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Abstract: In this paper, the substructuring technique is extended for the dynamics simulation of flexible beams
with large deformation. The dynamics equation of a spatial straight beam undergoing large displacement and
small deformation is deduced by using the Jourdain variation principle and the model synthesis method. The
longitudinal shortening effect due to the transversal deformation is taken into consideration in the dynamics
equation. In this way, the geometric stiffening effect, which is also called stress stiffening effect, is accounted for
in the dynamics equation. The transfer equation of the flexible beam is obtained by assembling the dynamics
equation and the kinematic relationship between the two connection points of the flexible beam. Treating a
flexible beam with small deformation as a substructure, one can solve the dynamics of a flexible beam with large
deformation by using the substructuring technique and the transfer matrix method. The dynamics simulation of
a flexible beam with large deformation is carried out by using the proposed approach and the results are verified
by comparing with those obtained from Abaqus software.
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0 Introduction

Based on the descriptions of the displacement and de-
formation of flexible bodies, the popular multi-flexible-
body system dynamics methods can be roughly classi-
fied into two types: relative node coordinate descrip-
tion methods and absolute node coordinate description
methods[1-2]. For the relative node coordinate descrip-
tion methods, the general motion of a flexible body
is described by the rigid motion of a floating frame
and the relative deformation of the flexible body with
respect to the floating frame. This kind of descrip-
tion is intuitive and has various strategies to decrease
the dimension of the dynamics equation of system when
dealing with flexible bodies with large displacement and
small deformation, such as modal synthesis methods[3].
On the other hand, for the absolute node coordinate
description methods, the node coordinates are defined
in the global inertial frame, which leads to a highly
nonlinear expression of potential energy of deformation.
This kind of description is much more appropriate to
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deal with large deformation problems, but the stiffen-
ing problem will arise as there is no model reduction
method[4].

In this paper, the relative node coordinate descrip-
tion strategy is extended for the dynamics modeling
of flexible beams with large deformation by introduc-
ing the substructuring technique. Firstly, the dynam-
ics equation of a spatial straight beam undergoing large
displacement and small deformation is deduced by us-
ing the Jourdain variation principle and the model syn-
thesis method. The longitudinal shortening effect[5-8]

due to the transversal deformation is taken into con-
sideration to stabilize the dynamics equation when the
system is undergoing high rotational speed[9]. Thus,
the geometric stiffening effect[10-11], which is also called
stress stiffening effect, is accounted for in the dynamics
equation, which makes it applicable for high rotational
speed problems. Secondly, the transfer equation[12] of
the flexible beam is obtained by assembling the dynam-
ics equation and the kinematic relationship between the
two connection points of the flexible beam. Treating a
flexible beam with small deformation as a substructure,
one can solve the dynamics of a flexible beam with large
deformation by using the substructuring technique and
the transfer matrix method. Finally, the dynamics of
a flexible beam with large deformation is simulated by
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using the proposed approach and the results are ver-
ified by comparing with those obtained from Abaqus
software.

1 Dynamics Equation of a Spatial
Straight Beam

In this section, the dynamics equation of a spatial
straight beam with large displacement and small de-
formation is deduced. Such a beam undergoing small
deformation will be treated as a substructure, namely
a sub beam, of the flexible beam undergoing large de-
formation. An arbitrary sub beam, namely a spatial
straight beam with small deformation, is numbered i
(i = 1, 2, · · · , N), where N denotes the total number of
the segments of the flexible beam with large deforma-
tion.
1.1 A Spatial Straight Beam and Its Coordi-

nate Systems
A spatial straight beam, numbered i, as shown in

Fig. 1, is taken as an example to sketch the idea to
deduce the dynamics equation and transfer equation of
a spatial straight beam undergoing large displacement
and small relative deformation by using the Jourdain
variation principle and the model synthesis method.
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Fig. 1 A spatial straight beam and the coordinate systems

As shown in Fig. 1, N i
k(k = 1, 2, · · · , n) is used to

denote the kth node of beam i and n is the total node
number. The two connection point of beam i are de-
noted as Pin (Input end) and Pout (Output end), re-
spectively. Oxyz is the global inertial coordinate sys-
tem, Oi

fx
i
fy

i
fz

i
f is the floating frame of beam i and

ONi
k
xNi

k
yNi

k
zNi

k
is the node coordinate system attached

to node N i
k. rOOi

f
is the position vector of the origin of

Oi
fx

i
fy

i
fz

i
f , decomposed in the global inertial coordinate

system Oxyz, uOi
f N

i
k

is used to represent the original
coordinate of node k in the undeformed configuration
of beam i, and uNi

k
= [u v w]T

Ni
k

is the relative defor-

mation vector of node N i
k with respect to the floating

frame of reference.
Additionally, the angular deformation vector of node

N i
k with respect to the floating frame of reference is

denoted as θNi
k

= [θx θy θz ]TNi
k
, whose combination

with uNi
k

= [u v w]T
Ni

k
gives the complete deforma-

tion vector δNi
k

= [uT
Ni

k
θT

Ni
k
]T of node N i

k. The overall
relative deformation vector of the nodes of beam i with
respect to Oi

fx
i
fy

i
fz

i
f is denoted as

δi = [δT
Ni

1
δT

Ni
2

· · · δT
Ni

n
]T.

If all the components of the overall relative defor-
mation vector δi remain relatively small enough, then
δi could be represented by a modal synthesis method,
namely

δi = Φiqi
f , (1)

Φi = [Φi
1 Φi

2 · · · Φi
M ], (2)

qi
f = [qi

f,1 qi
f,2 · · · qi

f,M ]T, (3)

where Φi
j (j = 1, 2, · · · , M) is the jth mode shape of

beam i, qi
f,j is the corresponding jth generalized defor-

mation coordinate, and M is the total number of the
mode shapes. It should be noted that no matter which
kind of modal synthesis method is chosen, there should
be no rigid mode shapes involved in Φi.
1.2 The Modified Craig-Bampton Modal

Synthesis Method
The modified Craig-Bampton modal synthesis

method[13] was proposed for generalizing the applica-
tion of the modal shapes to a general flexible body con-
nected to many other bodies with all kinds of constraint
conditions. Taking the flexible beam i as an example,
the procedure of the modified Craig-Bampton modal
synthesis method is briefly introduced as follows.

The overall relative deformation vector δi are parti-
tioned into two parts: the sub deformation vector of the
interface nodes, labeled as δi

Interface and the remaining
sub deformation vector of the interior nodes, labeled as
δi
Interior. And then the mode shapes Φi are also parti-

tioned into two parts, namely

Φi
s-d = [Φi

s Φi
d], (4)

where Φi
s consists of static modes obtained by setting a

nonzero value to one of the degree of freedom of the in-
terface nodes while keeping the other degrees of freedom
of the interface nodes constrained; Φi

d is obtained by
solving the eigenvalues and expanding the eigenvectors
under the condition that all the interface nodes are con-
strained. The next step is to orthogonalize Φi

s-d, which
is done by solving the following eigenvalue problem

(Φi
s-d)TKi

cΦ
i
s-dΨ i = λ(Φi

s-d)TM i
l Φ

i
s-dΨ i, (5)
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where Ki
c and M i

l are the consistent stiffness matrix
and lumped mass matrix of flexible beam i, respectively.

Solving the above eigenvalue problem, one can obtain
a group of new eigenvectors Ψ i. And then the orthog-
onalized modified Crig-Bampton mode shapes can be
acquired as follows

Φi = Φi
s-dΨ i. (6)

1.3 Kinematics Equations of the Flexible Beam
The position vector of N i

k decomposed in the global
inertial coordinate system can be expressed as

rNi
k

= rOOi
f
+ AOOi

f

{
uOi

f N
i
k

+ Φu,Ni
k
qi

f+

H1

[
− 1

2

k−1∑
p=1

∫ lp

0

[(∂v

∂x

)2

+
(∂w

∂x

)2]
dx

]}
, (7)

where AOOi
f

is the direction cosine matrix of Oi
fx

i
fy

i
fz

i
f

with respect to Oxyz; H1 = [1 0 0]T is a constant

vector; Φu,Ni
k

=
[
ΦT

u,Ni
k

ΦT
v,Ni

k
ΦT

w,Ni
k

]T

are the de-

formation modal shapes of N i
k along x, y and z axes of

Oi
fx

i
fy

i
fz

i
f , respectively; v and w are the relative defor-

mation of the neutral axis of the beam finite element
along y and z axes of Oi

fx
i
fy

i
fz

i
f , respectively; lp is the

initial length of beam finite element p. The last term in
Eq. (7) is used to account for the longitudinal shorten-
ing effect due to the transversal deformation. By using
the shape functions of the beam finite element, this
term could be rewritten as

−1
2

k−1∑
p=1

∫ lp

0

[(∂v

∂x

)2

+
(∂w

∂x

)2]
dx = (δi)TΓ̂Ni

k
δi, (8)

where

(δi)TΓ̂Ni
k
δi =

k−1∑
p=1

(δip)T
{
− 1

2

∫ lp

0

[(N ′
v)

TN ′
v+

(N ′
w)TN ′

w]dx
}

δip, (9)

δip is relative deformation vector of element p of beam
i. Nv(x) and Nw(x) are the shape functions corre-
sponding to v and w, respectively. N ′•(x) is the first
derivation of N•(x) with respect to the local position
coordinate x of the beam finite element.

Substituting Eq. (1) into Eq. (8) yields

−1
2

k−1∑
p=1

∫ lp

0

[(∂v

∂x

)2

+
(∂w

∂x

)2]
dx=(qi

f )
TΓNi

k
qi

f , (10)

where

ΓNi
k

= (Φi)TΓ̂Ni
k
Φi. (11)

Substituting Eq. (10) back into Eq. (7), one can ob-
tain

rNi
k

= rOOi
f
+ AOOi

f
[uOi

f N
i
k
+

Φu,Ni
k
qi

f + H1(qi
f )

TΓNi
k
qi

f ]. (12)

Solving the first derivation of Eq. (12) with respect
to time, one can obtain the absolute velocity of N i

k

decomposed in the global inertial frame as follows

ṙNi
k

= ṙOOi
f
+ Ω̃OOi

f
AOOi

f
[uOi

f N
i
k

+ Φu,Ni
k
qi

f+

H1(qi
f )

TΓNi
k
qi

f ] + AOOi
f
[Φu,Ni

k
q̇i

f+

2H1(qi
f )

TΓNi
k
q̇i

f ]. (13)

where ΩOOi
f
is the absolute angular velocity of Oi

fx
i
fy

i
fz

i
f

decomposed in Oxyz.
According to the superposition theorem of an-

gular velocity, the absolute angular velocity of
ONi

k
xNi

k
yNi

k
zNi

k
decomposed in Oxyz can be written

as

ΩNi
k

= ΩOOi
f
+ AOOi

f
Φθ,Ni

k
q̇i

f , (14)

where Φθ,Ni
k

=
[
ΦT

θx,Ni
k

ΦT
θy,Ni

k
ΦT

θz,Ni
k

]T

are the ro-

tational deformation modal shapes of N i
k.

Kinematics Eqs. (13) and (14) could be collected into
one formula, namely

ṘNi
k

= LNi
k
Yi, (15)

where

ṘNi
k

=

[
ṙ

Ω

]

Ni
k

,

LNi
k

=
[
I3 AOOi

f
ρ̃T

Ni
k
AT

OOi
f

AOOi
f
[Φu,Ni

k
+2H1(qi

f )
TΓNi

k
]

03 I3 AOOi
f
Φθ,Ni

k

]
,

Yi =

[
ṘOOi

f

q̇i
f

]
. (16)

ρNi
k

= uOi
f N

i
k

+ Φu,Ni
k
qi

f + H1(qi
f )

TΓNi
k
qi

f , (17)

I3 is a 3 by 3 identity matrix and 03 is a 3 by 3 zero
matrix.

The Jourdain variation of Eq. (15) reads as

δṘNi
k

= LNi
k
δYi. (18)

Solving the first derivation of Eq. (15) with respect
to time, one can obtain the absolute accelerations and
angular accelerations of N i

k decomposed in the global
inertial frame as follows

R̈Ni
k

= LNi
k
Ẏi + L̇Ni

k
Yi. (19)



J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(5): 562-569 565

1.4 Dynamics Equations of the Flexible Beam
The virtual power equation of beam i could be

obtained by using the Jourdain variation principle,
namely

n∑
k=1

δṙT
Ni

k
AOOi

f
mNi

k
AT

OOi
f
r̈Ni

k
+

n∑
k=1

δΩ̇T
Ni

k
AOOi

f
JNi

k
AT

OOi
f
Ω̇Ni

k
=

δṙT
i,Pin

qi,Pin − δΩT
i,Pin

mi,Pin − δṙT
i,Pout

qi,Pout+

δΩT
i,Pout

mi,Pout +
n∑

k=1

δṙT
Ni

k
F e

Ni
k

+
n∑

k=1

δΩT
Ni

k
M e

Ni
k
−

(δq̇i
f )

TKi
F F qi

f − (δq̇i
f )

T(αM i
F F + βKi

FF )q̇i
f (20)

where mNi
k

= mNi
k
I3 is the lumped mass matrix of N i

k

decomposed in Oi
fx

i
fy

i
fz

i
f , JNi

k
is the corresponding mo-

ment of inertial matrix; F e
Ni

k
and M e

Ni
k

are the external

forces and torques acting on N i
k, respectively; M i

F F

and Ki
F F are the generalized deformation mass matrix

and stiffness matrix of beam i, respectively; α and β are
the corresponding proportional damping coefficients;
r̈i,Pin(r̈i,Pout) and Ω̇i,Pin(Ω̇i,Pout) are the absolute accel-
erations and angular accelerations of the input (ouput)
end of beam i; qi,Pin(qi,Pout) and mi,Pin(mi,Pout) are the
internal forces and torques of the input (output) end of
beam i. Positive directions of qi,Pin coincides with the
positive directions of the axes of Oxyz, and the pos-
itive directions of mi,Pin coincides with the negative
directions of the axes of Oxyz. The positive directions
of qi,Pout and mi,Pout opposite with those of qi,Pin and
mi,Pin , respectively[12]. Substituting Eqs. (18) and (19)
into Eq. (20), one can obtain

δY T
i MiẎi = δY T

i Ψi,PinQi,Pin+

δY T
i Ψi,PoutQi,Pout + δY T

i Q0
i , (21)

where Mi is the generalized inertia matrix of beam i;
Qi,Pin and Qi,Pout are the column vectors of internal
forces of the input and output ends, respectively; Q0

i

is the column vector of generalized forces consisting of
centrifugal inertial forces, Coriolis inertial forces, gen-
eralized external forces and elastic forces. The detailed
expression of each matrix reads as follows

Mi =

⎡
⎢⎢⎣

Mrr MrΩ MrF

MT
rΩ MΩΩ MΩF

MT
rF MT

ΩF MF F

⎤
⎥⎥⎦

i

Q0
i =

⎡
⎢⎢⎣

Q0
r

Q0
Ω

Q0
F

⎤
⎥⎥⎦

i

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (22)

Ψi,Pin=

⎡
⎢⎢⎣

03 I3

−I3 A
OOi

f
ρ̃i,PinAT

OOi
f

−ΦT
θ,i,Pin

AT
OOi

f
(ΦT

u,i,Pin
+2Γi,Pinqi

f H
T
1 )AT

OOi
f

⎤
⎥⎥⎦

Ψi,Pout=⎡
⎢⎢⎣

03 −I3

I3 −A
OOi

f
ρ̃i,PoutAT

OOi
f

ΦT
θ,i,Pout

AT
OOi

f
−(ΦT

u,i,Pout
+2Γi,Poutqi

f H
T
1 )AT

OOi
f

⎤
⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (23)

Qi,Pin =
[
mT

i,Pin
qT

i,Pin

]T

Qi,Pout =
[
mT

i,Pout
qT

i,Pout

]T

⎫
⎪⎬
⎪⎭

. (24)

The sub matrices of Mi and Q0
i are

Mrr = I1

MrΩ = AOOi
f

[
(Ĩ2)T +

M∑
j=1

(Ĩ3
j )Tqi

f,j+

H̃T
1 (qi

f )
TI10qi

f

]
AT

OOi
f

MrF = AOOi
f
[I3 + 2H1(qi

f )
TI10]

MΩΩ = AOOi
f

[
I7 +

M∑
j=1

I8
j qi

f,j+

M∑
j=1

(I8
j )Tqi

f,j+
M∑

j,h=1

I9
j,hqi

f,jq
i
f,h

]
AT

OOi
f
+

AOOi
f

{ n∑
j,h=1

(I11
j,hqi

f,jq
i
f,h)H̃T

1 +

[ n∑
j,h=1

(I11
j,hqi

f,jq
i
f,h)H̃T

1

]T}
AT

OOi
f

MΩF =

AOOi
f

[
I4 +

M∑
j=1

I5
j qi

f,j + 2
M∑

j=1

(I12
j qi

f,j)
]

MF F = I6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (25)

Q0
r =

n∑
k=1

F e
Ni

k
−

AOOi
f

{
ω̃OOi

f

[
(Ĩ2)T +

M∑
j=1

(Ĩ3
j )Tqi

f,j+

H̃T
1 (qi

f )
TI10qi

f

]
ωOOi

f

}
−

AOOi
f

{
2
[ M∑

j=1

(Ĩ3
j )Tq̇i

f,j + 2H̃T
1 (qi

f )
TI10q̇i

f

]
×

ωOOi
f
+ 2H1(q̇i

f )
TI10q̇i

f

}
, (26)
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Q0
Ω =

n∑
k=1

(M e
Ni

k
+ AOOi

f
ρ̃Ni

k
AT

OOi
f
F e

Ni
k
)−

AOOi
f

{ 3∑
l=1

ωOOi
f ,l

[
I14

l +
M∑

j=1

qi
f,jI

15
l,j−

M∑
j=1

qi
f,j(I

15
l,j)

T +
M∑

j,h=1

qi
f,hqi

f,jI
16
l,j,h

]}
ωOOi

f
−

AOOi
f

{ 3∑
l=1

ωOOi
f ,l

[ M∑
j,h=1

(qi
f,hqi

f,jI
11
j,h)H̃lH̃

T
1 +

H̃1H̃l

M∑
j,h=1

qi
f,hqi

f,j(I
11
j,h)T

]}
ωOOi

f
−

AOOi
f

[ M∑
j=1

(q̇i
f,jI

13
j ) + 2

M∑
j=1

q̇i
f,jI

8
j +

2
M∑

j,h=1

qi
f,j q̇

i
f,hI9

j,h+4
M∑

j,h=1

(qi
f,j q̇

i
f,hI11

j,h)H̃T
1

]
ωOOi

f
−

AOOi
f

[
2

M∑
j,h=1

(q̇i
f,j q̇

i
f,hI11

j,h)H1

]
, (27)

Q0
F =

n∑
k=1

(ΦT
u,Ni

k
+ 2ΓNi

k
qi

fH
T
1 )AT

OOi
f
F e

Ni
k
+

n∑
k=1

ΦT
θ,Ni

k
AT

OOi
f
M e

Ni
k
−

Ki
F F qi

f − (αM i
F F + βKi

FF )q̇i
f−

{ M∑
j=1

(I17
j q̇i

f,j) +
3∑

i=1

ωOOi
f ,l

[
I18

l +
M∑

j=1

I19
l,jq

i
f,j+

M∑
j,h=1

(I20
j,hqi

f,jq
i
f,hH̃lH̃

T
1

]}
ωOOi

f
−

[
2

M∑
j=1

(I5
j )Tq̇i

f,j + 4
M∑

j,h=1

(I20
j,hqi

f,j q̇
i
f,h)H̃T

1

]
ωOOi

f
−

[
2

M∑
j,h=1

(I20
j,hq̇i

f,j q̇
i
f,h)

]
H1−

{
2

3∑
l=1

ωOOi
f ,l

[ M∑
h=1

I21
l,hqi

f,h +
M∑

j,h=1

I22
l,j,hqi

f,jq
i
f,h

]
+

4
M∑

j,h=1

I23
j,hqi

f,j q̇
i
f,h

}
ωOOi

f
, (28)

where ωOOi
f

= AT
OOi

f
ΩOOi

f
is the absolute angu-

lar velocity of Oi
fx

i
fy

i
fz

i
f decomposed in Oi

fx
i
fy

i
fz

i
f and

ωOOi
f ,l

(l = 1, 2, 3) denotes the lth component of ωOOi
f
;

I1, I2, · · · , I23 are constant matrices and could be cal-
culated by a preprocessor, their detailed expressions are

as follows

I1 = I3

n∑
k=1

mNi
k
, I2 =

n∑
k=1

mNi
k
uOi

f N
i
k
,

I3
j =

n∑
k=1

mNi
k
Φu,Ni

k,j , I3 = [I3
1 I3

2 · · · I3
M ],

I4 =
n∑

k=1

(mNi
k
ũOi

f N
i
k
Φu,Ni

k
+ JNi

k
Φθ,Ni

k
),

I5
j =

n∑
k=1

mNi
k
Φ̃u,Ni

k,jΦu,Ni
k
,

I6 =
n∑

k=1

(ΦT
u,Ni

k
mNi

k
Φu,Ni

k
+ ΦT

θ,Ni
k
JNi

k
Φθ,Ni

k
),

I7 =
n∑

k=1

(JNi
k

+ mNi
k
ũOi

f N
i
k
ũT

Oi
f N

i
k
),

I8
j =

n∑
k=1

mNi
k
ũOi

f N
i
k
Φ̃T

u,Ni
k,j,

I9
j,h =

n∑
k=1

mNi
k
Φ̃u,Ni

k,jΦ̃
T
u,Ni

k,h,

I10 =
n∑

k=1

mNi
k
ΓNi

k
,

I11
j,h =

n∑
k=1

mNi
k
Γj,Ni

k,hũOi
f N

i
k
,

I12
j =

n∑
k=1

mNi
k
ũOi

f N
i
k
H1Γj,Ni

k
,

I13
j =

n∑
k=1

JNi
k
Φ̃T

θ,Ni
k
,j,

I14
l =

n∑
k=1

mNi
k
ũOi

f N
i
k
H̃lũ

T
Oi

f N
i
k
,

I15
l,j =

n∑
k=1

mNi
k
ũOi

f N
i
k
H̃lΦ̃

T
u,Ni

k,j,

I16
l,j,h =

n∑
k=1

mNi
k
Φ̃u,Ni

k,jH̃lΦ̃
T
u,Ni

k,h,

I17
j =

n∑
k=1

ΦT
θ,Ni

k
JNi

k
Φ̃T

θ,Ni
k,j,

I18
l =

n∑
k=1

mNi
k
ΦT

u,Ni
k
H̃lũ

T
Oi

f N
i
k
,

I19
l,j =

n∑
k=1

mNi
k
ΦT

u,Ni
k
H̃lΦ̃

T
u,Ni

k,j,

I20
j,h =

n∑
k=1

mNi
k
Γj,Ni

k,hΦT
u,Ni

k
,

I21
l,h =

n∑
k=1

mNi
k
ΓNi

k,hHT
1 H̃lũ

T
Oi

f N
i
k
,
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I22
l,j,h =

n∑
k=1

mNi
k
ΓNi

k,jH
T
1 H̃lΦ̃

T
u,Ni

k,h,

I23
j,h =

n∑
k=1

mNi
k
ΓNi

k,jH
T
1 Φ̃T

u,Ni
k,h,

H1 = [1 0 0]T,

H2 = [0 1 0]T,

H3 = [0 0 1]T.

Then, the dynamics equation of beam i can be de-
rived from the virtual power equation (21) of beam i,
namely

MiẎi = Ψi,PinQi,Pin + Ψi,PoutQi,Pout + Q0
i . (29)

2 Transfer Equation of the Flexible
Beam

The transfer equation of the flexible beam could
be obtained by assembling the dynamics equation and
the kinematic relationship between the two connection
points of the flexible beam. Here, one of the connec-
tion points is treated as the input end Pin of the beam
and the other as the output end Pout. The detailed
procedures are as follows.

The acceleration of the input and output ends of
beam i could be obtained from Eq. (19), respectively.
They are

R̈i,Pin = Li,PinẎi + L̇i,PinYi, (30)

R̈i,Pout = Li,Pout Ẏi + L̇i,PoutYi. (31)

From Eq. (29), one can obtain

Ẏi =M−1
i Ψi,PinQi,Pin+

M−1
i Ψi,PoutQi,Pout +M−1

i Q0
i . (32)

Substituting Eq. (32) into Eqs. (30) and (31) leads to

E1

[
R̈i,Pout

Qi,Pout

]
= E2

[
R̈i,Pin

Qi,Pin

]
+ E3, (33)

where

E1 =

[
06 Li,PinM−1

i Ψi,Pout

−I6 Li,PoutM
−1
i Ψi,Pout

]
,

E2 =

[
I6 −Li,PinM

−1
i Ψi,Pin

06 −Li,PoutM
−1
i Ψi,Pin

]
,

E3 = −
[

Li,PinM
−1
i Q0

i + L̇i,PinYi

Li,PoutM
−1
i Q0

i + L̇i,PoutYi

]
.

The form of the state vectors[14] of the input and
output ends is defined as

zℵ = [R̈T QT 1]Tℵ , (34)

whose detailed expression reads as

zℵ = [r̈T Ω̇T mT qT 1]Tℵ , (35)

or

zℵ =

[ẍ ÿ z̈ Ω̇x Ω̇y Ω̇z mx my mz qx qy qz 1]Tℵ , (36)

where ℵ could be input end Pin or the output end Pout.
Then the transfer equation of beam i can be obtained

from Eq. (33), namely

zi,Pout = Uizi,Pin , (37)

where the transfer matrix reads as

Ui =

[
E−1

1 E2 E−1
1 E3

01×12 1

]
. (38)

3 Numerical Example and Discussion

In this section, the substructuring technique for the
dynamics of a flexible beam with large deformation
proposed in this paper is utilized to carry out the
numerical simulation and analysis for the dynamics
of a cantilever beam system undergoing gravity and
large deformation. The parameters of the system are
given as follows: the length of beam L = 10 m, the
mass density ρ = 2.766 7 × 103 kg/m3, elastic modu-
lus E = 68.95 GPa, Poisson’s ratio μ = 0.33, shear
modulus G = E

2(1+μ) , the area of the cross section
A = 7.3 × 10−5 m2, moment of inertia of the cross sec-
tion Iy = Iz = 8.218 × 10−9 m4, the polar moment of
inertia of the cross section JP = Iy + Iz. The accelera-
tion of gravity g = [0 − 9.8 0]T m/s2 and there is no
damping considered for this dynamics system.

As shown in Fig. 2, the cantilever beam is divided
into N identical segments and each segment is treated
as a substructure of the cantilever beam. In this way,
each sub beam will undergo large motion but relatively
small deformation, whose dynamics behavior could be
modeled by the dynamics equation and transfer equa-
tion deduced in Section 1 and Section 2. The sub beams
are numbered as 1, 2, · · · , N in sequence from the fixed
end to the free end.

x

y

z

1 N−1 N2

The cantilever beam L=10 m

Sub beams

Fixed
end

Free
end

O

Fig. 2 Sub structures of the cantilever beam
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From the transfer equation of each beam i, given in
Eq. (37), and the topology given in Fig. 2, one can ob-
tain the overall transfer equation of the cantilever beam
system, namely

zN,Pout = UN · · ·U2U1z1,Pin . (39)

Considering the definition of the form of the state
vectors, given in Eq. (36), one can represent the bound-
ary conditions of the cantilever beam system as

z1,Pin = [0 0 0 0 0 0 mx my mz qx qy qz]T1,Pin
,

zN,Pout = [ẍ ÿ z̈ Ω̇x Ω̇y Ω̇z 0 0 0 0 0 0]TN,Pout
.

Substituting the above boundary conditions into
Eq. (39), one can obtain the unknown state variables
of the boundary state vectors z1,Pin and zN,Pout . Then
utilizing again Eq. (37), one can obtain the input and
output state vectors zi,Pin and zi,Pout of each sub beam
i. Further, Eq. (32) could be used to calculate the ac-
celerations r̈OOi

f
, angular accelerations Ω̇OOi

f
and the

generalized deformation accelerations q̈i
f of each sub

beam i.

The response of the free end’s deformation with re-
spect to the global inertial coordinate system Oxyz is
shown in Fig. 3, where u, v and w represent the free
end’s deformation along x, y and z axes of Oxyz, re-
spectively, and u̇, v̇ and ẇ are the corresponding time
derivatives.

One can find that dividing the cantilever beam into
two sub beams (N = 2) is competent to obtain ac-
ceptable results compared with those obtained from the
Abaqus software. The deformations reach their maxi-
mal values at time instant t = 1.54 s, and the maxi-
mal deformation along x and y axes are u = −3.270 m
and v = −6.752 m, respectively. When dividing the
cantilever beam into two sub beams (N = 2), the de-
formed configuration of the cantilever beam at time in-
stant t = 1.54 s is shown in Fig. 4(a). The deformed
configuration of each sub beam with respect to their
own floating frame is shown in Fig. 4(b).

From Fig. 4, one can find that the relative deforma-
tions of each sub beam with respect to their own float-
ing frames all remain small, and the maximum value
is about 0.418 m, which verify the small deformation
assumption of the sub beams.
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4 Conclusion

In this paper, the relative node coordinate descrip-
tion strategy is extended for the dynamics modeling of
flexible beams with large deformation by introducing
the substructuring technique. The dynamics equation
of a spatial straight beam undergoing large displace-
ment and small deformation is deduced by using the
Jourdain variation principle and the model synthesis
method. The longitudinal shortening effect due to the
transversal deformation is taken into consideration in
the dynamics equation. The transfer equation of the
flexible beam is deduced by assembling the dynamics
equation and the kinematic relationship between the
two connection points of the flexible beam. Treating a
flexible beam with small deformation as a substructure,
one can solve the dynamics of a flexible beam with large
deformation by using the substructuring technique and
the transfer matrix method. The dynamics of a flexi-
ble beam with large deformation is simulated by using
the proposed approach and the results are verified by
comparing with those obtained from Abaqus software.
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