
J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503

DOI: 10.1007/s12204-017-1862-0

Design and Implementation of
a Data-Driven Dynamical Reconfigurable Cell Array

SHAN Rui1∗ (� �), LI Tao2 (� �), JIANG Lin3 (� �)
DENG Junyong3 (���), SHEN Xubang1 (���)

(1. School of Microelectronics, Xidian University, Xi’an 710071, China; 2. Research Center for ASIC Design, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China; 3. School of Electronic Engineering, Xi’an University of

Posts and Telecommunications, Xi’an 710121, China)

© Shanghai Jiao Tong University and Springer-Verlag Berlin Heidelberg 2017

Abstract: The nature of dataflow computation demands the heavy flow of tokens amongst computation nodes.
Traditional reduced instruction-set computer (RISC) processors are not suitable for such style computation. De-
vices that use long wire buses are not suitable for dataflow either. Reconfigurable computing devices (RCDs)
consist of data transfer wires and computing resources. With minor modifications, reconfigurable cells can be
adopted to perform dataflow computation. A reconfigurable cell array (RCA) is presented in this paper and it is
suitable for dataflow computation. This cell array has a dynamic reconfigurable storage model. The distinctive
features of the architecture include dataflow reconfigurable cells and reconfigurable storage. Dataflow applications
can be mapped easily and effectively onto the cells. Reconfigurable storage is mainly used to manage data ac-
cess and transmission. Furthermore, computation and data management are separated. Meanwhile, dynamical
reconfiguration is accomplished, when some clusters of cells work in configuration mode and other clusters work
in computation mode. The dataflow graphs of some algorithms are mapped onto our architecture, and the per-
formance results are compared with those of CPU and GPU.
Key words: reconfigurable architecture, cell array, dataflow computing, storage structure, distributed storage
CLC number: TP 391 Document code: A

0 Introduction

In the field of high-performance computing, recon-
figurable computing devices (RCDs) (such as field-
programmable gate arrays (FPGAs)) are gaining more
widespread interest[1]. Many reconfigurable architec-
tures have been proposed in the literature. Miyamori
and Olukotun[2] discussed reconfigurable multi-media
array coprocessor (REMARC) which consists of a
global control unit and an 8×8 array of nano-processors.
The array of nano-processors is similar to a reduced
instruction-set computer (RSIC) processor, and it in-
cludes an arithmetic logical unit (ALU), an instruction
random access memory (RAM), a data RAM, a register

Received date: 2016-10-10
Foundation item: the National Natural Science

Foundation of China (Nos. 61136002, 61272120,
61634004 and 61602377), the Shaanxi Provin-
cial Co-ordination Innovation Project of Science
and Technology (No. 2016KTZDGY02-04-02), the
Shaanxi Provincial Science and Technology Re-
search Fund (Nos. 2013KTZB01-07, 2014ZS-08 and
S2015TQGY0166), and the Fund of Shaanxi Education
Bureau (No. 2050205)

∗E-mail: shanrui0112@163.com

file, and some data input and output registers. A global
program counter (PC) is used to fetch instructions for
all of nano-processors in the 8 × 8 array. The array
may operate in either multiple instruction multiple data
(MIMD) or single instruction multiple data (SIMD)
model. Data can be transferred via adjacent neighbor
connections or via line/row bus. Singh et al.[3] proposed
MorphoSys system which consists of tiny-RISC proces-
sors, reconfigurable cell array (RCA), frame memory
and direct memory access (DMA) controller. Reconfig-
urable cell comprises a shift unit, an ALU-multiplier,
two multiplexers at the reconfigurable cell inputs, an
output register, a feedback register and a register file.
Data transformation in RCA is via neighbor intercon-
nections and long wires. Data communication between
RCA and outside uses the frame memory and DMA.
It works in SIMD mode. Veredas et al.[4] proposed
architecture for dynamically reconfigurable embedded
system (ADRES) which is a very long instruction word
(VLIW) architecture with a reconfigurable processing
element (PE) array. Data communication between PE
array and outside is achieved by a multi-port register
file, so data transfer bandwidth is limited. A fully pro-
grammable coarse-grain reconfigurable processor was

494 J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503

proposed in 2006[5]. The commercial processor contains
three types of processing array elements (PAEs): ALU-
PAEs, function-PAEs and RAM/IO-PAEs. ALU-PAEs
are used for computing. Function-PAEs are used for ap-
plication controlling. RAM/IO-PAEs are used for data
transfer. Zhu et al.[6] presented a reconfigurable multi-
media system (REMUS) architecture which consists of
an ARM9, two RCAs, an entropy decoder and some
auxiliary modules. RCAs are mainly used to perform
the media applications of data parallel part. Recon-
figurable cell comprises two input data selection units,
an ALU, an output data selection, a temporary reg-
ister and a result register. Data transfer in RCAs is
mainly through the register array. Li et al.[7] discussed
a multi-level parallel polymorphic array architecture for
graphics (PAAG) architecture which consists of several
levels of clusters of processors and seamlessly integrates
data parallelism, thread parallelism, operation paral-
lelism (found in FPGA and application specific inte-
grated circuit (ASIC) designs), and distributed instruc-
tion parallelism. A cluster is a 2D array of processors.
The processor is a two-way instruction parallel unit.
Data transfer between adjacent processors is completed
through neighbor connections as well as data routers.

From above reconfigurable architecture, we can see
that an RCA can be used as a functional component of
a processor, a coprocessor, or an attached processor[8].
Modern coarse grain reconfigurable cells often use RISC
processors or simplified RISC processors as comput-
ing nodes[9]. Some RCAs use shared registers to ex-
change data between reconfigurable cells while others
use neighboring connections to transfer data between
adjacent reconfigurable cells. For long distance data
transformation, line bus and row bus are used. How-
ever, buses have long delays.

Dataflow application is represented by a dataflow
graph which can be mapped onto RCA[10]. The exe-
cution of dataflow graph often needs to move a large
quantity of data among adjacent nodes. Such intensive
data movements cannot be satisfied by RISC processor-
based architectures.

A data-driven dynamical RCA (DD-RCA) is pro-
posed in this paper. In DD-RCA, a dual-rail proto-
col (REQ/ACK) is used for data exchange to mimic
dataflow computation. An operation with a data trans-
mission typically takes one cycle. This greatly improves
data transmission efficiency. A reconfigurable storage is
also proposed in this paper. This storage takes over the
data transmission control task, so the nodes can focus
on the computing task.

1 DD-RCA Architecture

DD-RCA can be used as a functional component of a
system or as a coprocessor. Its architecture is shown in
Fig. 1. It consists of three major parts: a cell cluster, a
reconfigurable switch, and a reconfigurable distributed
memory controller. This architecture is scalable. It is
a system of 4 × 4 clusters.

Each cluster is a 4 × 4 cell array. A cell is connected
with up to four neighbor cells, as shown in Fig. 2. The
cluster is mainly used for computing. An application is
represented by a dataflow graph. A node in a dataflow
diagram is usually mapped onto a computing cell, and
a dataflow graph can be directly mapped onto some
clusters.

In this paper, we present the design of a dataflow
reconfigurable cell. For a computation node, input data
may come from one or more of the neighbors or from
outside of the cluster. A dataflow cell is fired for

Cluster D
M

SW

Cluster D
M

SW
D

M
SW

D
M

SW

SW

SW

SW—Switch
DM—Distributed
 memory

SW

Cluster

Cluster

Cluster

Cluster

SW

SW

SW

Cluster

Cluster

D
M

SW
D

M
SW

D
M

SW
D

M
SW

Cluster

Cluster

SW

SW

SW

Cluster

Cluster

D
M

SW
D

M
SW

D
M

SW
D

M
SW

Cluster

Cluster

SW

SW

SW

Cluster

Cluster

CPU

A
H

B
 b

us

Fig. 1 Architecture of DD-RCA

J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503 495

Cell
00

Cell
01

Cell
02

Cell
03

Cell
04

Cell
05

Cell
06

Cell
07

Cell
08

Cell
09

Cell
10

Cell
11

Cell
12

Cell
13

Cell
14

Cell
15

Fig. 2 Cluster structure

execution only when all of the input data arrive. The
cell can continue execution when its output is consumed
by another cell. This corresponds to a single buffer
static dataflow computation.

Reconfigurable switches route data between adjacent
clusters. Each switch connects an edge of cells of one
cluster with an edge of cells of another cluster, so one
edge of a cluster can exchange data with an edge of
another cluster.

When a cluster needs to exchange a large quantity of
data with another (such as the case in openVX filing),
it uses one of the distributed memories. Each reconfig-
urable distributed memory is attached to a controller.

2 Configurable Mechanism

DD-RCA is dynamically reconfigurable. A part of it
can execute normal operations, while another part set
in configuration mode can receive configuration infor-
mation to reconfigure itself. An H-tree network[11], as
shown in Fig. 3, is used to transmit configuration in-
formation. Reconfiguration information can be passed
along the H-tree network to any part that needs recon-
figuring.

DD-RCA supports two modes of operation: working
mode and configuration mode. Mode switching infor-
mation is also dispatched along the H-tree network, ei-

Fig. 3 Configuration dispatch network

ther in a single direction or in several directions. Upon
initialization, all clusters/switches are set in configura-
tion model. When the configuration process is finished,
clusters can be set in working mode. When some clus-
ters are performing computation, other clusters includ-
ing configurable switches and configurable distributed
memory need reconfiguration.

3 Reconfigurable Components

DD-RCA architecture has three basis reconfigurable
components: dataflow reconfigurable cell, reconfig-
urable switch, and reconfigurable distributed memory.
3.1 Dataflow Reconfigurable Cell

Dataflow reconfigurable cell is mainly used for com-
puting. It can be configured as only executing one op-
eration or continually executing a sequence of opera-
tions. After executing the last operation in a sequence,
it restarts from the first operation. Dataflow reconfig-
urable cell is a fine grained device and it only supports
some simple operations, as shown in Fig. 4. Operand
A comes from one of the four neighbors, or a memory
cell. Operand B comes from one of the four neighbors,
a memory cell, or an immediate data. Dataflow recon-
figurable cell supports 16 bit immediate operand and
it contains eight data registers. It does not have data
RAM.

A + B A − B A & B

A | B A ˆ B ∼ A

A � B A � B A > B

A < B A==B abs(A)

Fig. 4 Dataflow reconfigurable cell supporting operation

The structure of dataflow reconfigurable cell is shown
in Fig. 5. It has a mode register, a configuration infor-
mation unit, a configure point counter and a dataflow
computing cell.

The mode register indicates whether the dataflow re-
configurable cell is in working mode or configuration
mode. This register saves the mode information from
the H-tree network.

The configuration information unit includes sixteen
configuration registers, each of which stores an oper-
ation. Configure point is set to zero after switching
to configuration mode. Configuration information that
comes from the H-tree network is incrementally written
into sixteen registers (denoted as R0 to R15).

The configuration point counter is analogous to a pro-
gram counter. It points to the next operation to be
performed. After an operation is finished, this counter
is increased by one and then is restarted when the last
operation in the sequence is executed.

The dataflow cell is mainly used for computing. The
cell has input multiplexers, an ALU unit and a fan out

496 J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503

Configuration
information

Mode register
Configure

point counter

WorkConfigure Flag

Next_execute

Dataflow cell

Right_control

Out_control

OpControl

Restart

Configure_point

OpControl—Operate_control

Done

M
od

e_
in

fo
rm

at
io

n

M
od

e_
vl

d

C
on

fi
gu

re
_

da
ta

C
on

fi
gu

re
_

vl
d

Fig. 5 Dataflow reconfigurable cell structure

unit, as shown in Fig. 6. The information stored in
each configuration register includes the opcode, the di-
rections of the input operands (specified by the multi-
plexer selections), and the output directions (fan outs).

The dual-rail hand-shaking is used for pipelining. For

each input/output direction, a pair of {valid, ready}
signals accompany the data signal. When all desired
inputs of an operation arrive, the cell is fired to execute
the operation. The result is sent out to the fan-out unit
which waits until all outputs are received by other cells.

EastData
WestData

SouthData
NorthData
MemData
RegData

EastValid
WestValid

SouthValid
NorthValid
MemValid

EastData
WestData

SouthData
NorthData
MemData
RegData

MUX

MUX

ALU

LeftData

RightData

OpResult

Com

OpControl

OpResltValid

D

D

D

D

D

Fan
out

Output_control

InputControl

InputControlR

MUX RightDataValid

EastValid
WestValid

SouthValid
NorthValid
MemValid

MUX

LeftDataValid EastData

WestData

SouthData

NorthData

MemData

D—Register
Com—Computing valid signal
MUX—Multiplexer

Fig. 6 Dataflow cell architecture

J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503 497

3.2 Reconfigurable Switch and Distributed
Memory

The reconfigurable switch helps data exchange be-
tween two adjacent clusters. It consists of one con-
figuration register and eight multiplexers, as shown in
Fig. 7.

The multiplexers in the switch must also observe
the dual-rail hand-shaking protocol. Its architecture is
shown in Fig. 8. Data can be sent to an adjacent clus-
ter only when the destination port is ready. A ready
signal is not back propagated to the input side until all

fan outs are ready.
A reconfigurable distributed memory is shared by two

horizontally adjacent clusters. The two clusters can ex-
change information using the memory when the amount
of information is large. Essentially, it is an on-chip
static random access memory (SRAM) used to buffer
intermediate results (such as the openVX tiling data).
As shown in Fig. 9, it is composed of a configuration
interface, a micro-code memory, a data memory, a re-
configuration controller, four input register units and
four output register units.

Cluster1_output0
Cluster1_output1
Cluster1_output2
Cluster1_output3

Cluster1_output0
Cluster1_output1
Cluster1_output2
Cluster1_output3

Cluster1_input0
Cluster1_input1
Cluster1_input2
Cluster1_input3

Cluster1_input0

MUX

C
on

fi
gu

re
D

at
a

C
on

fi
gu

re
V

al
id

MUX MUX MUX

MUX MUX MUX MUX

Cluster1_input1
Cluster1_input2
Cluster1_input3

Configuration
register

Fig. 7 Reconfigurable switcher architecture

ClusterInputValid0

ClusterOutputValid
&

M
U

X

M
U

X
M

U
X

|
ClusterReadyIn

Cluster0ReadyOut

Configure[1:0]
Configure[2]

D

D

&D

ClusterInputValid1

ClusterInputValid2
ClusterInputValid3

ClusterInputData0

ClusterInputData1

ClusterInputData2
ClusterInputData3

Cluster1ReadyOut

Cluster2ReadyOut
Cluster3ReadyOut

ClusterOutputData

Fig. 8 Multiplex unit architecture

498 J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503

Reconfiguration
controller

Data memory

Micro-code memory

Configuration interface

Input register

Input register

Input register

Input register

Output register

Output register

Output register

Output register

ClusterInputValid0
ClusterInputData0

ClusterOutputReady0

ClusterOutputValid0
ClusterOutputData0
ClusterInputReady0

ClusterInputValid1
ClusterInputData1

ClusterOutputReady1

ClusterInputValid2
ClusterInputData2

ClusterOutputReady2

ClusterInputValid3
ClusterInputData3

ClusterOutputReady3

ClusterOutputValid1
ClusterOutputData1
ClusterInputReady1
ClusterOutputValid2
ClusterOutputData2
ClusterInputReady2
ClusterOutputValid3
ClusterOutputData3
ClusterInputReady3

C
on

fi
gu

re
D

at
a

M
od

eV
al

id

M
od

eI
nf

or
m

at
io

n

C
on

fi
gu

re
V

al
id

Fig. 9 Reconfigurable distributed memory structure

Configuration interface takes charge of writing con-
figuration information to micro-code memory. There is
also a mode register in configuration interface for saving
mode information.

Micro-code memory is used for saving configuration
information or micro-code. Data memory is used for
saving data from external storage or buffering interme-
diate results. It can be seen as an RAM or first in first
out (FIFO).

Input register units can receive data from cluster and
provide the data to reconfiguration controller. Output
register units can receive data from reconfiguration con-
troller and provide the data to cluster. Their realiza-
tions are similar to multiplex units.

Reconfiguration controller is in charge of managing
data. It decides where data come from and where
they go and communicates with two adjacent clusters
through four input register units and four output reg-
ister units. Reconfiguration controller is much like an
RISC processor with some special instructions (such as
receive (REC) and write (WRT)). Instruction REC is
used to receive data from four input register units. In-
struction WRT is used to send data to four output reg-
ister units.

4 Implementation of Various Tasks

DD-RCA employs dataflow computing units, data
exchange switches, and shared distributed memories.
It is suitable for digital signal processing, computer
vision computations, and so on. To study the effec-
tiveness of DD-RCA architecture, we implement a sim-

ple computer vision application taken from the openVX
specification[12] and a cascaded integrator-comb (CIC)
filter[13] on DD-RCA.
4.1 Computer Vision Application

An example taken from the openVX specification 1.0
is shown in Fig. 10. It is an openVX graph with three
nodes.

Luma extraction

Gaussian filtering

Sobel filtering

VX_DF_IMAGE_U8 image VX_DF_IMAGE_U8 image

Input UYVY image

Fig. 10 A computer vision application

It takes a UYVY format image as input. The first
node extracts the luma information (Y component)
from the image. Gaussian filtering is performed on the
luma image to smooth the image. In the next step,
Sobel filtering is used to generate X edges in both the
x and y directions.

The luma extraction node separates the Y-
components from a UYVY format image, i.e. it con-
verts U0Y0V0Y1 and U2Y2V2Y3 to Y0Y1Y2Y3. This
can be expressed by a dataflow graph, as shown in
Fig. 11.

J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503 499

<<4 <<8

& &

|

>>4

& &

|

|

Y0Y1Y2Y3

U0Y0V0Y1 U2Y2V2Y3

32
’h

00
00

00
F
F

32
’h

00
00

00
F
F

32
’h

00
00

00
F
F

32
’h

00
00

00
F
F

Fig. 11 Dataflow extraction diagram

ANDing U0Y0V0Y1 with x00FF0000 and
x000000FF respectively results in x00Y00000 and
x000000Y1. ANDing U2Y2V2Y3 with x00FF0000
and x000000FF respectively results in x00Y20000 and
x000000Y3. Shifting left x00Y00000 by 8 and left
x000000Y1 by 16 and then ORing them together result
in xY0Y10000. Shifting right x00Y20000 by 8 and then
ORing with x000000Y3 result in x0000Y2Y3 which is
then ORed with xY0Y10000 to produce xY0Y1Y2Y3.
These operations can be performed in parallel.

Gaussian filtering is mainly used to smooth
images[12]. Here, the convolution coefficients are given
as

h(n) = {1, 2, 1; 2, 4, 2; 1, 2, 1} 1
16

, (1)

The convolution process is expressed by

y(n) =x(n) ∗ h(n) =
x(0)y(0) + x(1)y(1) + · · · + x(8)y(8), (2)

where x(n) is the input pixel point information, and
y(n) is the result after Gaussian filtering. Gaussian fil-
tering dataflow diagram is shown in Fig. 12. Since the
coefficients in Eq. (1) are all multiples of 2, the multi-
plications can be replaced by shifts. Division by 16 can
be replaced by a right shift of 4, as shown in Fig. 12.

Sobel filtering[14] is commonly used in edge detection,
and it is usually performed along the horizontal and
vertical directions respectively. Sobel filtering matrices
for the x and y directions are shown as

Gx =

⎡
⎢⎢⎣
−1 0 1

−2 0 2

1 0 1

⎤
⎥⎥⎦ , Gy =

⎡
⎢⎢⎣
−1 −2 −1

0 0 0

1 2 1

⎤
⎥⎥⎦ . (3)

Note that the coefficients are also powers of 2. This
computation process is similar to Gaussian filtering.
But the convolution coefficients are different. The
dataflow diagram is also similar and is shown in Fig. 13.

<<1 <<1 <<1 <<1<<2

ADD ADDADD

ADD ADD ADD ADD

ADD

>> 4x(0)

x(1) x(2) x(8) x(3) x(5) x(4) x(6) x(7)

y(n)

ADD—Operation of add

Fig. 12 Gaussian filtering dataflow diagram

We can easily map the luma extraction, Gaussian fil-
tering and Soble filtering onto DD-RCA. The mapping
is shown in Fig. 14, where dotted lines stand for con-
nections with distributed data memory.

Data exchange between Gaussian filtering node and
extraction node is through the data distributed mem-
ory. Part of configuration information is described as
follows. In the configuration information, ADDi stands
for adding with immediate data, REC R1-RL3 stands
for receiving the data from the left input 3 to Register
1, ST R2-R1 stands for storing the data of Register 1
to the address of RAM pointed by the data of Regis-
ter 2, SUBi stands for subbing with immediate data,
BEQ R3-R0 stands for judging whether Register 3 and
Register 0 are equivalent, J stands for jump directly,
LD R3-R2 stands for reading the data of RAM which
is pointed by the data of Register 2 and writing to Reg-
ister 3, and WRT RL1-R3 stands for writing the data
of Register 3 to the right output 1.

ADDi R2, R0, #0 // set R2 register value is zero

ADDi R3, R0, # 1920 // set R3 register value is 1920

RECEIVE: REC R1-RL3

ST R2-R1

ADDi R2, R2, #1

SUBi R3, R3, #1

BEQ R3-R0, #SENT

J #RECEIVE

SENT: ADDi R2, R0, #0

LD R3-R2

WRT RL1-R3

REC is mainly used to receive results from extraction
operation. Because Gaussian filtering needs three-line
data of image, there three-line data are saved firstly
in the data distributed memory. The data distributed
memory can be seen as FIFO. When three-line data
are all saved, WRT is used to send data to Gaussian
filtering cluster.

Data exchange between Gaussian node and Sobel
node is similar to that between extraction node and

500 J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503

(a) Horizontal convolution (b) Vertical convolution

<<1 <<1NOT

ADD NOT ADD

NOT

ADD

ADD ADD

x(0) x(1) x(2) x(7) x(8)

y(n)

x(6)

NOT

ADD

ADD ADD ADD ADD ADD

SET0

NOT ADD

SET0<<1

<<1

NOT

ADD

SET0

x(0)

x(2)

x(5)

x(8)

y(n)

x(1) x(3) x(4) x(6) x(7)

NOT—Operation of negation
SET0—Operation of setting the input data to zero

Fig. 13 Sobel filtering dataflow diagram

SLL4
D

M
SLL8 SRL4 &

& & & |

D | | D

NOP NOP NOP NOP

D
M

D SLL1 D

SLL1
ADD

SLL2
ADD

SLL1
ADD

SAVE
ADD

SLL1
ADD

SAVE
ADD

D ADD ADD

NOP

NOP

NOP

SRL4

D
M

NOT SET0 D

SLL1
NOT
ADD

SET0
ADD

SLL1
ADD

NOT
ADD

SET0
ADD

SAVE
ADD

D ADD ADD

NOP

NOP

NOP

NOP

SW

(a) Extraction operation mapping (b) Gaussian filtering mapping

(c) Sobel horizontal filtering mapping (d) Sobel vertical filtering mapping

D
M

NOT
SLL1
NOT
ADD

NOT

NOP NOP NOP

SAVE
ADD

SLL1
ADD

SAVE
ADD

D ADD ADD

SW

NOP

NOP

NOP

NOP

NOP—No operation

Fig. 14 Application mapping diagram

Gaussian filter node.
4.2 CIC Filter

CIC filter[15] consists of an integral part and a comb
part, and its system transfer function is given as

H(z) =
1

1 − z−1
(1 − z−D), (4)

where D represents the number of cascade (here D is
3), and z represents the input signal.

In this implementation, three-level cascade and
ten times extraction are employed. The dataflow
graph of the integral part of CIC filter is shown in
Fig. 15. Three vertices are used as accumulators to

J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503 501

compute[15]:

y(n) = y(n − 1) + x(n). (5)

ADD ADD ADD

Fig. 15 The integral part of CIC filter

The dataflow graph of the comb part of CIC filter is
shown in Fig. 16. Nine vertices are used as accumula-
tors to compute[15]:

y(n) = x(n) + x(n − 2). (6)

According to those dataflow diagrams, we can easily
map CIC filter onto DD-RCA. The mapping diagram
is shown in Fig. 17, where dotted lines stand for data
from or to distributed memory. The integral part is
mapped onto left side, and the comb part is mapped
onto right side.

Ten times extraction can be realized by configuring
distributed memory. Configuration information is de-
scribed as follows. REC R2-RL1 stands for receiving
data from the left input 1 to Register 2, BEQ R1-R0
stands for judging whether Register 1 and Register 0
are equivalent, and WRT RL3-R2 stands for writing
the data of Register 2 to the right output 3.

D

D

ADD

D

D

ADD

D

D

ADD

Fig. 16 The comb part of CIC filter

ADD ADD ADD NOP

NOP NOP NOP NOP

NOP NOP NOP NOP

NOP NOP NOP NOP

D
M

D
M

NOP

D ADD D ADD

D D D D

NOP

NOP NOP

D ADD

D D

Fig. 17 CIC filter mapping on DD-RCA

ADDi R1, R0, #10
RECEIVE: REC R2-RL1
SUBi R1, R1, #1
BEQ R1-R0, #SENT
J #RECEIVE
SENT: WRT RL3- R2

5 Performance Study

The running results of computing vision process seg-
ment on DD-RCA are shown in Fig. 18. The image in
Fig. 18(a) is original image. The image in Fig. 18(b) is
blurred, compared with the image in Fig. 18(a). The
images in Figs. 18(c) and 18(d) are the results from
Sobel operator x-axis and y-axis filtering, respectively.
Table 1 shows the performance of DD-RCA. In this ta-
ble, “mapped node” indicates the number of cells used

in a DD-RCA implementation for the particular compo-
nent. For example, the extraction has ten DFG vertices,
and these vertices are mapped onto twelve nodes in one
cluster. “Mapping efficiency” is defined as the number
of DFG vertices in a component divided by the number
of mapped nodes. For the extraction, the mapping ef-
ficiency equals 83.3%. “Resource efficiency” is defined
as the number of mapped nodes in a cluster divided
by the total number of cells in the cluster. For the ex-
traction, the resource efficiency is 75%. “Throughput”
means the cycles for outputting one data.

From Table 1, we can see that the average through-
put can reach one cycle per output data if one operation
maps one cell. The average throughput cycles increase
with increasing the number of operations mapped onto
one reconfigurable cell. The number of DFG vertices is
similar to the number of mapped nodes. So our archi-
tecture has a high mapping efficiency.

502 J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503

(a) Original image (b) Image through Gaussian filtering

(c) Image through Gaussian and Sobel
 x-axis filtering

(d) Image through Gaussian and Sobel
 y-axis filtering

Fig. 18 The running results of computing vision process segment on DD-RCA

Table 1 Performance of DD-RCA

Component name DFG vertex
Mapped

node

Mapping

efficiency/%

Resource

efficiency/%
Throughput

Extraction 10 12 83.3 75 5

Gaussian filtering 14 13 108 81.25 3

Horizontal convolution of Sobel filtering 26 12 124 75 4

Vertical convolution of Sobel filtering 26 9 124 56.25 3

Integral part of CIC filtering 12 3 80 18.75 1

Comb part of CIC filtering 12 12 80 75 1

Based on the same input image with resolution of
512 pixel× 512pixel, we compare the computing time of
our architecture with that of GPU and CPU, as shown
in Table 2. From this table we can see that DD-RCA
has 11.3 speedup compared with CPU, but its comput-
ing time is longer than that of GPU because of low
frequency of our architecture. However, in future our
architecture will be realized on 90 nm or higher tech-
nology, and it will get 2—3 times acceleration. The
computing time of our architecture will be comparable
to GPU’s.

The cells as well as the applications have been imple-
mented on Xilinx FPGA xc6vlx550t chip. The circuit
is able to run at a frequency over 100MHz. The synthe-
sis result is shown in Table 3. Basic unit includes one
cluster, two reconfigurable switches and one distributed
memory. One cluster consists of sixteen dataflow re-

Table 2 Computing time comparison of Sobel fil-
tering on DD-RCA, GPU and CPU

Architecture Computing time/ms

CPU[16] 102

GPU[16] 2.1

DD-RCA 9

configurable cells. All types include 4 × 4 basic units.
From Table 3, we can see that our architecture con-
sumes totally 192 222 registers and 28 774 look-up ta-
bles (LUTs).

The same circuitry has been synthesized using SMIC
130nm COMS technology. The circuitry is able to run
at a frequency over 200MHz. The area is 12.84mm2.

J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(4): 493-503 503

Table 3 Synthesis result on Xilinx xc6vlx550t chip

Type
Number

slice/register slice/LUT

Reconfigurable cell 664 965

Switch 272 257

Distributed memory 599 1 085

Basic unit 12 552 17 686

All 192 222 284 774

6 Conclusion

This paper presents a new RCA architecture. This
is a dynamical reconfigurable storage cell array. This
architecture is suitable for dataflow computation. It
has some notable features: dynamical reconfigurabil-
ity, static dataflow computation, specialized data ex-
change switch and data storage. Dynamic reconfig-
uration needs two operation modes: working mode
and configuration mode. When a cluster is in con-
figuration mode, it can receive and store configura-
tion information. When a cluster is in working mode,
it performs required computation. Some clusters can
be in working mode while others are in configuration
mode. The reconfigurable cells use the dual-rail pro-
tocol (REQ/ACK) to realize static dataflow computa-
tion and to free the computing cells from data exchange
work load. The use of reconfigurable storage facilitates
data exchange among clusters and makes the buffering
of voluminous intermediate data easy.

References

[1] SMITH M C, PETERSON G D. Optimization of
shared high-performance reconfigurable computing re-
sources [J]. ACM Transactions on Embedded Comput-
ing Systems, 2012, 11(2): 36.

[2] MIYAMORI T, OLUKOTUN K. A Quantitative anal-
ysis of reconfigurable coprocessors for multimedia ap-
plications [C]//IEEE Symposium on FPGAs for Cus-
tom Computing Machines. [s.l.]: IEEE, 1998: 2-11.

[3] SINGH H, LEE M H, LU G M, et al. MorphoSys: An
integrated reconfigurable system for data-parallel and
computation-intensive applications [J]. IEEE Transac-
tions on Computers, 2000, 49(5): 465-481.

[4] VEREDAS F J, SCHEPPLER M, MOFFAT W, et al.
Custom implementation of the coarse-grained reconfig-

urable ADRES architecture for multimedia purposes
[C]//International Conference on Field Programmable
Logic and Applications. [s.l.]: IEEE, 2005: 106-111.

[5] PACT XPP Technologies. XPP-III processor overview
[EB/OL]. (2006-07-13). http://www.pactxpp.com.

[6] ZHU M, LIU L B, YIN S Y, et al. A reconfigurable
multi-processor SoC for media applications [C]//IEEE
International Symposium on Circuits and Systems.
[s.l.]: IEEE, 2010: 2011-2014.

[7] LI T, XIAO L Z, HUANG H C, et al. PAAG: A poly-
morphic array architecture for graphics and image pro-
cessing [C]//International Symposium on Parallel Ar-
chitectures, Algorithms and Programming. [s.l.]: IEEE,
2012: 242-249.

[8] COMPTON K, HAUCK S. Reconfigurable computing:
A survey of systems and software [J]. ACM Computing
Surveys, 2002, 34(2): 171-210.

[9] AMANO H. A survey on dynamically reconfigurable
processors [J]. IEICE Transactions on Communica-
tions, 2006, 89 (12): 3179-3187.

[10] NAJJAR W A, LEE E A, GAO G R. Advances in the
dataflow computational model [J]. Parallel Computing,
2000, 25(13/14): 1907-1929.

[11] ROSENFELD J, FRIEDMAN E G. Design methodol-
ogy for global resonant H-tree clock distribution net-
works [J]. IEEE Transactions on Very Large Scale In-
tegration Systems, 2007, 15(2): 135-148.

[12] Khronos Vision Working Group. The OpenVX
specification [EB/OL]. (2014-10-07). https://www.
khronos.org/registry/vx/specs/1.0.1/html/index.html.

[13] HOGENAUER E B. An economical class of digital fil-
ters for decimation and interpolation [J]. IEEE Trans-
actions on Acoustics Speech and Signal Processing,
1981, 29(2): 155-162.

[14] MONSON J, WIRTHLIN M, HUTCHINGS B L. Op-
timization techniques for a high level synthesis imple-
mentation of the Sobel filter [C]//2013 International
Conference on IEEE Reconfigurable Computing and
FPGAs (ReConFig). [s.l.]: IEEE, 2013: 1-6.

[15] SHAN R, LI T, HAN J G. The buffered edge re-
configurable cell array and its applications [C]//2013
12th IEEE International Conference on Trust, Secu-
rity and Privacy in Computing and Communications.
[s.l.]: IEEE, 2013: 1023-1030.

[16] DORE A, LASRADO S. Performance analysis of Sobel
edge filter on heterogeneous system using OPENCL
[J]. International Journal of Research in Engineering
and Technology, 2014, 3(15): 53-57.

