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Abstract: In the ship hull optimization design based on simulation-based design (SBD) technology, low precision
of the approximate model leads to an uncertainty form of optimization model. In order to enable the approximate
model with finite precision to maximize the effectiveness, uncertainty optimization method is introduced here.
Wave resistance coefficient approximation model, built by back propagation (BP) neural network, is represented
as a form of interval. Afterwards, a minimum resistance optimization model is established with the design space
constituted by principal dimensions and ship form coefficients. Double-level nested optimization architecture is
proposed: for outer layer, improved particle swarm optimization (IPSO) algorithm with learning factor improve-
ment strategy is used to generate design variables, and for inner layer, modified very fast simulated annealing
(MVFSA) algorithm is used to solve the objective function interval with uncertainty region. Cases calculation
proves the effectiveness and superiority of uncertainty optimization method for ship hull SBD optimization design,

thus providing a good way for finding optimal designs.
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0 Introduction

As a core part of ship overall design, ship hull
form design based on simulation-based design (SBD)
technology!!), which is developed by combining the op-
timization technique and computational fluid dynamics
(CFD) technique, plays a more and more important role
in ship design field, and there are three crucial elements
for SBD optimization design process, i.e., high preci-
sion simulation model (such as CFD solver), automatic
modification of ship hull geometry, and optimization
design platform.

Computation time constraints disenable the high pre-
cision CFD solver to execute simulation completely at
every iteration step. Instead of CFD solver, the approx-
imation model, which can greatly shorten computation
time, is usually used in ship hull SBD process as an ef-
fective tool. The frequently used approximation models
include response surface method (RSM), Kriging model
and neural network, etc[2-2.

Despite the high efficiency, approximation models
have the disadvantage at the same time: the establish-
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ment of approximation models needs amounts of pre-
cision results as input, and output results are sensitive
to algorithm internal parameters, so inevitably, error
of output will occur due to some uncontrollable causes,
which is expressed as uncertainty. Although this error
or uncertainty has a small value in most cases, large
deviation of the whole system can also be generated
by continuous iterative computation. Therefore, it has
an important theoretical and practical significance for
considering the uncertainty of approximate model.
According to the characteristics of uncertain pa-
rameters, kinds of uncertainty optimization methods
existing basically fall into three categories: stochas-
tic programming, fuzzy programming and interval
programming!%8).  Among them, stochastic program-
ming achieves optimum solution via random variable,
whose probability density distribution needs to be
given. Also, parameter included in fuzzy programming
is fuzzy number, whose membership function needs to
be got in advance. Actually, it is difficult to obtain the
probability density distribution or membership function
mentioned above. Therefore, there is a growing aware-
ness that these two methods have restrictions on en-
gineering application!”). By comparison, interval pro-
gramming needs interval number, with its upper and
lower bounds which are easily got in application, as an
uncertain parameter. Thus uncertainty optimization
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method based on interval programming has found sig-
nificant advantages and wide use in many engineering
fields, such as profit maximization, wing design, auto-
motive design and interior layout design'®, but with-
out any use in ship design field.

In this research, principal dimensions and ship form
coefficients are combined to form the design space,
and the restrictive condition (non-substantial changes
of displacement) is integrated into the objective func-
tion as a form of penalty function. Thus, an opti-
mization model with minimum resistance as the tar-
get is established. Wave resistance coefficient approxi-
mation model, built by back propagation (BP) neural
network'!), is represented as a form of interval for the
ship hull uncertainty optimization.

1 Uncertainty Optimization Based on
Interval Programming

1.1 Formulas
Interval number is a type of number expressed by an
interval,

a' = [a", a"], (1)

where a, aY € R and a® < aV; o and oV are the
lower and upper bounds of interval number a', respec-
tively. When a = aV, a! turns out to be a real with
deterministic value.

For interval numbers A} and A}, interval order re-
lationship, expressed by <., can be used to evaluate
their degrees,

Al <o AL, only if m(AL) > m(AL)

and w(A}) > w(A})

Al <pw AL, only if A} <o AL
and AI1 #+ AI2
AL 4 AV AV — AL
m(A}) = 1T w(ah) = T "
AL+ AY AY — AL (7

where m is the midpoint of interval, and w is the radius.

After expressing the uncertainty number by interval
number, uncertainty optimization problem can be de-
scribed as

opt min{f(,u)}
st gla,u) < =BV b (4)
xe N, weud
where @ is a design variable with n dimensions, and its
range is £2™; u is an uncertain vector with ¢ dimensions,

and its uncertainty is described by an interval number
ul; f and g are the objective function and restrictive
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condition, respectively, which are related to « and w; b
is the allowable interval of uncertainty restrictive con-
dition.
1.2 Transformation to Certainty

Objective function in Eq. (4) can be transformed to
certainty based on interval order relationship,

min{m(f (@, w), w( (@, w)))

m(f (@, w) = [7"(@) + (@)
w(f(@w) = 1) - fH@) (O
() = min (@, v)

7V (@) = max (@, )

Equation (5) shows that, the main idea of the trans-
formation (from uncertainty optimization to certainty
optimization) is to evaluate the design variables by mid-
point and radius of interval objective function, and thus
certainty objective function is obtained. Afterwards,
weights of the two objectives (midpoint and radius)
are given to achieve the single objective optimization
model, whose objective function is

opt min(l - 6)m(f(wa u)) + ﬂw(f(wvu))v (6)

where (3 is the weight, 0 < § < 1, and is taken 0.5
normally.

Uncertainty restrictive condition in Eq. (4) can be
converted to certainty restrictive condition via

P(C'> D" >\

Cl=[g"(x), 9" (@)] ¢, (7)

DI _ [bL, bU]
where CT is the possible range of uncertainty restrictive
function at @, D' is the permissible restrictive inter-
val number, P(C! > D') means the probability of C?
is greater than or equal to DI, and X is the probabil-
ity threshold given in advance. The lower and upper

bounds of restrictive interval, g~(x) and gY (), are de-
fined as

g"(z) = min g(z, u),
. 8
gY(x) = maxg(m,u)} (®)

Restrictive condition (in Eq. (7)) is integrated into
the objective function (in Eq. (8)) as a form of penalty
function, and thus a certainty-unconstrained optimiza-
tion model is established as

opt min fp(x,u)
fo(m,u) = (1= B)m(f(z,u))+
pu(f(z,w))+
oco[P(C* > DY —
$[P(C" > DY) =\ =
(max{0, —[P(C' > D") — \]})?
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where o is the penalty factor with a large value, and ¢
is the penalty function.
1.3 TUncertainty Optimization Architecture
and Its Algorithms

An illustration of ship hull SBD optimization design
process is shown in Fig. 1. Double-level nested opti-
mization architecture is used to solve the uncertainty
optimization problem: the outer layer is used for gen-
erating the design variables, and the inner layer is used
for calculating the interval objective function. Namely,
amounts of design variables are generated via the outer
layer, and inner layer optimization is called to obtain
the uncertainty interval of objective function and re-
striction, and to convert the uncertainty intervals to
the certainty ones. An illustration of the uncertainty
optimization process is shown in Fig. 2.

Uncertainty optimization problem is usually non-
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continuous and non-differentiable, which can disenable
the application of traditional optimization algorithms
based on gradient. Two optimization algorithms based
on Monte-Carlo modern bionic theory are introduced
here: particle swarm optimization (PSO) with learn-
ing factor improvement strategy, i.e., improved PSO
(IPSO), and very fast simulated annealing (VFSA)
with “annealing-tempering” mode, i.e., modified VFSA
(MVFSA).

Purpose of outer layer optimization is to generate
design variable individuals with wide coverage in the
global scope, and this requires strong search ability for
the algorithm. PSO algorithm has the advantage that
optimization process has a wide-range, multi-direction
and high-group collaboration. For traditional PSO,
learning factors are usually set to be constant, while
for IPSO, learning factors are set to be “S-type” with
the iterative process. Improved learning factors are de-
termined by

4

o 1+ exp (a kjax - 0.5) , (10)

8224—61

where ¢; and cy are the learning factors that respec-
tively represent the cognition part and social part of
the algorithm; a is a parameter that controls the de-
scent speed; kmax and k are the maximum and current
iteration times, respectively.

This learning factor improvement strategy can ensure
that the particle swarm has a larger cognition part in
the early iterations and a larger social part in the late.
Meanwhile, changing trend of the two parts is smooth,
which can enable the algorithm to converge to global
optimum solution as possible. Thus, IPSO has stronger
global search ability without increasing the computa-
tion time.

As the core of uncertainty optimization, inner layer
has a high requirement for local search ability and ef-
ficiency of the algorithm. Through long-term research
and application, simulated annealing (SA) proves to be
strict and effective. However, SA needs enough model
perturbation and iteration, and a suitable annealing
plan. In order to overcome this shortcoming, MVFSA
emerges!'?l. MVFSA introduces two new ideas based
on SA: for high temperature, global random genera-
tor, which has a stronger ability than the traditional
perturbation of SA and has nothing to do with initial
temperature, is adopted; for low temperature, a certain
restriction of perturbation is made to decrease pertur-
bation space, thus the optimum solution can be found
quickly, and its acceptance probability can also be in-
creased.

The “annealing-tempering” mode of MVFSA is
shown as follows.
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Annealing Stage For the global searching, the tem-
perature and perturbation are set as

0 = Opexp(—a(j —1)'/?) 1)
M = Mmin + Cpcr(Mmax - Mmin) ’

where © and @ are the current and initial tempera-
tures, respectively; « is the attenuation coefficient; j
is iteration number; M is the perturbation of current
model; My.x and My, are the maximum and mini-
mum values of the perturbation, respectively; Cper is
the perturbation coefficient.

Tempering Stage For the local searching, the
temperature and perturbation are set as

6 =64 exp(—al(j—ko/r)"/?) (12)
M’ =M+ (Cper—0.5)(Miax— Mnin)/Ls () [ |

where ky is iteration number of the annealing stage; 7 is
the temperature control factor; Ls(j) is a factor of space
search range, which makes the perturbation happens in
a smaller and smaller range and thus enhances local
searching ability.

“Annealing-tempering” mode makes MVFSA have
higher temperature at the beginning, thus the searching
space is bigger, and the reception probability of non-
optimal solution is higher. Also, through enhancing
the local searching ability, the new algorithm has more
accuracy and efficiency with no changing of essence of
SA algorithm (its unique form of receiving probability
and Metropolis criteria).

2 Approximation Model

Approximation model, which can greatly shorten
computation time, is used in ship hull SBD process as
an effective tool, and the process is shown in Fig. 3.
2.1 BP Neural Network

BP neural network is a kind of multilayer feed for-
ward network with error BP algorithm, and becomes
one of the typical approximation technologies because
of its excellent ability to approximate nonlinear func-
tion. A BP neural network model using tangent sigmoid
as transfer function of neurons is represented by

BPNN3: O; =
J K
Z Wij tanh ( Z ij
j=1 k=1
N
tanh (Z Winn + blk) + b2j> + b3, (13)
n=1

where &, is input variable; O; is output variable; Wy,
Wi, and W;; are the weights of the layers between neu-
rons; by, ba; and bs; are the thresholds of neuron unit
in each layer.
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Fig. 3 Ship hull SBD optimization design process with ap-
proximate mechanism

Activation function of hidden layer neurons usually is
S-type, and it can be achieved in any nonlinear mapping
from input to output. The tangent and logarithm forms
of activation function are respectively shown in

f@) =, eX12)(—2x) —b (14)
1
J(@) = 1+ exp(—z) (15)

2.2 Uncertainty Handling of Approximate
Model

BP neural network approximate model needs
amounts of simulation results as inputs, it is very sensi-
tive to the internal parameters, and thus error of output
will occur due to some uncontrollable causes. Although
this error or uncertainty has a small value in most cases,
large deviation of the whole system can also be gener-
ated by continuous iterative computation. Therefore,
it has an important significance for considering the un-
certainty of approximate model.

A successfully trained neural network output is ex-
pressed as interval number,

BPNN'=0!=[0F, 0F] = [0;(1—7), 0;(14+7)], (16)

where OF and O} are the lower and upper bounds of
interval number O}; ~y represents the uncertainty level of
O}, which is usually in terms of percentages. The larger
the value of 7 is, the greater the uncertainty degree of
interval number will be.
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3 Uncertainty Optimization of Ship
Hull

3.1 Optimization Model
In this paper, Wigley hull is taken as example, and
its hull function is!*?!

B 22\ 2
=y ) -G)] e
—L/2<x<L/2, —T<z<0,

where x, y and z are the coordinates of hull points. The
numbers of waterline and station line are taken to 11.
The design variables are identified by the whole ships’
principal dimensions and the overall shape of a ship,
in which the principal dimensions are represented by
the waterline length L, waterline width B and draft T'.
The modification of the hull shape can be represented
by the original data points multiplied hull modification
function,

yf(xa z) = yfo(.%', z)w(x, Z) }

ya(x7z) = yao(xa z)w(x, Z)

w(r,z)=1- ZZAW" sin X sin Z, (19)

x Z m+2 P 5 n+2

) 0 —

X=n 5 Z=m )
Tmax — L0 ZO+T

where y¢(z,2) and y.(z,z) respectively represent the
former and after halves of the lateral data points of the
hull after being changed, and both are in the mid ship-
section of the interface; yp(x, z) and yao(x, z) are the
initial ones; w(x, z) is the modification function of the
hull form; A,, ;, is to characterize the magnitude of the
control variables, in this paper, m, n = 1,2,3.
Constraint condition is

Vo=V <

(18)
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where V' and Vg are the optimal and initial hull
form’s volumes, respectively, which can be calculated
by Simpson method; € is a small value for ensuring
that the displacement volume of optimized ship is not
below the lower limit.

The total resistance Ry is taken as the objective func-
tion. According to Hughes’ viewpoint, the total re-
sistance is divided into wave making resistance Ry,
frictional resistance Ry, and viscous pressure resistance
Ry, e,

Ri = Ry + R + Ry = pUQS(C’W + Cr + Cypy), (21)

where U is the speed, and S is wet surface area.

Wave making resistance coefficient CY, is calculated
by Michell’s method!'¥, which has a high precision
on the low-speed and thin-hull resistance prediction.
Through the interval number, BP neural network ap-
proximate model of Cy, is established as

BPNN! = [BPNNL BPNNY | =

[BPNNy (1 —7), BPNNeyw (1 +7)]. (22)

After integrating the constraint condition into the
optimization objective, uncertainty optimization model
is obtained as

opt min f,(z,u

)
fo(@,u)=(1=p)m(f(z, u))+pw(f(z,u))+

(m{ p(Vo— _5>0>_A}})2 - (23)

f(x,u)=R{=0.5pU?S(BPNNL, +Ct+Cpy)

3.2 BP Neural Network Experiments

In order to get a suitable uncertainty level ~ of
Eq. (22), a series of experiments are done via changing
numbers of hidden layer neurons and kind of activation
functions, as shown in Table 1.

Table 1 Series of BP neural network experiments and results

Case Number of hidden Activation
layer neurons function
1 Tan-sigmode
2 Tan-sigmode
3 Tan-sigmode
4 12 Tan-sigmode
5 3 Log-sigmode
6 6 Log-sigmode
7 9 Log-sigmode
8 12 Log-sigmode

Iteration Training Training
number x1073 residual x102 time/s
5 97.146 56
5 96.575 55
5 97.059 60
5 96.602 65
5 98.443 52
5 98.341 52
5 98.332 59
5 97.752 65
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Training state and result regression of Case 1 are
shown in Fig. 4.

Training residual from Table 1 represents the uncer-
tainty of BP neural network approximate model, and
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(a) Training state
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the residual values roughly locates between 0.96—0.99,
and then, the uncertainty level of can be determined by
this range.

1'0( o Data /'

Fit .
0.95 ~ -Output=0.9Target + 0.069// M
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(b) Result regression

Fig. 4 Training state and result regression of Case 1

3.3 Optimal Results and Analysis

For comparative analysis, certainty and uncertainty
optimizations are done respectively to verify Eq. (23),
and the results are shown in Table 2, where R;/Ry is

the resistance decrease ratio.

The uncertainty level v of 5% is taken as an exam-
ple, which can be seen as a typical situation. Optimal
iterative curves are shown in Fig. 5, where fy; is the
objective function value.

Table 2 Result comparison of different methods

. Ry

T/m A1 Time/s Ruo /%
0.125 0 — —
0.105 0.03 153 90.6
0.107 0.12 352 92.8
0.108 0.07 381 93.4
0.116 0.08 406 93.5
0.113 0.07 431 94.2

Optimization method v/% L/m B/m
Original value — 2.0 0.20
Certainty 0 2.2 0.18
Uncertainty 3 1.9 0.18
Uncertainty 5 1.8 0.16
Uncertainty 7 1.8 0.17
Uncertainty 9 2.1 0.17

Note: take A11 for example of A n
Joi

— Certainty optimization
ﬂ - - -Uncertainty optimization
\

Iterative step

Fig. 5 Comparison of optimal iterative curves

The results show that, uncertainty optimization and
certainty optimization can both effectively improve the
ship speed performance. However, the result of uncer-
tainty optimization is slightly worse than the result of
certainty optimization, that is because the former con-
siders the uncertainty influence of approximate model,
which is closer to reality in engineering. Meanwhile, it
is obvious that the calculation time of uncertainty op-
timization is more than that of certainty optimization,
which can attribute to the double-level nested optimiza-
tion architecture, but the extra calculation time is also
reasonable and acceptable.

4 Conclusion

Aimed at ship hull form optimization design based
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on SBD, a minimum resistance optimization model is
established with the design space constituted by princi-
pal dimensions and ship form coefficients. Double-level
nested architecture of the uncertainty optimization by
IPSO and MVFSA algorithms is proposed. Some con-
clusions can be got as follows.

(1) Uncertainty ship hull optimization method with
TIPSO and MVFSA can obtain the optimum result with
an acceptable calculation time. Thus, this method has
the effectiveness.

(2) Under the same conditions, the result of uncer-
tainty optimization is slightly worse than the result of
certainty optimization, but the former considers the un-
certainty influence of approximate model, so it can bet-
ter reflect the reality and have the superiority.

(3) Further studies can be carried out from research-
ing the properties of the uncertain parameters and ap-
plicability of optimization algorithms.
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