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Abstract: How to query Linked Data effectively is a challenge due to its heterogeneous datasets. There are three
types of heterogeneities, i.e., different structures representing entities, different predicates with the same meaning
and different literal formats used in objects. Approaches based on ontology mapping or Information Retrieval
(IR) cannot deal with all types of heterogeneities. Facing these limitations, we propose a hierarchical multi-hop
language model (HMPM). It discriminates among three types of predicates, descriptive predicates, out-associated
predicates and in-associated predicates, and generates multi-hop models for them respectively. All predicates’
similarities between the query and entity are organized into a hierarchy, with predicate types on the first level and
predicates of this type on the second level. All candidates are ranked in ascending order. We evaluated HMPM
in three datasets, DBpedia, LinkedMDB and Yago. The results of experiments show that the effectiveness and
generality of HMPM outperform the existing approaches.
Key words: hierarchical multi-hop ranking model (HMPM), Linked Data, language model
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0 Introduction

With the development of Linked Data, querying be-
comes challenging because of the large number and het-
erogeneity of datasets. 1024 (http://datahub.io/stats)
Linked Data sets are published and the number is
still increasing. And three types of heterogeneity ex-
ist. For example, Fig. 1 contains three graph mod-
els of “Braveheart” (red nodes) in DBpedia (DB-
pedia. http://wiki.dbpedia.org/About), LinkedMDB
(Linked Movie DataBase, http://www. linkedmdb.org)
(L: file/38074) and Yago (Yago.http://www.mpi-
inf.mpg.de/yago-naga/yago/) respectively. Entities are
shown as circles, predicates as directed edges, literal ob-
jects as rectangles. Source and destination of an edge
represent subject and object respectively.

(1) Different predicates have the same meaning.
“starring”(DBpedia), “actor”(LinkedMDB) and “acte-
dIn”(Yago) show the same meaning. “title”, “name”
and “HasPreferred-Name” are virtually interchange-
able.

(2) Entities’ structures are various. In DBpedia and
Yago, actor of “Braveheart” is “D: Sophie Marceau” by
obtaining the object of corresponding predicate. How-
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ever, in LinkedMDB, the further information of “L: ac-
tor/29743” should be retrieved to identify the actor.
Besides, Yago stores actor within person (actedIn), but
not in movie. Predicates with reversed direction (col-
ored green) should be retrieved. To deal with above dif-
ferences, two hops information in DBpedia, three hops
in LinkedMDB and four hops information should be
retrieved when querying “Braveheart”(L: file/38074).

(3) Literal formats of an entity are different. “Mel
Gibson”, “Gibson, Mel” and “mel gibson” denote the
same person in Fig. 1.

A SPARQL (SPARQL Protocol and RDF Query
Language) query: select ?s where {?s actor “Sophie
Marceau”. ?s actor “Mel Gibson”.}, which aims to
find the movie that was acted by “Mel Gibson” and
“Sophie Marceau”. It cannot be executed directly in
Linked Data because of those heterogeneity discussed
previously.

Weaknesses of previous approaches. There are two
main directions of querying Linked Data, but both have
limitations:

(1) Database approaches. On-line link traversal with-
out mapping[1-5] can only handle exact query. Off-line
ontology or schema mapping[6-9] can only match differ-
ent predicates in different datasets.

(2) Information Retrieval (IR) approaches. Keyword
augmentation model[11] is not suitable for Linked Data
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Fig. 1 Data heterogeneity in Linked Data

consisting of many large datasets. Unstructure Entity
Model (USEM), Structured Entity Model (SEM), Hier-
archical Entity Model (HEM)[12] and Entity Relevance
Model (ERM)[13] cannot handle structural heterogene-

ity.
Facing these limitations, we suggest that ideal Linked

Data query should be executed smoothly based on the
model with generality. The challenge is how to generate
a model that can handle all heterogeneity.

We propose a hierarchical multi-hop ranking model
(HMPM). It discriminates among three types of pred-
icates, descriptive, out-associated, and in-associated
predicate, then generates models by computing proba-
bility distributions of terms contained in the direct and
indirect objects of each predicates (section 1). Query
is modeled in the same way. The relevant entities
are ranked in ascending order according to similarities,
which organizes all similarities of predicates into hierar-
chical model (section 2). Our approach can tackle the
three heterogeneous problems at the same time (section
3).

1 Multi-Hop Language Model of Predi-
cates

Our target is to model a query and entities based
on language model to support querying heterogenous
Linked Data. We define three types of predicates (de-
scriptive, out-associated and in-associated predicate),
and model them respectively. Table 1 gives the nota-
tions used in this paper.

Descriptive Predicate Predicate uses literal as
its object. We use the same model in Ref. [13] for this
type of predicate. Let P (t|a, de) presents the probabil-
ity of t occurring in objects of predicate a belonging to
the type of de, and it can be defined as follows:

P (t|a, de) =

∑

o∈obj(a)

n(label(o), t)

∑

o∈obj(a)

|label(o)|
, (1)

where n(label(o), t) denotes the count of term t con-
tained in the object o, |label(o)| is the total number of
terms contained in o and the sum goes over all objects
of predicate a.

In Fig. 1, black edges are descriptive predicates when
modeling “Braveheart” (L: film/38074).

Out-Associated Predicate Predicate uses the
targeted entity as its subject. In Fig. 1, blue edges are
out-associated predicates when modeling “Braveheart”
(L: film/38074). Let P (t|a, os) presents the probability
of t occurring in objects of predicate a belonging to the
type of os, it can be defined as follows:

P (t|a, os)=P (t|obj(a), obj(Dnb(obj(a))))=

∑

o∈obj(a)

n(label(o), t) +
∑

o′∈obj(a)

∑

a′∈Dnb(o′)

∑

o∈obj(a′)

n(label(o), t)

∑

o∈obj(a)

|lable(o)| +
∑

o′∈obj(a)

∑

a′∈Dnb(o′)

∑

o∈obj(a′)

|label(o)|
, (2)
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Table 1 Notations

Notation Meaning Example (Fig. 1(b))

R, r Entity L: film/38074, L: director/8546, L: actor/29770, L: actor/
29743

a Predicate title, actor, date, actor actorid, actorname, made

at={de, os, is} Set of type of predicate: descriptive(de),
out-associated(os), in-associate (is)

type (a) Type of a type(label)=de, type(actor)=os, type(made)=is

Ade, Aos, Ais Set of predicates with one type Ade={date, title, label, actor actorid, actor actorname},
Aos={actor}, Ais={made}

sbj(a) Set of subjects of a sbj(made)=L: director/8546

obj(a) Set of objects of a obj(actor)={L: actor/29970, L: actor/29743}
label(x) Character string of x label(L: actor/29970)=actor/29970

label(Braveheart)=Braveheart

t Term 1995, Mel, film

tm(a) Set of all term with a tm(made)={director, 8546, Mel, Gibison}
tm(title)={Braveheart}

Dnb(r) Set of descriptive predicates of r Dnb(L: film/38074)={title, label, date}

where it is estimated by using the labels of
direct objects (obj(a)) and indirect literal ones
(ojb(Dnb(obj(a)))). n(label(o), t) are the count of term
t contained in the label of object o. |label(o)| is the to-
tal number of terms contained in the label of object o.
The sum in the first component goes over all direct ob-
jects of predicate a. The sum in the second component
goes over all indirect literal objects of predicate a.

In Fig. 1(b), “actor” is an out-associated predicate,
and its direct objects are:

obj(actor)={L:actor/29770, L: actor/29743}.
The descriptive predicates of “L: actor/29770” and

“L: actor/29743” are:

Dnb(L : actor/29770) = Dnb(L : actor/29743) =

{actor actorid, actorname}.

The indirect literal objects of “actor” are the objects
of “actor acotid” and “actname”:

(Dnb(obj(actor)) =
{38074, MelGibson, 29743, SophieMarceau}.

In-Associated Predicate Predicate uses the tar-
geted entity as its object. In Fig. 1, green edges are
in-associated predicates when modeling “Braveheart”
(L: film/38074). Let P (t|a, is) presents the probability
of t occurring in objects of predicate a belonging to the
type of is, it can be defined as follows:

P (t|a, is) = P (t|sbj(a), obj(Dnb(obj(a)))) =

∑

s∈sbj(a)

n(label(s), t) +
∑

s′∈sbj(a)

∑

a′∈Dnb(s′)

∑

o∈obj(a′)

n(label(o), t)

∑

s∈sbj(a)

|lable(s)| +
∑

s′∈sbj(a)

∑

a′∈Dnb(s′)

∑

o∈obj(a′)

|label(o)|
, (3)

where the language model of a is estimated using the
labels of subjects (sbj(a)) and indirect literal objects
(obj(Dnb(sbj(a)))). n(label(s), t) and n(label(o), t) are
the count of term t contained in the label of subject
s and object o respectively, label(s) and label(o) are
the total numbers of terms contained in the label of
subjects s and object o respectively. The sum in the
first component goes over all subjects of predicate a.
The sum in the second component goes over all indirect
literal objects of predicate a.

In Fig. 1(c), “actedIn” is an in-associated predicate,
and its subjects are:

sbj(actedIn) = {Y : Mel Gision, Y : Sophie Marceau}.
The descriptive predicates of “Y: Mel Gibson” and

“Y: Sophie Marceau” are:

Dnb(Y : Mel Gibsion) = Dnb(Y : Sophie Marceau) =

{HasGivernName, HasFamilyName, HasGender}.
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The indirect literal objects of “actedIn” are the
objects of “HasGivernName”, “HasFamilyName” and
“HasGender”:

Dnb(sbj(actedIn)) =
{Sophie, Marceau, female, Mel, Gebson, made}.

Multi-Hop Predicate Model (MPM) Based on

those three models, MPM of the given predicate is:

MPM(a) =
∏

t∈tm(a)

P (t|a, type(a)). (4)

We calculated the MPM of “L: film/38074” in
Fig. 1(b), and the results are displayed in Table
2.

Table 2 MPM of “Braveheart” in LinkedMDB in Fig. 1(b)

Type Predicates t : P (t|a, type(a))

Descriptive Title Braveheart: 1

Label Braveheart: 1

Date 1995: 1

Out-associated Actor film: 0.2, 29770: 0.2, 29743: 0.2, Mel: 0.1, Gibson: 0.1, Sophie: 0.1, Marceau: 0.1

In-associated Made director: 0.25, 8546: 0.25, Mel: 0.25, Gibsion: 0.25

2 Hierarchical Multi-Hop Models for
Ranking

We propose a HMPM to rank candidate entities. It
calculates the similarity between two predicates from
the query and entity by Kullback-Leibler divergence
(KL-divergence), and organizes all similarities within
the query into a hierarchy of two level and then ranks
candidate entities in ascending order.

Similarity Between Two Predicates We use
KL-divergence, which is used to measure the “distance”
between two probability distributions, to calculate the
similarity. Let aq and ar be two predicates from the
query q and the entity r in dataset. The similarity be-
tween them is:

Sim(aq, ar) = KL(MPM(aq)‖MPM(ar) =
∑

t∈tm(aq)

P (t|aq, type(aq))×

log
P (t|aq, type(aq))

λP (t|ar, type(aq)) + (1 − λ)P (t|D)
, (5)

where P (t|aq, type(aq)) is computed by Eq. (1), (2) or
(3) depending on the predicate type type(aq); the de-
nominator of the fraction is the probability of term t
in predicate ar which is smoothed by its probability in
the entire dataset D; the parameter λ controls the in-
fluence of smoothing. The sum goes over all terms in
predicate aq. It is crucial to smooth the probabilities,
since P (t|ar, type(aq)) = 0 while t does not exist in the
predicate ar. λ, whose effect on performance has been
studied extensively for IR tasks, was set to 0.9.

HMPM To discriminate among three predicate
types, all predicate similarities should be organized into
a hierarchy of two levels, with predicate types on the
first level and predicates of that type on the second

level when calculating the similarity between the query
and entity. Inspired by the work in Ref. [12], we pro-
pose our hierarchical ranking model, and the graphical
representation is shown in Fig. 2.

The HMPM is generated as following:

HMPM(q, r) = Sim(q, r) =

1
min{|aq|, |ar|}

[ ∑

tp∈at

( ∑

aq∈Aq
tp,ar∈Ar

tp

Sim(aq, ar)×

P (aq|tp, q)
)

P (tp|q)
]
, (6)

where the square bracket component is hierarchical
model based on Sim(aq, ar). The denominator is the
minimum number of predicates contained in query and
entity. Similarity based on KL-divergence measures
“distance”. So the more number of predicates is calcu-
lated, the larger “distance” is. If the number of pred-
icates in the entity is smaller than that in query, the
similarity will be bias. We use the denominator to av-
erage the similarity.

We now describe how to estimate P (a|tp, q) and
P (tp|q). In our model, tp ∈ at, at = {de, os, is}.
P (a|tp, q) captures the importance of the predicate a
conditioned on its type and q, and it relies on popu-
larity and type. We claim that in a query, the more
popular the predicate is, the more important it is. It is
estimated as follows:

P (a|tp, q) =
n(a|tp, q)
|Aq

tp|
, (7)

where n(a|tp, q) is the number of a belonging to type in
q and |Aq

tp| is the total number of predicates with type
tp in the query q.
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P (tp|q) allows us to set importance of predicate type
for each query. For simplicity, we use these weights:
P (de|q) = 1, P (os|q) = 0.9, P (is|q) = 0.9.

The right two columns in Table 3 are the weights of
predicates and types. The results of the given query
are returned to the user in ascending order.

Table 3 MPM of query 10 in Table 5

Type Predicates t : P (t|a, type(a)) P (a|type(a), q) P (type(a)|q)

Descriptive Star Mel: 0.5, Gibsion: 0.25 Sophie: 0.25, Marceau: 0.25 0.67 1

Director Mel: 0.5, Gibsion: 0.5 0.33 1

Searching Strategies For a given query, the num-
ber of comparisons is nmrmq. n is the number of en-
tities, mr is the number of predicates within an entity,
and mq is the number of predicates in query. Although
the mr and mq are relatively small, query process still
iterates over many times because n is very large. Thus,
it is time-consuming. Strategies reducing the number
of iterations are required. We use LDA (Latent Dirich-
let Allocation) algorithm[16] to cluster entities to reduce
the search space. LDA is also based on probability dis-
tribution of terms, so the clusters by it are beneficial
for our models. We choose the cluster which has the
largest overlapping predicates between the query and
entity to compute similarity. The effects of the number
of clusters (C) will be discussed in section 3.

3 Evaluation

This section presents our experimental results, which
demonstrate that our model effectively tackles hetero-
geneity when querying Linked Data. Results reported
about HMPML in the following are obtained by setting
C = 10.
3.1 Datasets

Our experiments were conducted on 3 Linked Data
sets: DBpedia core, LinkedMDB, and Yago. DB-
pedia is a structured representation of Wikipedia.
We extracted triples containing predicates with “http:

//dbpedia.org/property/” to constitute dataset named
“DBpedia core”. Link-edMDB is a source about movies.
Yago is derived from Wikipedia, WordNet and GeoN-
ames. We use the Core datasets, containing core
facts of Yago. Table 4 gives the statistics about each
dataset. As there is a big overlap about movies and
other entities related with movies among these three
datasets, they offer sufficient duplicates for evaluating
our model.

Table 4 Dataset statistics

Dataset Entities Distinct Predicates

DBpedia core 9.1 × 106 3.86 × 104

LinkedMDB 5.0 × 105 222

Yago core 1.0 × 107 125

3.2 Query Sets and Ground Truth
To find query-relevant entities in three heterogeneous

datasets, we designed 10 queries by using arbitrary vo-
cabulary named as QSa. Then rewrote them by using
our 3 datasets vocabularies and adhering to correspond-
ing structure representation, named as QSd, QSl, QSy.
We executed QSd in DBpedia core, QSl in LinkedMDB
and QSy in Yago. Then the results of them capture the
ground truth. Table 5 lists the 10 queries in QSa.
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Table 5 QSa

No. Query

1 Select ?s where {?s star “Mel Gibsion”.}
2 Select ?s where {?s actor “Sophie Marceau”. ?s music “James Horner”. }
3 Select ?s where {?s star “Mel Gibsion”. ?s direct “Mel Gibsion”.}
4 Select ?s, ?o1, ?o2 where {?s star “Sophie Marceau”. ?o1 music ?o2. ?o2 won “Grammy”. }
5 Select ?s where {?s star “Mel Gibsion”. ?s date “1995”. }
6 Select ?s where {?s star “Sophie Marceau”. ?s star “Mel Gibsion”. ?s direct “Mel Gibsion”.

?s music “James Horner”. }
7 Select ?s where {?s director ?o. ?o name “Rainer Werner Fassbinder”. }
8 Select ?s where {?s publishdata “1995”.}
9 Select ?s where {?s production company “Pixar”.}
10 Select ?s where (?s star “Sophie Marceau”. ?s star “Mel Gibsion”.?s director “Mel Gibsion”.}

3.3 Systems

In experiments, we submitted each query to three
datasets. Similarity is calculated by hierarchical rank-
ing model in section 2. We compared our two mod-
els(HMPMR, HMPML) against other works(USEM[12],
ERM[13]) as discussed previously in introduction.
HMPMR computes similarity without search strategy.
HMPML combines LDA with HMPM. This version ap-
plies LDA algorithm to clustering entities based on
predicates and objects with different “topics”, then ex-
ecutes query under a smaller search space.

All experiments were carried on a server with Intel

Xeon 2.13GHz CPU, 64GB RAM, 1TB hard drive and
Windows Server 2008 and all approaches were imple-
mented by Python 2.7.
3.4 Query Effectiveness

Firstly, Table 6 gives the top 3 movies returned by
each model when executing query 2 from QSa (Table
5) and the bold ones are the right results. The answer
is “Braveheart” in all datasets. The ranks of “Brave-
heart” using USEM are 7, 92, 76 in three datasets re-
spectively and ERM ranked it in 9, 92, 76. They are
wrong results. We can verify our analysis that USEM
and ERM cannot deal with all heterogeneity, in contrast
HMPMR and HMPML work well on all three datasets.

Table 6 Results of query 2 using USEM, ERM, HMPMR and HMPML

Dataset Rank USEM ERM HMPMR HMPML

DBpedia 1 Martin Riggs Martin Riggs Braveheart Braveheart

2 Female Agents Female Agents Firelight Fanfan

3 Saw III Saw III Fanfan The man without a face

* Braveheart(7) Braveheart(7)

LinkedMDB 1 45 227 45 227 38 074 38 074

2 39 937 39 937 83 123 98 194

3 11 471 11 471 98 194 8 621

* 38 074(92) 38 074(92)

Yago 1 Waking ned Waking ned Braveheart Braveheart

2 Gangs of new York Gangs of new York Pour sacha The man without a face

3 Uncommon valor Uncommon valor La boum pacalypto

* Braveheart(76) Braveheart(76)

Secondly, we use the standard IR evaluation metrics:
mean average precision (MAP), mean reciprocal rank
(MRR), precision at rank 10 (P@10) and R-precision
(P@R). We retrieve the top one hundred entities, rank
them, and compute the metrics based on the top thirty
entities returned by each model. We designed nine
different retrieval settings, QSa was submitted to 3
datasets, QSd was submitted to LinkedMDB and Yago,
QSl was submitted to DBpedia and Yago, and QSy was
submitted to DBpedia and LinkedMDB. The results of

those metrics grouped on datasets are shown in Fig. 3.
Both HMPMR and HMPML outperform USEM and
ERM across all metrics and datasets. Observing the
different datasets, both HMPMR and HMPML perform
the best on LinkedMDB, because LinkedMDB has enti-
ties from simple domain. Both DBpedia and Yago have
entities from multiple domains. Query performance are
improved remarkably. As the search space is reduced
in HMPML, the query performance of HMPML is not
good as HMPMR, but is still better than ERM and
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Fig. 3 Query performance in DBpedia, LinkedMDB and Yago

USEM.
Figure 4 is the interpolated precision across the re-

call level in three datasets, which shows the robustness
of query performance. It can be observed that preci-
sions of HMLML are decreased notably at recall levels
above 70%, 80% and 60% in DBpeda, LinkedMDB and
Yago respectively. HMLMR is fairly stable over differ-
ent recall levels in LinkedMDB. In DBpedia and Yago,
the precisions of HMLMR are decreased at recall levels
above 70% and 60% respectively.
3.5 Runtime Performance

To analyze the effectiveness of search strategy, we
measured query execution time for ERM, HMPMR and
HMPML on all datasets. The time of HMPML covers
the LDA step. We use the ERM on each dataset as
the baseline, the ratios of the time cost to it are listed
in Table 7. Terms contained in indirect objects are
required in our model, thus computing similarity be-
tween two predicates by our models needs more time

than ERM. In HMPML, we clustered the entities by
using LDA algorithm to reduce the search space. The
execution time of HMPML listed in table by setting
C = 1, C = 2, C = 10. In fact, HMPMR is HMPML
when C = 1. The performance can be improved by
increasing the cluster number C, but the precision is
decreasing.

Table 7 Comparison of time cost

DBpedia LinkedMDB Yago

ERM 1 1 1

HMPMR (C = 1) 7.71 1.48 2.40

HMPML (C = 2) 3.77 0.67 1.12

HMPML (C = 10) 0.58 0.11 0.21

3.6 Parameter Analysis
HMPML relies on the parameter C for clustering. We

analyze the effect of C in terms of MAP for the nine
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retrieval settings by setting C as 1, 2, 10. We observed
that the precision is decreasing when C is increasing
(Fig. 5).
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4 Related Work

We have discussed related work in introduction. Ref-
erences [1-5] retrieved answers by exact matching, so
they do not consider the heterogeneity. Schema map-
ping approaches[6,7] were studied well in heterogeneous
database field and ontology mapping approaches[8-10]

were studied in semantic field. Both are not suitable for
Linked Data because of the large number of heteroge-
nous datasets. IR approaches[11-13] based on language
model are proposed recently. The main intuition in
those approaches is generating probability models for a
query and entities. They can deal with different predi-
cates and different literal formats, but not the structure
representation heterogeneity.

5 Conclusion

We have proposed a new ranking model for query-
ing heterogeneous Linked Data. We have introduced
three types of heterogeneities among Linked Data and
discussed the existing approaches based on database or
IR techniques. But those approaches cannot handle
all types of heterogeneities. Our hierarchical ranking
model is used to find and rank entities that are rel-
evant to the given query. Our approach can handle
all heterogeneities. Combining the LDA algorithm, our
model can improve the query performance. Extensive
experiments conducted with three real-world datasets
show the effectiveness of our approach and verify the
generality and scalability of our ranking model. In this
paper, we only focus on star query, so we will extend
this approach to permit more general query, like path
query and hybrid query.
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