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Abstract: In this paper, we focus on the Hopf bifurcation control of a small-world network model with time-delay.
With emphasis on the relationship between the Hopf bifurcation and the time-delay, we investigate the effect of
time-delay by choosing it as the bifurcation parameter. By using tools from control and bifurcation theory, it is
proved that there exists a critical value of time-delay for the stability of the model. When the time-delay passes
through the critical value, the model loses its stability and a Hopf bifurcation occurs. To enhance the stability of
the model, we propose an improved hybrid control strategy in which state feedback and parameter perturbation
are used. Through linear stability analysis, we show that by adjusting the control parameter properly, the onset
of Hopf bifurcation of the controlled model can be delayed or eliminated without changing the equilibrium point
of the model. Finally, numerical simulations are given to verify the theoretical analysis.
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0 Introduction

During the last two decades, networks became a
subject which discovers information propagation laws
in real world models[1]. A great number of studies
on the theory and applications of a complex network
have shown its superiority in modeling the real-world
model. Recently, the small-world network model pro-
posed by Watts and Strogaz[2], which gathers both the
large-clustering and small-distance properties, has been
widely used due to its potential in capturing the charac-
teristics of many natural and artificial networks, rang-
ing from the Internet, the World Wide Web, human
society, power grids to economic and biological models.

Controlling the large-scale infection and epidemic
spread of viruses is one of the most concerned issues in
this networking age. For example, the spread of severe
acute respiratory syndrome (SARS) in 2003 declared
by the World Health Organization in the concluding re-
port led to 8 096 known infected cases and 774 deaths
worldwide. The spread of computer viruses and worms
on the Internet is another urgent problem. There were
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more than 3 × 1010 dollars in damage caused by the
Email worm, and the entire Internet came to a halt
in a very short period given without any countermea-
sures to control the worms[3]. The wide occurrence of
spreading behaviors in the small-world network is an
interesting issue to investigate the spreading of viruses,
diseases and even disasters in the network.

Modeling the spreading of virus by mathematical
equations is an effective way to capture the proper-
ties of virus propagation[4]. Because the actual pro-
cess of virus spreading reflects a small-world charac-
teristic, many small-world network models have been
established to mimic the spreading of virus. A lin-
ear model of disease spreading in d-dimensional small-
world lattices, which reveals that the growth of infec-
tion is limited to the network scale, was proposed by
Moukarzel[5]. The mathematical model is linear and
the response is immediate as there is no time delay.
Obviously, the model is not adequate to mimic the real
propagation process. Yang[6] extended a more general
nonlinear model for total influence volume. In Yang’s
model, a nonlinear interaction component was added
into the infected volume with a constant time delay.
A limitation of Yang’s model is that the nonlinear in-
teraction does not incorporate the topological differ-
ence in the small-world network evolution which is in
fact of great influence on the spreading dynamics. In
2004, Li et al.[7] proposed a more general nonlinear
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spreading model based on d-dimensional small-world
network model. Taking account of the influence of link-
adding probabilities, they added another nonlinear in-
teraction to the model. The local stability and Hopf
bifurcations of delay-controlled spreading of the model
was further investigated by Li and Wang[8], where the
link-adding probability and the nonlinear interaction
were proved to be fixing points for the oscillating be-
haviors.

Time delay represents the infection time between sep-
arated nodes. In real infectious network topology, the
link lengths between nodes are not always equal, so the
time delay varies in the process of infection. It comes
naturally to wonder if there is a relationship between
the time delay and the Hopf bifurcation and whether
different time delay affects the critical value of Hopf
bifurcation. If the answer is positive, then fixing the
link-adding probability by controlling the time delay is
also a feasible method to stabilize bifurcating behav-
iors. In this paper, we are going to analyze the effect of
time delay on bifurcating behaviors in the small-world
network model.

To control the oscillating in the small-world model,
we design an improved hybrid controller to control Hopf
bifurcation for the small-world network model. Some
methods can achieve the bifurcation control in most
researches[9-12], while some controller designs are purely
arbitrary and complex and might destroy the charac-
teristic of original model. In this paper, the problem
of bifurcation control is solved by an improved hybrid
control strategy. As a fact that the natural equilibrium
point of the system might not be calculated by analytic
expression in practice, we use a real time state feedback
hybrid control strategy to take place of the original one.
Thus, bifurcation control not only can be realized in
mathematical view but also is feasible in reality.

1 Hopf Bifurcation Analysis in Small-
World Network Model

Assume that a disease spreads with constant radial
velocity v = 1 from an original infection site of a
network[7]. The total infected volume V (t) grows as
a sphere of radius t and surface Γdt

d−1 and the pri-
mary sphere hits the end of an added link with proba-
bility 2PΓdt

d−1 per unit time, where d stands for the
dimension, P is the link-adding probability (note that
0 < P � 1 and the topological structure varies with P )
and Γd is constant with respect to the shaped factor for
newly infected site. The total infected volume satisfies

V (t) =Γd

∫ t

0

[1 + 2PV (t − τ − Δ)−

μ(1 + 2P )V 2(t − τ − Δ)]dτ, (1)

where Δ is constant with respect to the time-delay for

newly infected site; μ is the nonlinear interaction pa-
rameter, μ > 0.

Considering the case of d = 1 and Γd = 1, the to-
tal volume of infected individuals in one-dimensional
small-world model is formulated as a nonlinear delayed
difference equation:

dV (t)
dt

= 1 + 2PV (t − δ)−
μ(1 + 2P )V 2(t − δ), (2)

where δ is a time delay
In the following content, the delay induced Hopf bi-

furcation and stability criteria in small-world network
model are derived by analyzing the corresponding char-
acteristics of linearized equation of the small-world net-
work model (2).

Denote v(t) = V (t)−V ∗, where V ∗ is the equilibrium
of the model (2) with V (t) > 0 and is given by

V ∗ =
P +

√
P 2 + μ(1 + 2P )
μ(1 + 2P )

. (3)

Expanding the right side of Eq. (2) into the first and
second Taylor series at V ∗, we have

v̇(t) = b1v(t − δ) + b2v
2(t − δ), (4)

where

b1 = −2
√

P 2 + μ(1 + 2P ), (5)
b2 = −μ(1 + 2P ). (6)

The linearized equation of Eq. (4) is

v̇(t) = b1v(t − δ), (7)

and the corresponding characteristic equation is

λ − b1e−λδ = 0. (8)

Assume that Eq. (8) has a pair of pure imaginary
roots λ = ±iω with ω > 0. Inserting them into the char-
acteristic equation and separating the real and imagi-
nary parts yield

b1 cos (ωδ) = 0
ω + b1 sin (ωδ) = 0

}
. (9)

Therefore, there is

ωδ =
(2n + 1)π

2
, n = 0, 1, 2, · · · ,

and

ω + b2(−1)n = 0.



208 J. Shanghai Jiao Tong Univ. (Sci.), 2017, 22(2): 206-215

The critical value of δ can be deduced as

δc(n) = − (2n + 1)π
2b1

, n = 0, 2, 4, · · · .

Then, we determine whether the characteristic equa-
tion has roots with positive real parts. Let λ = α ± iω
for ω > 0 and α > 0 be a root of Eq. (8), then

α − b1e−αδ cos (ωδ) = 0

ω + b1e−αδ sin (ωδ) = 0

}
. (10)

From the first equation of Eq. (10), we know

(2n + 1)π
2

< ωδ <
(2n + 3)π

2
, n = 0, 2, 4, · · · . (11)

From the second equation of Eq. (10), we know

ωδ <
(2n + 1)π

2
, n = 0, 2, 4, · · · . (12)

Therefore, Eq. (8) may have roots with positive real
parts except for n = 0, i.e. in the case of

δ∗ = − π
2b1

ω∗ = −b1

⎫⎬
⎭ . (13)

However, we still have to prove that the model does not
have roots with positive real parts when δ < δ∗.

Considering b2 < 0, we get

ωδ = −δb1e−αδ sin (ωδ) < −δ∗b1 =
π

2
,

thus 0 � ωδ < π/2. Then from Eq. (10), we have

α = b1e−αδ cos (ωδ) < 0,

which contradicts α > 0 as assumed. Therefore,
Eq. (10) has no roots with positive real parts when
δ < δ∗. For all δ < δ∗, all roots of Eq. (10) have nega-
tive real parts, so the equilibrium V ∗ is asymptotically
stable whenever δ < δ∗.

Next, we check the following transversal condition to
verify the onset of Hopf bifurcation:

Re
(

dλ

dδ

)
δ=δ∗

> 0. (14)

We can get

dλ

dδ
= − b1λe−λδ

1 + b1λe−λδ
.

According to λ = α ± iω, we have

Re
(

dλ

dδ

)
=

− b1e−λδ[α cos (ωδ)+ω sin (ωδ)+b1δαe−λδ]
[1+b1δe−λδ cos (ωδ)]2+[b1δe−λδ sin (ωδ)]2

. (15)

Substituting δ = δ∗, α = 0 and ω∗δ∗ = π/2 into
Eq. (15), we have

Re
(

dλ

dδ

)
δ=δ∗

= − b1ω
∗

1 + (ω∗δ∗)2
=

b2
1

1 + π2/4
> 0.

Therefore, the transversal condition is satisfied. When
δ > δ∗, the characteristic Eq. (8) has at least one root
with strictly positive real part. That is to say, when δ >
δ∗, the equilibrium point of the model (2) is unstable
and a limit cycle bifurcates out from the equilibrium
point.

Based on the above analysis, we can get the following
theorem by applying the Hopf bifurcation theorem.

Theorem 1 For the small-world network model
(2), the following results hold with the critical value
δ∗ = − π

2b1
. When δ < δ∗, the equilibrium point

of the model (2) is locally and asymptotically stable.
When δ = δ∗, the model (2) exhibits a Hopf bifurca-
tion. When δ > δ∗, the equilibrium point of the model
(2) is unstable and a limit cycle exists.

2 Bifurcation Control with Hybrid Con-
trol Strategy

In this section, we address the problem of bifurca-
tion control through hybrid control strategy. If we can
extend the stable range of bifurcation parameter in a
nonlinear model, it means the Hopf bifurcation can be
delayed (even eliminated) or stabilized to a desired un-
stable periodic orbit. For this purpose, we design the
hybrid controller based on parameter perturbation and
state feedback method:

dV (t)
dt

= k[1 + 2PV (t − δ)−
μ(1 + 2P )V 2(t − δ)]+
(1 − k)[V (t − δ) − V (t)], (16)

where k is the control parameter, 0 < k � 1. When
k = 1, the controlled model (16) equals the original
model (2) and it is easy to prove that the model (16) has
the same equilibrium V ∗ as the model (2). Expanding
the right-hand side of the model (16) into the first and
second Taylor’s series around V ∗, we have

v̇(t) = a1v(t − δ) + a2v(t) + a3v
2(t − δ) + · · · , (17)

where

v(t) = V (t) − V ∗,

a1 =
∂

∂V (t − δ)
[V̇ (t)]|V ∗ =

k(2P − 2μ(1 + 2P )V (t − δ))|V ∗ + 1 − k =

1 − k − 2k
√

P 2 + μ(1 + 2P ),
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a2 =
∂

∂V (t)
[V̇ (t)]|V ∗ = k − 1,

a3 =
∂2

2!∂V 2(t − δ)
[V̇ (t)]|V ∗ =

1
2
k(−2μ(1 + 2P ))|V ∗ = −kμ(1 + 2P ).

The linear part of the model (16) is

v̇(t) = a1v(t − δ) + a2v(t). (18)

Its characteristic equation is

λ − a2 − a1e−λδ = 0. (19)

Lemma 1 If 0 < μ � 1
1 + 2P

[(
k − 1

k

)2

− P 2

]
,

all the roots of Eq. (19) have negative real parts.

Lemma 2 When μ >
1

1 + 2P

[(
k − 1

k

)2

− P 2

]

holds, there exists a critical value δ0 such that all roots
of Eq. (19) have negative real parts when δ ∈ [0, δ0],
and Eq. (19) has at least one root with positive part
when δ > δ0, where

δ0 =
1√

a2
1 − a2

2

arccos
(
−a2

a1

)
.

Note that 0 < k < 1, then a2 = k − 1 < 0. When
a1 = 0, we can get all roots of Eq. (19) λ = a2 < 0.
When a1 �= 0, let ±iω (ω > 0) be a root of Eq. (19).
Then after detaching the real and imaginary parts of
Eq. (19), we have

a2 + a1 cos (ωδ) = 0
ω + a1 sin (ωδ) = 0

}
. (20)

From Eq. (20), we obtain ω2 = a2
1 − a2

2, but it does not
hold when |a1| < −a2. When a1 = a2, for Eq. (19),
there is no pure imaginary root, and obviously λ = 0
is not its root. Thus, we have the conclusion that all
roots of Eq. (19) have negative real parts when a1 ∈
[a2,−a2). From Eq. (20), a1 ∈ [a2,−a2) is equivalent
to inequality:

0 < μ � 1
1 + 2P

[(
k − 1

k

)2

− P 2

]
.

This completes the proof of Lemma 1.
Like the proof of Lemma 4 in Ref. [18], δ0 is de-

fined as the critical value of time-delay and it is the
solution of Eq. (20) when ω =

√
a2
1 − a2

2. If μ >

1
1 + 2P

[(
k − 1

k

)2

− P 2

]
holds, it means a1 < a2; ob-

viously, (δ0,
√

a2
1 − a2

2) is a solution of Eq. (20) and

±i
√

a2
1 − a2

2 is a pair of pure imaginary roots of Eq. (19)
with δ = δ0; δ0 is the first value of δ > 0 such
that Eq. (19) has roots with imaginary parts when
δ ∈ [0, δ0). Let λ(δ) = ρ(δ) + iω(δ) be the root of
Eq. (19) and satisfy ρ(δ0) = 0 and ω(δ0) =

√
a2
1 − a2

2.
Differentiating Eq. (19) with δ, we have

dλ

dδ
= − a1λe−λδ

1 + a1δe−λδ
, (21)

ρ′(δ0) = Re

(
dλ

dδ

∣∣∣∣
δ=δ0

)
=

ω2

(1 + a1δ0)2 + (ωδ0)2
> 0. (22)

Thus, at least one root of Eq. (19) has positive part.
Then, Eq. (22) is called the transversality condition
which indicates there is a Hopf bifurcation occurring
from the bifurcation point. The proof of Lemma 2 is
completed.

Theorem 2 For the hybrid control model (16),
the following results hold with the control parameter

k ∈ (0, 1]. If 0 < μ � 1
1 + 2P

[(
k − 1

k

)2

− P 2

]
, then

the equilibrium point V ∗ is asymptotically stable for

all δ � 0. If μ >
1

1 + 2P

[(
k − 1

k

)2

− P 2

]
, then the

equilibrium point V ∗ is conditionally stable depending
on the value of time-delay δ: � when 0 < δ < δ0,
the equilibrium point of the model (16) is locally and
asymptotically stable; � when δ = δ0, the model (16)
exhibits a Hopf bifurcation; � when δ > δ0, the equi-
librium point of the model (16) is unstable and a limit
cycle exists.

3 Direction and Stability of Bifurcat-
ing Periodic Solutions of Controlled
Model

In this section, the direction of the Hopf bifurcation
and the stability of the bifurcating periodic solutions
when δ = δ0 are analyzed by the center manifold and
the normal form theories. One can achieve the stability
control through choosing an appropriate value of k. The
center manifold and the normal form theories are wildly
used in bifurcation analyses, like the method used in
Ref. [20]. Here, we omit the specific steps of analysis
and give the conclusion directly.

Theorem 3 For the controlled model (16), the
Hopf bifurcation is determined by the parameters μ2,
β2 and τ2. Specifically, μ2 determines the direction of
the Hopf bifurcation; β2 determines the stability of the
bifurcating periodic solution; τ2 determines the period
of the bifurcating periodic solution. The conclusions
are summarized as follows. If μ2 > 0 (μ2 < 0), the
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Hopf bifurcation is supercritical (subcritical) and the
bifurcating periodic solutions exist for δ > δ0 (δ < δ0).
If β2 < 0 (β2 > 0), the bifurcating periodic solutions
are stable (unstable). If τ2 > 0 (τ2 < 0), the period
increases (decreases).

Definitions of μ2, τ2 and β2 are given as follows:

C1(0) =
i

2ω0

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+

g21

2
,

μ2 = −Re C1(0)
Re λ′(0)

,

τ2 = − ImC1(0) + μ2Im λ′(0)
ω0

,

β2 = 2Re C1(0),

where

g20 = g02 = −g11 = −2B̄P̄ ,

g21 = 2B̄i
(
P̄

g20 + g02 + 2P̄

P̄ − 2iω0
−

4g11 + 4P̄
)
,

B̄ =
1

1 + δ0e−iω0δ0 P̄
,

P̄ = 1 − k − 2k
√

P 2 + μ(1 + 2P ),

ω0 =
1
δ0

arccos
(
−a2

a1

)
,

δ0 =
1√

a2
1 − a2

2

arccos
(
−a2

a1

)
.

As a result, all parameters can be obtained by the pa-
rameters in the model (16) and the conclusions are
shown in Theorem 3.

4 Numerical Simulations

4.1 Delay Induced Bifurcation in Small-World
Network Model

In this section, we present numerical results to ver-
ify the analytic conclusions obtained in the previous
derivation in Section 1, and analyze the stability of the
delay induced bifurcation of the small-world network
model without control.

For a consistent comparison, here we select μ = 0.8
as used in Ref. [9]. Based on Eq. (13), we can conclude
the relation between P and δ∗. The result is shown in
Fig. 1.

As mentioned in Ref. [9], the characteristics of small
world are more obvious when the newly adding proba-
bility is set as 0 < P � 1. For this reason, we conduct
experiments on two situations of P = 0.01 and P = 0.1.

Figure 2 shows the waveform plots and phase por-
traits of the small-world network model (2) correspond-
ing to different time-delay δ. Clearly, the delay induced
Hopf bifurcation follows the conclusion of Theorem 1.

0.9

0.8

0.7

0.6

0.5

0.4

δ∗

0 0.2 0.4 0.6 0.8
P

1.0

Fig. 1 The curve of P versus δ∗

When δ = 0.6 < δ∗, the model (2) is asymptotically
stable, as shown in Fig. 2(a); when δ = 0.79 = δ∗,
the model (2) exhibits a Hopf bifurcation, as shown in
Fig. 2(b); when δ = 1 > δ∗, the equilibrium point of
the model (2) is unstable and a limit cycle exists, as
shown in Fig. 2(c).

When P = 0.1 and μ = 0.8, based on Eq. (13), we
compute δ∗ = 0.79. Figure 3 shows the corresponding
bifurcating diagram of the small-world network model
(2). As we can see, there exists a critical value of time-
delay δ∗, and a Hopf bifurcation occurs from the equi-
librium point V ∗ when δ = δ∗. Figure 3 proves that
the time-delay is related to the oscillation behaviors of
the model.

When P = 0.01 and μ = 0.8, based on Eq. (13), we
compute δ∗ = 0.87. Figure 4 shows the corresponding
bifurcating diagram. As shown in Fig. 4, there exists a
Hopf bifurcation when the time-delay goes though the
critical value δ∗.

In turn, we set δ = 0.8, δ = 0.87 and δ = 1. When
δ = 0.8 < δ∗, the model (2) is asymptotically stable, as
shown in Fig. 5(a); when δ = 0.79 = δ∗, the model (2)
exhibits a Hopf bifurcation, as shown in Fig. 5(b); when
δ = 1 > δ∗, the equilibrium point of the model (2) is
unstable and a limit cycle exists, as shown in Fig. 5(c).

Besides, here we select P = 0.1 as used in Ref. [9].
Based on Eq. (13), the relation between μ and δ∗ is
obtained. The result is shown in Fig. 6. As shown in
Fig. 6, the stable region for time delay δ reduces with
the increase of the nonlinear factor μ.

As analyzed in the above and previous works, the
general spreading dynamical behavior in small-world
network depends on many factors, such as reaction
speed δ, topological structure P and nonlinearity μ.
In Fig. 7, we plot the plane in the first quadrant of
(μ, p, δ∗) space which divides the stable region and the
unstable region with the marks D2 and D1, respectively.
It is noted that when the parameters are chosen under
the plane, the model is stable.

Figure 8 shows the bifurcation diagrams correspond-
ing to μ = 0.2, 0.4, 0.6, 0.8.
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Fig. 2 The waveform plots and phase portraits of the model (2) with P = 0.1 and μ = 0.8
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Fig. 3 The bifurcation diagram of the model (2) with P =
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Fig. 4 The bifurcation diagram of the model (2) with P =
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4.2 Hopf Bifurcations in Small-World Network
Model with Hybrid Control

In this section, we present the numerical simulations
and verify the performance of the hybrid control strat-
egy to control the Hopf bifurcation in the small world
network model (16). For consistent comparison with
the original model, we set P = 0.1 and the control pa-
rameter k ∈ (0, 1].

As shown in Fig. 9, the curve of μ versus k divides the
first quadrant into two regions: S1 and S2. From The-
orem 2, S2 is absolutely stable and S1 is conditionally
stable.

For consistent comparison, we set μ = 0.8 and P =
0.1, which means μ ∈ S1. In other words, the model
is conditional stable, depending on the value of δ. As
shown in Fig. 10, the curve δ0 versus k divides the first

S1

S2

2.0

1.5

1.0

0.5

0

−0.5

μ

0.4 0.5 0.6 0.7
k

0.8 0.9 1.0

Fig. 9 The curve of μ versus k

quadrant into two regions: R1 and R2. As concluded
in Theorem 2, when μ ∈ S1, R2 is the stable region and
R1 is the unstable region.

Figure 11 shows the waveform plots and phase por-
traits of the small world network model (16) with hy-
brid control. To verify Theorem 2, we first set the pa-
rameter P = 0.1 for control parameter k = 0.6. From
Figs. 9 and 10, μ = 0.365 and δ0 = 3.171 are ob-
tained. In the condition of μ = 1 > μ0 i.e. μ ∈ S1,
from Theorem 2, there are 3 cases: when δ < δ0, the
model (16) is conditionally stable; when δ = 4 > δ0,
the model is unstable and a Hopf bifurcation occurs,
as shown in Fig. 11(a); when δ = 2 < δ0, the model
is asymptotic stable, as shown in Fig. 11(b). Besides,
when μ = 0.2 < μ0 i.e. μ ∈ S2, the model is absolute
stable; no matter how the time-delay δ changes, the
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Fig. 10 The curve of δ0 versus k
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Fig. 11 The waveform plots and phase portraits of the stable model (16)

model will remain stable, as shown in Figs. 11(c) and
11(d).

It is noted from above analysis that when μ is set as
a constant, the critical value δ0 increases as the control

parameter k grows. Therefore, one can extend the sta-
ble region of the small-world network model by choosing
a proper control parameter. To verify the performance
of the hybrid strategy as a comparison with respect to
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Fig. 5, we simulate the controlled model (16) by setting
parameters of P = 0.1, μ = 0.8, δ = 1 and k = 0.8. The
results shown in Figs. 12 and 13 indicate that the bifur-
cation has been successfully delayed. It is noted that
the bifurcation can even be eliminated by adjusting the
control parameter properly.
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0

V

0.60 0.70 0.80 0.900.850.65 0.75
δ

Fig. 12 The bifurcation diagram of the model (16) with
P = 0.1, μ = 0.8, δ = 1 and k = 0.8
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Fig. 13 The waveform plot and phase portrait of the model
(16) with P = 0.1, μ = 0.8, δ = 1 and k = 0.8

5 Conclusion

The stability analysis and Hopf bifurcation control
of a small-world network are concerned in this paper.
Based on the tools from control and bifurcation the-

ory, it can be concluded that the critical value of the
small-world network model varies when we change the
system parameters (such as, nonlinear factor, topology
and communication delay). Moreover, a hybrid con-
troller based on state feedback and parameter pertur-
bation is proposed to delay the onset of Hopf bifurca-
tion of the model. Theoretical analysis shows that the
hybrid control can successfully expand the stable re-
gion of the model. Finally, the validity of theoretical
conclusions is demonstrated by numerical examples.
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