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Abstract: This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing
composites (SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on
the generalized self-consistent method, a representative volume element (RVE) model is established, and the
cohesive zone model is employed to investigate the interfacial failure behavior. The effect of interphase properties
on the interfacial debonding behavior of SFRC is numerically investigated. The results indicate that an interphase
thickness of 0.3 µm and an interphase elastic modulus of about 502 MPa are optimal to restrain the initiation of the
interfacial debonding. The interfacial debonding of SFRC mainly occurs between the matrix/interphase interface,
which agrees well with results by scanning electron microscope (SEM).
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0 Introduction

Short-fiber-reinforced rubber matrix sealing compos-
ites (SFRC), such as aramid, glass and carbon fiber
reinforced rubber sheet, are widely used in petroleum,
chemical, textile, electrical and mechanical industries.
Fibers or particles embedded in a rubber matrix can
effectively improve the comprehensive performance of
materials, for example, high strength, fatigue resistance
and corrosion resistance. Engineering practice confirms
that these kinds of composites have good applicability
over recent years[1].

Interfacial debonding is an important factor affecting
the mechanical behavior of composites. Zhang et al.[2]

studied the effect of the interfacial properties on the
failure behavior of short fiber reinforced rubber com-
posites. The results indicate that a good interfacial
strength and a suitable interphase modulus can enhance
the ductility and strength of composites. Vaughan et
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al.[3] presented a micromechanics damage model to ex-
amine the effect of fiber-matrix debonding and thermal
residual stress on the transverse damage behavior of a
unidirectional carbon fiber reinforced epoxy composite.
It is found that for a strong fiber-matrix interface the
presence of thermal residual stress is effective in sup-
pressing fiber-matrix debonding and improving overall
transverse strength. Hobbiebrunken et al.[4] and Canal
et al.[5] presented experimental evidence of interfacial
debonding in composite failure by in-suit observation.
It is found that the failure behavior of composite mate-
rials is dependant upon numerous contributing factors,
such as constituent properties and interfacial proper-
ties. The performance of composites such as fiber rein-
forced resin matrix and metal matrix can be accurately
predicted by mesoscopic numerical models[6-7]. How-
ever, the rubber matrix composites make its mechanical
behavior more complicated due to special performances
of rubber (small modulus, large deformation, hyperelas-
ticity, etc.), which leads to relatively less research work
reported[8-9].

Two-phase composite materials have been exploited
for decades in engineering design, and they have been
proved having great applicability and high perfor-
mance. However, it has been suggested that some
materials previously considered to be two-phase com-
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posites are better described in terms of a third phase
model[10-11]. Interphase performance is considered to
be a key factor in the study of comprehensive mechani-
cal performance of composites. Zhu et al.[12] established
a micromechanical model of short-fiber-reinforced elas-
tomer matrix composite. The time-dependent tensile
stress distribution on the fiber and the time-dependent
shear stress distribution in the matrix and interphase
are derived. Yuan et al.[13] established the finite el-
ement model of interfacial reaction layer and ana-
lyzed the influence of interphase reaction on interfacial
shear strength of composites. Zhang et al.[14] inves-
tigated interphase effect on the strengthening behavior
of particle-reinforced metal matrix composites. The nu-
merical results indicate that hard and soft interphases
result in the increase and significant decrease of the
strength of composite, respectively.

The purpose of this work is to investigate the effect
of interphase properties on the interfacial debonding
behavior of SFRC. The transverse tensile stress-strain
curves of SFRC are obtained by experiments. A gener-
alized self-consistent finite element model (FEM) under
transverse tensile load is established, where the cohe-
sive elements are embedded in the fiber/interphase (FI)
and matrix/interphase (MI) interfaces, respectively. In
the modeling strategy, the initial strain and location of
the interfacial debonding with different interphase elas-
tic modulus and thickness are obtained, and then the
optimum interphase properties are determined.

1 Computational Micromechanics
Model

1.1 Generalized Self-Consistent Method
The generalized self-consistent method is a sophisti-

cated micromechanics approach[15]. Different from the
other micromechanics methods (self-consistent, differ-
ential and Mori-Tanaka methods) based on the two-
phase model[16], the generalized self-consistent method
is based on a three-phase model: an inclusion is em-
bedded in a finite matrix, which in turn is embedded
in an infinite composite with the as-yet-unknown ef-
fective moduli. The generalized self-consistent method
provides accurate predictions for extreme types of inclu-
sions (i.e. voids and rigid inclusions), and the method
also gives the correct asymptotic behavior of compos-
ites with high volume fraction of the inclusion. It is
shown that the results of the generalized self-consistent
method have excellent agreement with the experimental
data[17].
1.2 Representative Volume Element Model

In this paper, the representative volume element
(RVE) model is established using the generalized
self-consistent method, as shown in Fig. 1(a). It is
composed of the fiber, rubber matrix and effective com-
posites. The property of the effective composites is
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Fig. 1 The RVE model

equal to that of the global composites. In order to
reduce the computational effort, only a plane RVE is
modeled using periodic boundary conditions. The co-
ordinate system is shown in Fig. 1(b) where L is the
outer size of the RVE. rf , ri and rm are the radius of
the fiber, interphase and matrix, respectively. The fiber
has constant radius of 7.5 µm. González et al.[18] indi-
cated that if L/rm � 5, the external boundary condi-
tions have no influence on the deformation of the RVE.
Therefore, L/rm = 5 is chosen. rm is fixed and rf is
changed to obtain various fiber volume fractions which
can be calculated by νf = r2

f /r2
m. Only one quarter of

the physical model is required in the analysis due to the
axial symmetry.

For the present RVE model, the boundary conditions
include

ur = 0 at r = 0

ux = 0 at x = 0

ux = U at x = L

⎫
⎪⎪⎬

⎪⎪⎭

, (1)

where ur and ux are the displacements in the r and
x directions, respectively, and U is the displacement at
x = L. During deformation, the boundary of the model
is enforced to hold straight at r = L.

A finite element model is created using the package
ABAQUS/Standard (2010) and the corresponding fi-
nite element meshes are shown in Fig. 2. The fiber,
interphase and effective composites are modeled us-
ing 4 node bilinear plane strain quadrilateral elements
(CPE4R). The rubber matrix is regarded as a hypere-
lastic material, which requires the use of elements with
hybrid formulation. The elements chosen in this model
are the linear quadrilateral hybrid elements (CPE4H),
with a mesh sufficiently fine to provide at least two el-
ements between two adjacent fibers. The cohesive zone
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model is employed to simulate the interfacial debond-
ing between the fiber/interphase (FI) interface and the
matrix/interphase (MI) interfaces, respectively. A typ-
ical model comprises approximately 5 000 elements and
the model with finer meshes (up to 10 000 elements)
provides the same results.

x

O r
(a) Whole model for
     calculation

(b) Partially enlarged

Fig. 2 Finite element meshes

1.3 Cohesive Zone Model
The cohesive zone model employed to describe the

damage of the interface refers to our previous research,
as shown in Fig. 3[2]. The mechanical behavior of these
elements is expressed in terms of a traction-separation
law which relates the displacement jump across the in-
terface with the traction vector acting upon it. An
element size of nearly 0.03 rf , where rf is the fiber ra-
dius, is used in a vicinity of the interface. The initial
response is linear in absence of damage, and therefore,
the traction-separation law can be written as

tn = Kδn

ts = Kδs

}

, (2)

where tn, ts, δn and δs stand for the normal and tan-
gential tractions and displacement jumps across the in-
terface respectively. The initial response is linear in
absence of damage with an elastic stiffness of K. An
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Fig. 3 Traction-separation law of the cohesive zone model

elastic stiffness K = 105 GPa/m is selected for the inter-
face, which is large enough to ensure the displacement
continuity at the interface and to avoid any modifica-
tion of the stress field around the fibers in the absence
of damage[3].

Damage is assumed to be initiated when the max-
imum nominal stress ratio reaches one of the values
given by the following equation

max
{ 〈tn〉

t0n
,
ts
t0s

}

= 1, (3)

where 〈〉 are the Macaulay brackets, which return the
argument if positive and zero otherwise, to impede the
development of damage when the interface is under
compression. t0n and t0s are the interfacial normal and
shear strengths. δ0

n and δ0
s are the interfacial normal

and tangential displacement. Gn and Gs are the inter-
facial normal and shear fracture energy. For simplicity,
we assumed that t0n is equal to t0s , that is, t0n = t0s .
Once damage begins, the traction stress is reduced de-
pending on the interface damage parameter D, which
evolves from 0 (in the absence of damage) to 1 (at ulti-
mate failure), as shown in Fig. 3. The displacement at
failure (δf

n or δf
s) is determined by the fracture energy

G, which corresponds to the area under the traction-
separation curve.

The values of the cohesive parameters are as
follows[3,19]: K = 105 GPa/m, t0n = t0s = 2.1MPa and
G = 0.1 J/m2.

2 Results and Discussion

2.1 Properties of Constituent Material
The experimental transverse tensile stress-strain

curve of SFRC with 15% fiber volume fraction is shown
in Fig. 4(a). According to Chinese national standard
GB/T 9129—2003, the compressive stress of rubber
gasket is needed to reach 7MPa. It can be seen that
the experimental results meet the specified index.

The experimental tensile stress-strain curve of pure
rubber is shown in Fig. 4(b). It is a convenient way to
define the material model of hyperelastic composites by
providing rubber uniaxial test data to ABAQUS. The
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type of strain potential energy can be determined ac-
cording to the contrast diagrams of stress-strain curves
given in ABAQUS. The rubber matrix is modeled as
a hyperelastic material. A Mooney-Rivlin model in-
troduced by Melvin Mooney and Ronald Rivlin[20], is
used, where the strain energy density function W is a
linear combination of two invariants of the left Cauchy-
Green deformation tensor. The strain energy density
function for an incompressible Mooney-Rivlin material
is as follows

W = C1(I1 − 3) + C2(I2 − 3), (4)

where C1 and C2 are empirically determined material
constants, and I1 and I2 are the first and the second in-
variants of the deviatoric component of the left Cauchy-
Green deformation tensor. The computed parameters
C1 and C2 are 0.128MPa and 0.198MPa, respectively.

The aramid fiber is modeled as a linear elastic, ho-
mogeneous isotropic material. The elastic modulus and
Poisson ratio of the aramid fiber are Ef = 136GPa and
vf = 0.2, respectively[21].

The interphase property Pi(r) varied with radius is
given as[22-24]

Pi(r)
Pm

= 1 − A

[
ri − r

ri − rf

]Q

, (5)

where Pi(r) is the interphase property, which can be
the elastic modulus, shear modulus, Poisson’s ratio,
and so on. Pm is the matrix property, r is the ra-
dius, the subscripts i, and f refer to interphase and
fiber, respectively, and A and Q are material param-
eters. The parameter A is called the adhesion factor,
and A = [Pm − Pi(rf)]/Pm.

In order to simplify the problem, the interphase prop-
erties are regard as the average values of the gradient
distribution parameters, and then the average inter-
phase properties Pi is given as:

Pi =
1

(ri − rf)

∫ ri

rf

Pi(r)dr. (6)

The interfacial adhesion is usually poor between the
aramid fiber and rubber matrix, which restricts the me-
chanical properties of the composites. The reason is
that the surface of aramid fiber is smooth, and lack of
polar groups and chemical activity. In general, epoxy
resin coating is used as the surface treatment method of
the aramid fiber[19]. Thus, the interphase elastic mod-
ulus varies between Ee = 3 GPa (fiber coated with the
epoxy resin) and Em = 2MPa (rubber matrix). The
gradient distribution and isotropy of interphase elastic
modulus is shown in Fig. 5(a) and Fig. 5(b), respec-
tively. In this paper, the average moduli of interphase
(Ei) are 502, 752, 1 001, 1 501 and 2 000MPa, respec-
tively, which is calculated by different Q.
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2.2 Interphase Effect on Initial Strain of Inter-
facial Debonding

In order to investigate the influence of interphase
properties on interfacial debonding behavior of SFRC
with different interphase elastic moduli Ei and inter-
phase thicknesses t, the numerical analysis of a finite
element model with 15% fiber volume fraction are con-
ducted. Figure 6 illustrates the effect of various Ei

and t on the initial strain of the interfacial debonding
(ε0). The interphase thicknesses t is regarded as 0.1,
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Fig. 6 The initial strain of the interfacial debonding (ε0)
of SFRC with 15% fiber volume fraction
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0.2 and 0.3µm[21]. The results show that ε0 increases
with the increase of t, and it has the maximum value
with t = 0.3 µm and Ei = 502MPa. It can also be seen
that ε0 remains stable when Ei is larger than 1 500MPa.
Therefore, in order to restrain the initiation of the in-
terfacial debonding of SFRC, an interphase thickness
of about 0.3 µm and an interphase elastic modulus of
about 502MPa are optimal.
2.3 Interphase Effect on Initial Location of In-

terfacial Debonding
Figure 7 presents photos of cross section of aramid

reinforced rubber matrix composites imaged by scan-
ning electron microscope (SEM). Figure 7(a) shows
that the surfaces of the aramid fibers without treat-
ment are very smooth, and there are only a few rubber
particles adhering on the fiber surfaces. After surface
treatments, the adhesion effect between fiber and rub-
ber matrix is obviously improved. Figure 7(b) shows
there are a large number of rubber particles adhering
on the aramid fibers and interfacial debonding occurs
near the matrix/interphase (MI) interfaces.

50 µm

50 µm

(b) With surface treatment

(a) Without surface treatment

Fig. 7 SEM photos of cross tensile section of aramid fiber
reinforced rubber composites

The initial location of the interfacial debonding of
SFRC with t = 0.3 µm and Ei = 502MPa is shown in
Fig. 8. It can be also obtained that t and Ei have no ef-
fects on the initial location of the interfacial debonding
with other computational models. The interfacial ini-
tial debonding mainly appears at the location between
matrix/interphase interfaces at the pole point, where
θ = 90◦. Therefore, the predicted results agree well
with experimental results observed by SEM.
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Fig. 8 The initial location of the interfacial debonding of
SFRC

3 Conclusion

The transverse tensile stress-strain curves of aramid
fiber reinforced rubber sealing composites (SFRC) are
obtained by experiments. The interfacial debonding be-
havior of SFRC is observed by SEM. A 2D finite el-
ement model based on the generalized self-consistent
method is employed to investigate the interfacial fail-
ure behavior. The effects of interphase elastic modulus
Ei and interphase thickness t on the initial strain of in-
terfacial debonding (ε0) are investigated. The results
indicate that Ei of about 502MPa and t of about 0.3 µm
are optimal to restrain the initiation of the interfacial
debonding. The initial debonding location of SFRC is
investigated. The results show that Ei and t have no
effects on the initial location of the interfacial debond-
ing. The interfacial debonding mainly occurs between
the matrix/interphase interface, which agrees well with
experimental results.
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