T ) =
E[Crenew]
E[Trenew]

=

(N − 1)Cp + CcE[Nc] + Cr

NT + (N − 1)E[Tp] + E[Tr]
, (12)

where E[Tp], E[Tr] and E[Tc] represent the expecta-
tions of the times needed in PM, replacement and CM

respectively, and they can be obtained from experience
or expert knowledge. N and T are the maintenance
decision variables. E[Nc] is the expectation of the sys-
tem failure times in a renewal cycle when CM is the
minimum maintenance[12]. The expression is:

E[Nc] =
N−1∑
i=0

∫ (i+1)T

iT

hi(t)dt =

N−1∑
i=0

∫ (i+1)T

iT

{
λ(t) + μαi−1δ(t) − q(t)λ(t)−

∫ t

0

(q(x)λ(x)M ′(μαi−1(x − t)))dx
}
dx. (13)

The maintenance optimization can be expressed as
the multi-objective optimization problem.

{
Objective : f1 = max A(N, T ), f2 = min C(N, T ),
subject to : N ∈ [1, Nmax], T ∈ [Tmin, Tmax].

The constraint conditions restrict the value range of
the decision variables N and T . The value range of
the decision variable determines the search scope of
the efficient solution of the optimization problem. It
is set according to previous maintenance experience.
The decision variable N takes an integer and T is a
real value, belonging to the mixed integer programming
problem[13]. The solution of the optimization problem
can be completed by the multi-objective evolutionary
algorithm.

This paper employs NSGA-II algorithm[13-14] to com-
plete the solution of above optimization problem to ob-
tain the Pareto optimal solution set of the maintenance
decision. NSGA-II algorithm is a non-dominated sort-
ing genetic algorithm with the elitist strategy. Excellent
individuals are selected from the effective solution set
according to the actual situation as the decision vec-
tors to finally realize the optimal balance between the
maintenance cost rate and the system availability.

3 Example Analysis

It is assumed that the effect of random shock, which
is denoted by wi, follows exponential distribution with
the parameter of β, so the derivative of the moment
generating function in Eq. (13) is

M ′(μαi−1(x − t)) =
(

β

β − αi−1(x − t)

)′
=

− βαi−1

(β − αi−1(x − t))2
.

In this example, we set β = 200, μ = 0.02, α =
0.8, δ(t) = 0.01t1.5, q(t) = exp(−0.001t) and λ(t) =
0.02t0.8. In the example, the original failure rate curve
of the degraded system and the compound failure rate
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curve of the system after introducing random shock are
shown in Fig. 1.

In the example, assuming the recover factor of PM
is α = 0.8, its failure rate under different maintenance
strategy is shown in Fig. 2.
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Fig. 1 Impact of random shock on the system failure rate
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Fig. 2 Impact of different maintenance strategy on
the system failure rate

The expected maintenance cost of replacement, CM
and PM take 2 000, 200 and 20, and the expectations of
their durations are set to 0.8, 0.2 and 0.05, respectively.

The optimization function “gamultiobj()” provided
by MATLAB can only solve the optimization problem
of real number encoding. However in this study, the de-
cision variable N is an integer, so we redefine the vari-
ation function and cross function in the actual solving
process. In the example, variable N adopts the binary
coding method and the variation function adopts the
uniform variation. After variation, if the result is be-
yond the value scope, re-variation is needed. The cross
function uses the arithmetic crossover. After crossing,
the variable N is taken the integer to get the varia-
tion individuals. Other relevant parameters are set as
follows, population size: 60, Pareto boundary fraction:
0.5, value range of N : [1, 20], value range of T : [0.1, 50],
long run cost rate fitness function: C(N, T ) and system
unavailability fitness function: 1−A(N, T ). The Pareto
optimal boundary of the maintenance decision problem
after optimization is shown in Fig. 3, including a total
of 30 Pareto optimal solutions. Table 1 lists the corre-
sponding system availability and maintenance cost rate
of these 30 Pareto solutions.

Pareto optimal solutions in Fig. 3 and Table 1 reflect
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Fig. 3 Pareto optimal boundary of multi-objective opti-
mization

Table 1 Pareto solutions of system availability
A(N,T ) and maintenance cost rate C(N, T )

Index
Decision variable

A(N, T )/% C(N, T )

N T

1 5 12.187 97.387 46.587

2 5 13.543 97.387 46.342

3 5 13.667 97.387 46.214

4 5 13.928 97.385 45.955

5 4 15.052 97.384 45.838

6 4 15.214 97.383 45.689

7 4 15.351 97.381 45.568

8 4 15.470 97.380 45.466

9 4 15.604 97.378 45.353

10 3 19.737 97.376 45.246

11 3 19.855 97.374 45.153

12 3 20.402 97.364 44.757

13 3 20.747 97.356 44.534

14 3 20.878 97.353 44.455

15 3 20.959 97.351 44.407

16 3 21.192 97.344 44.276

17 3 21.358 97.340 44.188

18 3 21.458 97.337 44.137

19 3 21.672 97.330 44.034

20 3 21.961 97.320 43.904

21 3 22.237 97.311 43.791

22 3 22.521 97.300 43.686

23 3 22.770 97.291 43.603

24 3 23.068 97.278 43.514

25 3 23.278 97.269 43.458

26 3 23.541 97.258 43.396

27 3 23.832 97.244 43.337

28 3 24.128 97.230 43.286

29 3 24.582 97.208 43.228

30 3 25.611 97.152 43.175

that maintenance cost rate and system availability are
two contradictory decision objectives. Increasing the
system availability will increase the maintenance cost
and reducing the maintenance cost will correspondingly
reduce the system availability.

Multi-objective optimization results provide one
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decision set, and the final maintenance strategy can
be selected from this set. For example, in the situa-
tion paying more attention to the system availability, it
is feasible to select the decision variable [5, 12.187]. If
the maintenance cost is limited, it is suggested to select
the Pareto optimal solutions with low cost rate. The
example in the paper selects the maintenance strategy
with balanced availability and cost rate. N takes 3 and
T takes 20.402. Under this maintenance strategy, the
system failure rate function in a renewal cycle is shown
in Fig. 4.
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Fig. 4 The system failure rate curve under the mainte-
nance strategy [3, 20.402]

4 Conclusion

This paper studies the reliability modeling and main-
tenance optimization issues of degradation system with
considering random shock. First, we put forward the
mathematical description method of the system perfor-
mance degradation and random shock effects based on
the effective service age and then establish the reliabil-
ity model of the degradation system under the NHPP
shock, and finally obtain the system reliability function
and failure rate function. According to the operation
characteristics, one maintenance strategy which com-
bines imperfect periodic PM and minimal CM is given.
And then we discuss the multi-objective maintenance
optimization issues with PM maintenance cycle and PM
times in a renewal cycle as the decision variables to
maximize the long-time availability and minimize the
steady-state maintenance cost rate. Finally, one sim-
ulation example is applied to illustrate the compound
failure rate of the degradation system after introducing
random shock and show the effect of different mainte-
nance strategies. At last, realization of multi-objective
optimization is given. The simulation results verify that
our model and maintenance strategy proposed in this
paper are available and effective.
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