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Abstract: As we examine the behaviour of the number field sieve (NFS) in the medium prime case, we notice
various patterns that can be exploited to improve the running time of the sieving stage. The contributions of these
observations to the computational mathematics community are twofold. Firstly, we clarify the understanding of
the true practical effectiveness of the algorithm. Secondly, we propose a test for a better choice of the polynomials
used in the NFS. These results are of particular interest to cryptographers as the run-time of the NFS directly
determines the security level of some discrete logarithm problem based protocols.
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0 Introduction

In cryptography, the computational behaviour of par-
ticular algorithms is used to determine the security level
of a protocol. More specifically, as the security of cryp-
tographic protocols is based on the hardness of underly-
ing mathematical problems, it follows that the security
is reliant on the computational effort required to solve
those problems in the given implementation context.
It is therefore important to gain a sound knowledge
of the behaviour of the algorithms used to solve these
problems in practice so as to implement cryptographic
protocols with reliable security settings.

The discrete logarithm problem (DLP) is the basis of
security in numerous cryptographic protocols instanti-
ated in either the additive group of points on an elliptic
curve DLP (ECDLP) or a multiplicative group of a fi-
nite extension field, DLP.

The most efficient algorithms known to solve the
ECDLP have been thoroughly examined and their com-
putational behaviour in practice is well understood[1-5].
In contrast, the DLP in medium prime extension fields
has received comparably less attention. As a result, the
behaviour of the algorithm to solve it remains limited.
Hence, there is a lack of implementation guidelines for
protocols whose security is dependent on the hardness
of this DLP instance. In particular, in pairing-based
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cryptography (PBC) the underlying problems that form
the basis for security are usually related to variations of
both ECDLP and DLP. The hardness of the first prob-
lem is well understood, while the one of the second still
remains elusive; this complicates parameter selection.

As various known algorithms solve the DLP, the most
appropriate depends on the context of the problem. Ac-
cording to the complexity analysis in Ref. [6], the num-
ber field sieve (NFS) in the medium prime case is the
most efficient algorithm to solve the instances of finite
field DLP occurring in PBC.

Little is known about the practical effectiveness of
the NFS in the medium prime case, which limits our
understanding of the security of PBC protocols. In this
work, we examine one aspect of this NFS version.

The ultimate goal of this continuing project is to in-
crease the general understanding of the behaviour of the
NFS. The motivation for this work is threefold. Firstly,
the behaviour of other NFS versions is known to vary
widely[7-8]. Secondly, implementation of cryptographic
protocols on small devices requires accurate security es-
timates as memory and processing power are limited.
Finally, recent advances in solving the DLP in binary
fields[9-11] promote the use of medium prime fields in
PBC; it is therefore necessary to investigate the prob-
lem in this increasingly utilized setting.

The analysis of the NFS algorithm in Ref. [6] is given
for finite fields Fpn as both p and n tend to infinity
which necessitates loss of detail and generalisation to
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limiting cases. We wish to fine-tune this analysis and
model the behaviour of the NFS in the context of PBC,
while retaining as much detail as possible. In this en-
deavour, we perform statistical analysis on experimen-
tal results and outline important practical observations.
This lead to the development of a “pre-NFS” polyno-
mial test, that offers hints on the effectiveness of a par-
ticular NFS instance, and to the introduction of a vari-
ation in the NFS polynomial selection. The results of
our work are of interest to implementers of the NFS
and pairing-based protocols alike.

1 Framework

We first introduce all the necessary background to
understand the deeper aspects of this work.
1.1 NFS in a Nushell

The NFS can be considered as a sequence of stages
whose complexity is assessed separately. The two main
parts of the NFS are the sieving stage and the linear
algebra stage, followed by a descent stage. Suppose we
wish to solve a DLP instance in the finite field Fpn ,
where p is a prime and n is a strictly positive integer.

In the sieving stage, we aim to construct a set
of linear equations in the logarithms of “small” ele-
ments. This is done with two number fields, say K1

and K2, both of which contain Fpn as a subfield. We
sieve through the elements of these fields, looking for
“doubly-smooth” pairs. Two elements form a pair if
the mappings from their respective number fields to Fpn

map them to the same element. An element is smooth
if it can be written as the product of small elements,
i.e. with norms below a given bound; the pair is doubly-
smooth if both are smooth in their respective number
fields.

The system of linear equations is solved in the lin-
ear algebra stage to find the discrete logarithms of all
the small elements. In the descent stage, the specific
element of interest is written as a product of small ele-
ments and thus its discrete logarithm is found.

In this work, we examine the complexity of the
sieving stage. For the NFS variation relevant to the
PBC context, the two number fields are constructed as
Ki = Q[θi] for i ∈ {1, 2}. The element θi is a zero
of the irreducible polynomial fi(x) with integer coeffi-
cients such that n | deg(fi); f1 and f2 have a common
root modulo p. The elements of these number fields are
thus considered as polynomials of degree t < n in θi.
To compute the norm of an element a = a(θi) in Ki, we
consider a as a polynomial in x and take the resultant of
a(x) with fi(x). To find doubly-smooth pairs, we look
at the factorisation of the norms of the elements.
1.2 Smoothness Probability of Norms

The run time of the sieving stage of the NFS is deter-
mined by the probability of finding doubly smooth rela-
tions. There exist varying methods in the literature to

predict smoothness probabilities in different contexts.
The number of integers less than x with no prime fac-
tor exceeding y is denoted by Ψ(x, y); the probability
of a random integer of size, approximately the size of x
to be y-smooth, is Ψ(x, y)/x.

In Ref. [12], a comprehensive survey of estimates for
Ψ(x, y) is given; in the more recent Ref. [13], a method
for computing Ψ within an arbitrarily tight bound is
presented. The results of Ref. [14] are extensions of
some of the theorems in Ref. [12] to the context of al-
gebraic number fields, the relevant case for the NFS.

The formula for calculating the probability is directly
obtained from the ΨK(x, y) estimate (number of inte-
gral ideals with norm less than x, all of whose prime
divisors have norm less than y in a number field K)
(see Ref. [14], Satz 3). Computation of this estimate is
not feasible; it relies on knowledge of the class number
of K and a result of the Dedekind zeta function, both
of which are known to be hard to compute in practice.
This estimate thus cannot be used in the analysis of
the NFS, a major setback when one trys to estimate
the computational behaviour of the NFS. Indeed, the
variability of the probability of smoothness of norms in
given number fields (that is, for a given choice of f1

and f2) could be responsible for some of the behaviour
noticed by Zajac[7]. The ability to compute this proba-
bility would aid in the selection of the polynomial pair
(f1, f2).

The smoothness probability estimate for integers
used for the complexity analysis in Ref. [6] is from
a corollary[15]; this formula is the most appropriate
choice, given that the algorithm is presented for ex-
tension degree k and prime p both tending to infinity.
We will show in Subsection 2.1 that this estimate can
be significantly improved in the context of PBC.

2 Analysis

In this section, we outline our experimental param-
eters and a variation of the NFS polynomial selection
process (Table 1). As the contextual focus is PBC,
the current field sizes suggested in the literature (from
resources such as Refs. [16-18]) are used for the secu-
rity levels 80, 128 and 192. This fixes the types of
elliptic curves that can be used and therefore also fixes
n. Following the complexity analysis of Ref. [6], we

Table 1 Parameter sizes for common pairing
friendly elliptic curve families

Curve

family

Security

level/bit
Size of p/bit n t

MNT6 80 160 6 2

BN 128 256 12 3, 4

KSS18 192 512 18 4
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compute the corresponding values for t (degree of el-
ements sieved) for each of the three instances. We
present our results using a working example of the pair-
ing friendly elliptic curve family MNT6; the methods
are directly adaptable to other families such as BN and
KSS18.
2.1 Polynomial Selection

To have the NFS polynomials of simple structure,
we find two integers a1, a2 of size about

√
p and such

that a1a2 = p + i, where i is some small integer. We
define the polynomials f1 and f2 as f1 = xn + a2 and
f2 = a1x

n + i when both are irreducible.
It is straightforward to show that these polynomials

have a common zero modulo p (in fact have the same
set of zeros) and are therefore appropriate for use in the
NFS. Using this polynomial selection means that the
sieving space does not need to be skewed to balance
the sizes of the norms of the elements in each num-
ber field (see Ref. [6] for details). One important detail
supporting the use of binomials in this context is that
for efficient pairing implementation the prime is chosen
to be p ≡ 1 mod n (or the prime factors of n)[19], so
it is possible to find irreducible binomials for the NFS
polynomial selection in this context. For the BN case,
we use irreducible polynomials constructed as described
for the tower constructions in Ref. [20].

The process is divided into three parts. Firstly we use
empirical data to compute the cumulative distribution
function of the norms and observe which parameters
influence the distribution; then we illustrate how the
cumulative distribution affects the smoothness proba-
bility. Secondly, we show how to determine an improved
estimate of the smoothness probability using the cumu-
lative distribution function and the results of Ref. [13].
Thirdly, we present a test for the effectiveness of the f1

and f2 polynomials against the expected outcome.
2.2 Cumulative Distribution of Norms

Once the polynomials f1 and f2 have been selected,
the computation of the norms can be reduced to the
evaluation of an integer polynomial. The arguments are
taken from a fixed interval [0, S] for a sieving bound S,
computed following the instructions in Ref. [6], as is the
smoothness bound B. The arguments are considered as
independent, uniformly distributed, random variables
X0, X1, · · · , Xt from [0, S]. In that context the norm is
also a random variable, N , taking values in the range
of the function N (X0, X1, · · · , Xt), defined by the de-
terminant of the Sylvester matrix. We are interested in
the cumulative distribution of N = N .

Our focus is on the cumulative distribution since the
estimates for the probability of smoothness are in fact
cumulative probabilities, i.e., Ψ(x, y)/x. This cumula-
tive distribution of N is used to weight the smoothness
probability estimate of the integers and find a more ac-
curate smoothness probability estimate for the norms.

In the MNT6 setting, the resultant of polynomials of

the form Ax6 + B with X0 + X1x + X2x
2 is given by

the evaluation of the function

N (X0, X1, X2, X3) = A2X6
0 − 2ABX3

0X3
2+

9ABX2
0X2

1X2
2 − 6ABX0X

4
1X2 + ABX6

1 + B2X6
2 ,

where A = 1 for f1. Since numbers generated through
this equation have much structure, their distribution
is very different from the uniform one, the assumption
used in the complexity analysis. Trying various theoret-
ical methods to determine the probability distribution
of this N from this function is unfruitful due to the
complexity and large number of variables. We there-
fore generate empirical data to directly determine the
cumulative distribution.

Figure 1 shows the cumulative distribution function
as generated for the norms in the MNT6 case, where M
is the largest norm generated. Intuitively, we expect a
“clumping” effect in the centre of the probability distri-
bution of the norms as we are repeatedly summing 6th
degree products of uniform variables from a bounded
interval: this increases the proportion, and therefore
probability, of the low to middle range norm values.
The result of this clumping effect in the probability dis-
tribution translates to a very steep cumulative distribu-
tion function over the low and middle range (plentiful)
values. In turn this tapers down to very small slope
over the larger (rarer) values. This is exactly the result
that the data present. In particular, Fig. 1 highlights
how our cumulative distribution function as generated
for the norms in the MNT6 case differs from the uni-
formly distributed variable.
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Fig. 1 Comparison of the cumulative distribution of norms
and uniform integers in the MNT6 case, with a
160 bit prime

This central clumping clearly results in the “mid-
range” values being more probable in the norm distri-
bution than for the integers. The number of integers in
a particular interval increases constantly with the upper
bound of the interval whereas the norms have a higher
concentration in the mid-range of the same interval, as
a direct consequence of the range of X0, X1 and X2.
Indeed in this case, 80% of the norms are of size less
than a quarter of the size of the maximum norm M
generated during the experience.
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Another crucial observation is that the distribution
of the norms depends only on n and t. In fact, the size
of p only dictates the placement of the distribution not
its shape. This is not surprising, given that the shape
of the elements of interest is the output of the above
function N (X0, X1, · · · , Xt), a degree n function in t
variables. This remark allows us to use a smaller ex-
ample case than would be used in practice: the MNT6
setting and a 50 bit prime (with n = 6 and t = 2).
As a result, we can conduct more thorough and var-
ied tests, only recalculating the sieving bound to cor-
respond with the new field size[6], while preserving the
value for t.

Fitting a Line to the Cumulative Distribution
The line fitted to the cumulative distribution as pre-
sented in Fig. 1 is generated with 2 million norm values
(X0, X1, X2 chosen uniformly at random) for a range
of primes and polynomials. To obtain the equation of
this line, we perform curve fitting using R, a language
package for statistical computing[21]. As the initial ex-
periments indicate that this is not an exponential curve,
this prompts us to use the Box-Cox method[22]. This
method aids us in identifying a suitable power trans-

formation on the response variable (y = the proportion
of norm values � x) to obtain a linear relationship be-
tween the explanatory variable x and the modified re-
sponse variable; that is, we wish to find a value λ such
that yλ = ax + b. Often the initial test range for λ
is [−5, 5] and the default setting in R is [−2, 2] incre-
menting in steps of 0.1. The graph in Fig. 1 represents
the density of norm values, and as the norms are sums
of monomials of degree 6 we expect λ to be close to 6
and therefore set our test range to be [0, 10]. Instead of
using all 2 million points (which would have made the
tests very slow) we repeat the test numerous times on
random samples of 104 points. The results for each of
the tests give clear indication that λ = 6.

We then proceed to fit a linear model to the full
data set of points of the transformed data (x, y6) to
find that Y 6 = aX + b where a = 2.171 × 10−106 and
b = −1.868 × 10−5 with negligible variance. From a
statistical perspective, the fit is incredibly accurate as
there is no noise in the data. The exact output of the
linear model fitted in R is given in Tables 2 and 3,
where 1Q and 3Q represent the first and third quar-
tiles, respectively.

Table 2 R output: residuals of the linear model

Min 1Q Median 3Q Max

−8.589 × 10−4 −7.149 × 10−5 3.580 × 10−6 1.868 × 10−5 7.928 × 10−4

Table 3 R output: coefficients of the linear model

Estimate Standard error t value P{> |t|}

Intercept −1.868 × 10−5 1.701 × 10−7 −109.8 < 2 × 10−16

x 2.171 × 10−106 1.331 × 10−112 1 630 932.3 < 2 × 10−16

How the Cumulative Distribution Affects the
Smoothness Probability To illustrate why the
probability of smoothness is affected by the differing
probability distributions, we use the law of total prob-
ability. In terms of random variables, we define Z to be
a random variable taking integer values from the inter-
val [0, U ]. As defined, N is a randomly selected norm
(also from the interval [0, U ]) and SZ (resp. SN ) is a
binomial random variable such that

SZ =

{
1, Z = z is smooth

0, Z = z is not smooth
.

We define SN similarly where smooth in both cases
is with respect to some fixed bound S. Now the proba-
bility that a random integer z selected from the defined
interval uniformly at random is smooth is expressed as

P{SZ = 1|Z = z}.

Following the law of total probability, we partition the
interval [0, U ] into s equally sized sections, of width
U/s = a, and write this probability as a summation

P{SZ = 1} =
s∑

i=1

P{SZ = 1|z ∈ [(i − 1)a, ia]}P{z ∈ [(i − 1)a, ia]}.

Applying the same method, we can rewrite P{SN =
1} as

P{SN = 1} =
s∑

i=1

P{SN = 1|n ∈ [(i − 1)a, ia]}P{n ∈ [(i − 1)a, ia]}.

Assuming the probability of a norm being smooth is
equal to the probability of an integer of the same size
being smooth (the validity of this assumption will be
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discussed further in Subsection 2.3), the left probabil-
ity value in each of the summations is identical for every
value of i and can be computed by the method intro-
duced in Ref. [13] (a free implementation is available
at Ref. [23]). From different distributions of the norms
and integers, we know that the right hand values are
quite different and so the sums will clearly not be equal.

The probabilities on the right in the P{SZ = 1} ex-
pression are exactly the s-quantiles (s is the number of

partitions); as P{Z � ia} =
ia

U
and so for all i we have

P{z ∈ [(i − 1)a, ia]} =
P{Z � ia) − P (Z � (i − 1)a} =
(i − 1)a − ia

U
=

a

U
.

In other words, the right probabilities in the P{SZ =
1} expression are constant and the expression becomes

P{SZ = 1} =
a

U

n∑
i=1

P{SZ = 1|z ∈ [(i − 1)a, ia]} =

a

U

n∑
i=1

ne ∈ [(i − 1)a, ia]
a

= Ψ(S, U)/U,

where ne represents the number of smooth elements.
Examining Fig. 1, we see that the probabilities P{n ∈

[(i−1)a, ia]} will be quite different. Through the law of
total probability we not only highlight how the distri-
bution of the norms affects the probability of smooth-
ness, but also present a method for computing a better
estimate for the smoothness probability of the norms.
2.3 Estimating the Smoothness Probability of

Norms
To compute P{SN = 1} we use the same approach as

above, though instead of having the partitions evenly
spaced we use the s-quantiles of the distribution of the
norms; that is, we fix the intervals such that the prob-
ability that n is in any interval is fixed at 1/s. Fixed
probability and even spacing are synonymous for the
uniform distribution, but not for the distribution of the
norms. Using R we easily compute the 100-quantiles
of the norms, and find the values a0, a1, · · · , a100, such
that P{n ∈ [ai, ai+1]} = 0.01 for i ∈ [0, 99]. As we
assume P{SN = 1|n ∈ [ai, ai+1]} = P{SZ = 1|z ∈
[ai, ai+1]}, we still need to compute

0.01
99∑

i=0

P{SN = 1|n ∈ [ai, ai+1]},

so as to determine the probability of smoothness of the
norms. Using the implementation[23], we compute the
probabilities in the summation to obtain an estimate of
the smoothness probability

P{SN = 1} = 0.000 169 920 1 = r̂

whereas

P{SZ = 1} = 0.000 057 778 68.

The smoothness probability of the norms over this in-
terval is higher by a factor of almost 3 (2.94). This is no
surprise as, intuitively, smaller numbers are more likely
to be smooth and the norms have a higher concentra-
tion of “small” to “medium” numbers than the integers
do. These results are reflected in experimental results
obtained by selecting integers at random, following the
distribution of the norms, and testing for smoothness;
almost three times as many smooth integers are ob-
tained through this method as compared with selecting
integers uniformly at random.

The probability above is an optimistic-case probabil-
ity; we have made the assumption that the probability
of a norm being smooth is equal to the probability that
an integer of the same size is smooth. That is, for some
integers b0 and b1 we assume that

P{SN = 1|n ∈ [b0, b1]} = P{SZ = 1|z ∈ [b0, b1]}.
This is, however, not necessarily the case. In any

given interval, the integers are denser than norm values
(approximately 1/n) and the norms will not necessar-
ily coincide with the smooth integers at the same rate
as the actual proportion of smooth integers. As the
number of quantiles grows, however, this assumption
is better supported by the experimental results than
the assumption used in the complexity analysis[6]. In
the event that the norms fall on proportionally more
smooth integers, the NFS sieving stage will execute
faster. Table 4 shows examples of polynomials found
for an example MNT6 prime for which the smoothness
rate r is calculated from 1 000/r̂ ≈ 5 × 106 tests.

Table 4 Polynomials found for the MNT6 prime
p = 1125 909 838 976 401

Polynomial f ne r β

35 374 332x6 + 11 633 0.000 126 6 0.745 1

11 791 444x6 + 11 1 370 0.000 274 0 1.612 5

17 687 166x6 + 11 652 0.000 130 4 0.767 4

x6 + 8264 689 1 379 0.000 275 8 1.623 1

1 069 214x6 + 37 1 320 0.000 264 0 1.553 7

Note that although all of our examples presented here
have positive i values, we examine positive and negative
values for i (that is, 4 complex roots and 6 complex
roots respectively), both separately and all together.
We observe strong evidence to support the hypothesis
that the smoothness rate of the norms is the same in
the two cases and thus proceed to examine all the data
together.

The values of β, the factor difference from r̂, in
the fourth column can be compared with the value
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1/3 = 0.333̄ which is used in the complexity analy-
sis. We see the second, fourth and fifth polynomials
produce smooth norms at a rate over 50% faster than
the prediction (and so 4.5 times the estimate used in
the complexity analysis). We are able to find many ex-
amples of polynomials yielding better than estimated
performance. The average factor difference from r̂ is
β̄ = 0.552 699 9, as shown in Fig. 2. The long tail of
the graph distorts the standard deviation, but after ex-
amining the quantiles, half of the values are between
0.28 and 0.71 with 1 being near the end of the main
peak. This explains the use of the term optimistic-case
probability.
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Fig. 2 The probability density function of the multiple β
by which the rate of smooth relation collection dif-
fers from the estimated rate

In Fig. 2, the value given by the asymptotic complex-
ity is shown; it is the mode of the distribution. It is clear
that a much larger proportion of the cases perform sig-
nificantly better than this case. An NFS implementer
would always endeavour to launch the most efficient
algorithm possible. Thus the average is a better re-
flection of the rate than the mode when one estimates
the runtime of the sieving stage and consequently the
security of a PBC protocol. The existing complexity
analysis thus gives an underestimation of the probabil-
ity of finding doubly-smooth pairs.

The goal of an implementer of the NFS is to find
a polynomial pair such that the rate of smooth re-
lation collection in each number field is maximal, so
the implementer would aim to find pairs (f1, f2) such
that r1r2 ≈ r̂2 (ri is smooth rate of norms com-
puted by fi, i ∈ {1, 2}); this is not a straightforward
task. We denote r1r2 = δr̂2 and recognize that the
possible values for δ will be the product of indepen-
dently selected values from the distribution of β and
will therefore have mean β̄2. From our empirical data
we compute 0.332 089 8, very close to the predicted
0.306 289 8 ≈ 0.552 699 92 (see Fig. 3). We can compare
this with the estimate used in the complexity analysis
which would give a value of δ = 1/9 = 0.111̄. Even if we

consider the median of this distribution, 0.211 886 5, to
minimize the influence of the large, rare cases, it is still
approximately twice the probability used in the com-
plexity analysis and reflects more closely the observed
behaviour from our experiments.
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Fig. 3 The probability density function of the multiple δ by
which the rate of smooth relation collection differs
from the estimated rate (doubly smooth case)

2.4 Polynomial Selection Test
When our polynomials are selected for the NFS, the

mean value of δ gives us a benchmark to obtain, or to
improve on. For a given instance of the DLP in a finite
field Fpn , we perform the following test before launching
the NFS sieving stage.

Step 1 Compute r̂, the upper estimate on the
smoothness probability of norms.

Step 2 Find a pair f1 and f2 using the method
from Subsection 2.1 or Ref. [6].

Step 3 Generate 1 000/r̂ random norms for both
f1 and f2. Test if they are smooth to approximate the
smoothness rate for each number field.

Step 4 Compare the product of the approximate
rates of smooth norms to r̂2. If it is “large enough”, i.e.
δ̂, the experimental δ value for the polynomial f1, f2, is
larger than the mean value, then proceed with sieving;
otherwise goto Step 2.

This differs to how the results in Ref. [7] would be
used: we have given a benchmark to compare the rate
of smooth norm collection against, whereas previous
methods would have required the generation of numer-
ous pairs of polynomials to mutually compare the rate
of smooth relation collection. Thus, our method results
in fewer tests necessary, to distinguish if a pair of poly-
nomials is performing at least as well as the average
case.

To illustrate, we have generated various f1 and f2

pairs for our example case of MNT6 with prime around
50 bit. Our experiments result in polynomial pairs for
which smooth norms occur at a much higher rate than
others. Tables 5 and 6 show some examples of polyno-
mial pairs in the MNT6 case.
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Table 5 Smoothness rates for various poly-
nomials for the MNT6 prime
p = 1125 909 838 976 401

Polynomial pair ne ri × 104 r̂2 × 109 δ̂

f1 = 35 374 332x6 + 11 633 1.266 7.545 36 0.261 3

f2 = x6 + 31 828 441 298 0.596

f1 = 11 791 444x6 + 11 1 370 2.740 11.727 2 0.406 2

f2 = x6 + 95 485 323 214 0.428

f1 = 17 687 166x6 + 11 652 1.304 5.424 64 0.187 9

f2 = x6 + 63 656 882 208 0.416

f1 = x6 + 8264 689 1 379 2.758 11.473 28 0.397 4

f2 = 136 231 362x6 + 17 208 0.416

f1 = 1069 214x6 + 37 1 320 2.64 4.963 2 0.171 9

f2 = x6 + 1053 025 717 94 0.188

Table 6 Smoothness rates for various poly-
nomials for the MNT6 prime
p = 1126 169 969 103 937

Polynomial pair ne r̂2 × 109 δ̂

f1 = x6 + 4747 150 476 10.148 32 0.351 5

f2 = 237 230 753x6 + 13 533

f1 = x6 + 186 474 550 139 6.527 44 0.226 1

f2 = 6039 269x6 + 13 1 174

f1 = x6 + 516 240 070 118 5.121 2 0.177 4

f2 = 2181 485x6 + 13 1 085

f1 = x6 + 20 871 667 202 4.726 8 0.163 7

f2 = 53 956 877x6 + 22 585

f1 = x6 + 27 201 934 251 6.686 64 0.231 6

f2 = 41 400 364x6 + 39 666

Interestingly, observing that the rate of smooth re-
lation collection for the first three polynomial pairs is
vastly different, highlights that simply taking a small
value for i (11 in this case) does not ensure a good
polynomial pair. Though the rate is comparable in the
number fields defined by f2, using the first and third
pairs we find smooth relations at less than half the rate
of the second pair, for which the value δ̂ = 0.406 2 ex-
ceeds the mean value of 0.332 089 8.

Again Table 6 shows great variations in the rate of
smooth element collection in the first three cases, for
which the same value i = 13 is used to construct the
polynomial pairs. For this prime, the value of δ̂ =
0.351 5 slightly exceeds the mean value of 0.332 089 8.

3 Conclusion

In complexity theory, constant factors are hidden in
the O and L notations. As a result, the complexity does
not properly reflect how an algorithm runs in practice.

In cryptography, the security of protocols is directly
related to the practicality of solving hard mathemati-
cal problems. Until now the practical behaviour of the

NFS in the medium prime case has received relatively
little attention. Due to its relevance to the security
of pairing-based protocols in particular, we have exam-
ined its run-time behaviour in the given context; the
motivation of this work is to deepen the understand-
ing of the NFS in general, in the hope that this would
help determining more precise estimates for appropri-
ate parameter sizes at a fixed security level for PBC
protocols.

In this work, we present some observations on the
behaviour of the NFS in practice. We focus on the
smoothness probability of the norms of number field
elements as it determines the practical run-time of the
sieving stage. Our observations and analysis result in a
pre-sieving test that can be performed on the selected
polynomials. This test ensures as efficient a set up and
execution of the sieving stage as possible. The new reve-
lation about the probability of smooth norm occurrence
is a step towards a more precise run-time estimate of
the sieving stage. We also propose a variation of the
polynomial selection method given in Ref. [6] and use
it to conduct our experiments. It shows promising be-
haviour.

This work covers the initial progress in the examina-
tion of the NFS sieving stage; in order to compute the
expected run-time of this stage, it remains to investi-
gate the true cost of smoothness test.
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