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Abstract: The simulation is an important means of performance evaluation of the computer architecture. Nowa-
days, the serial simulation of general purpose graphics processing unit (GPGPU) architecture is the main bottle-
neck for the simulation speed. To address this issue, we propose the intra-kernel parallelization on a multicore
processor and the inter-kernel parallelization on a multiple-machine platform. We apply these two methods to
the GPGPU-sim simulator. The intra-kernel parallelization method firstly parallelizes the serial simulation of
multiple compute units in one cycle. Then it parallelizes the timing and functional simulation to reduce the
performance loss caused by the synchronization between different compute units. The inter-kernel parallelization
method divides multiple kernels of a CUDA program into several groups and distributes these groups across mul-
tiple simulation hosts to perform the simulation. Experimental results show that the intra-kernel parallelization
method achieves a speed-up of up to 12 with a maximum error rate of 0.009 4% on a 32-core machine, and the
inter-kernel parallelization method can accelerate the simulation by a factor of up to 3.9 with a maximum error
rate of 0.11% on four simulation hosts. The orthogonality between these two methods allows us to combine them
together on multiple multi-core hosts to get further performance improvements.
Key words: general purpose graphics processing unit (GPGPU), multicore, intra-kernel, inter-kernel, parallel
CLC number: TP 302.7 Document code: A

0 Introduction

Recently, the heterogeneous architecture becomes the
mainstream of supercomputing. The general purpose
graphics processing unit (GPGPU) is the main com-
putation unit in the heterogeneous system and it shows
strong computation ability in the Tianhe-1A supercom-
puter. The GPGPU is different from many other com-
putation platforms since it has significantly more com-
pute units. For example, there are 13 streaming mul-
tiprocessors (SMXs) and 192 CUDA cores per SMX in
the K20 graphic card, which can execute 26 624 CUDA
threads simultaneously[1]. A simulator is a software
performance model of an architecture. The architecture
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that is modeled in the simulator is called the target ar-
chitecture; running the simulator on the host machine
can get the performance results. Simulation has the
advantages that development is relatively cheap com-
pared to building hardware prototypes, and it is typi-
cally more accurate than analytical models.

A good cycle-level simulator is important for the
designer to explore the GPGPU architecture. Find-
ing the bottleneck of the architecture, designing some
new techniques to mitigate the bottleneck and verifying
the ideas through modifying the simulator are common
ways for the architecture exploration. In addition, for
the GPGPU programmer, a good simulator can also
help to understand the program hotspot and optimize
the program based on the knowledge of the architec-
ture.

Unfortunately, compared to the hardware running
on a host machine, simulation costs unacceptable time
and the GPGPU-sim (the GPGPU simulation model
and the execution-driven simulation model) is no ex-
ception. Sampling and parallelization are two popular
techniques to accelerate the simulation speed. The ad-
vantages of sampling are that it needs less hardware re-
sources than parallelization and relies on a mathematic
model to maintain its accuracy. Yet, sampling brings
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unstability into the simulation process and sometimes
causes big mistakes between sampling results and real
results. Parallelization is different from sampling; it
parallelizes the simulator so that the simulator can ex-
ploit the multiple thread contexts in the host machine
to speed up simulation. However, since parallelization
executes the whole program, it always gets an accurate
result.

To keep the results accurate, in our design, we use
parallelization to speed up CUDA programs’ simula-
tion. After analyzing the structure of CUDA program,
we find that serial simulations of a single kernel func-
tion and a large number of kernel functions in a CUDA
program are two main factors to slow down the simu-
lation time. So we divide our parallelization work into
two parts: intra-kernel parallelization and inter-kernel
parallelization, and exploit these two techniques to the
GPGPU-sim to speed up CUDA programs’ simulation.

The intra-kernel parallelization method first paral-
lelizes the serial simulation of multiple compute units
in one cycle and distributes these simulation threads
across multiple cores on the host machine. Then it par-
allelizes the timing and functional simulation to reduce
the performance loss caused by the synchronization be-
tween different simulation threads. Although the cycle
level synchronization causes performance degradation,
we keep it to get the same cycle-accuracy as the typ-
ical serial simulation. The inter-kernel parallelization
method divides the multiple kernels of a CUDA pro-
gram into several groups and distributes these groups
across multiple machines to perform the simulation.
Compared with the serial simulation of multiple ker-
nels, this method makes kernels in different groups to
be simulated as early as possible. The experimental re-
sults show that the intra-kernel parallelization method
achieves a speed-up of up to 12 with the maximum er-
ror rate of 0.009 4% on a 32-core host machine, and the
inter-kernel parallelization method can accelerate the
simulation by a factor of up to 3.9 with a maximum
error rate of 0.11% on four simulation hosts.

1 Related Work

The research on computer architecture simulator is
very important because simulator serves as an impor-
tant tool for developing computer system architectures
and software. As the number of cores in target sys-
tem increases quickly, the simulation speed for a large
number of cores is too slow and practically not accept-
able. Several parallel simulation techniques have been
proposed to address the performance issue. Parallel
simulation has been an active research topic for several
decades[2-3]. Long before its application to computer
architecture simulator, parallelization is always used
to speed up discrete event simulation (DES), which is
called parallel discrete event simulation (PDES)[2]. In

recent years, while much parallelization work has been
done on central processing unit (CPU) simulators and
gets a good performance, GPGPU simulator still suffers
from the performance issues.

Wisconsin wind tunnel (WWT) is one of the earli-
est parallel simulators[4]. It calculates target program
execution time on the parallel host with a distributed,
discrete-event simulation algorithm, but it requires ap-
plication to use an explicitly interface for shared mem-
ory and only runs on CM-5 machines. These restric-
tions make it impractical for modern usage. WWT II[5],
the successor to the original WWT, overcomes the plat-
form restriction, but it only models the target memory
system and requires applications to be modified to ex-
plicitly allocate shared memory blocks.

Slacksim simulates each core of a target chip multi-
processor (CMP) in one thread and then spreads the
threads across the hardware thread contexts of a host
CMP[6]. It uses slack simulation scheme to give each
thread some slack which allows it to continue simulat-
ing without synchronizing with other threads in every
cycle. It uses a central manager to monitor all threads
with shared memory which restricts it to running on a
single host machine.

Graphite provides a distributed parallel multicore
simulator infrastructure[7]. It uses various techniques
to achieve the high performance needed for evaluation
(including direct execution, multi-machine distribution,
analytical modeling and lax synchronization). Com-
pared with Slacksim, graphite has a good scalability
and can be distributed across multiple host machines,
but it only provides a simulation model for the large-
scale multi-core processor architecture which differs sig-
nificantly from graphics processing unit (GPU) archi-
tecture.

After analyzing the difference between CPU architec-
ture and GPGPU architecture, Lee and Ro[8] pointed
out the bottleneck of current GPGPU simulation and
used different threads to represent different functional
parts to parallel the GPGPU simulation. Although us-
ing relaxed synchronization between different threads
achieves a high simulation speed, it causes loss of sim-
ulation accuracy. It is similar to the intra-kernel paral-
lelization posed in this paper, but the intra-kernel par-
allelization uses cycle-by-cycle synchronization to avoid
accuracy loss of parallelization and puts forward a par-
allelism model between timing/functional simulators to
make up the performance loss caused by the synchro-
nization.

2 Motivation and Background of Paral-
lelization

In this section, we first illustrate our motivation and
introduce two simulation models used in GPGPU-sim.
Then, we review the GPGPU-sim structure, a popular



282 J. Shanghai Jiaotong Univ. (Sci.), 2016, 21(3): 280-288

cycle-level GPGPU simulator we use in this paper.
2.1 Motivation

There are some popular GPGPU simulators such as
ATTILA[9], GPGPU-sim[10] and Multi2Sim[11], and all
of them can perform the cycle-level simulation. How-
ever, cycle-accurate simulation is extremely slow. It
is a key concern in architecture research and develop-
ment. There exists a big gap between the simulation
time of an application on a GPGPU simulator and the
execution time of the same application on GPGPU. Un-
fortunately, a large number of cores in the GPGPU and
the serial simulation of these cores cause the GPGPU
simulators to take much more execution time[12]. Table
1 shows the comparison of the GPGPU execution time
and the simulation time of GPGPU-sim for several ap-
plications. The slowdown of CUDA programs running
on the Intel Sandybridge is between 600 000 to 3 000 000
compared with the native NVIDIA K20. Even for ker-
nels with the running time of a few seconds on the K20
graphic card, the simulation time can cost several days.

Table 1 Execution time comparison of benchmarks
on GPGPU and GPGPU-sim

Benchmark
Execution time/s

Slowdown

GPU GPUPU-sim

Stencil default128 0.016 117 12 077 749 333

MM large2 0.028 553 69 400 2 430 823

BlackScholes 0.465 92 304 298 653 112

Cutcp 0.014 991 19 385 1 293 109

MM large 0.003 972 8 833 2 223 816

MergeSort 0.020 62 31 928 1 548 399

Mri-q 0.007 209 22 500 3 121 098

Stencil default 0.130 128 210 200 1 615 332

Therefore, speeding up the cycle-level simulation is very
important for the exploration of GPGPU architecture.
2.2 Two Simulation Models

Figure 1 illustrates the GPGPU simulation model.
The streaming multiprocessor (SM) represents the com-
pute unit in the GPGPU architecture. A GPGPU ap-
plication may have multiple kernels, and each kernel
consists of multiple thread blocks (TBs). To simplify
the hardware scheduling mechanism, CUDA program
requires that thread blocks should be able to execute
independently in any order. All the TBs can run in
parallel if there are enough hardware resources on the
GPGPU. But in reality, only some TBs are allowed
to run on SMs concurrently due to the resource lim-
itation. A block is composed of hundreds of threads.
Threads within one block can communicate through
shared memory and can be synchronized at a barrier.
Once a block is assigned to an SM, it is divided into
32-thread units called warps. Each warp represents a
stream of instructions, and a warp is a basic unit of
thread scheduling in SMs. In most cases, a CUDA pro-
gram is a sequence of kernels, and each kernel completes
execution before the next kernel begins.

Execution-driven simulation is one of the most popu-
lar simulation models used widely in CPU and GPGPU
simulator. Mauer et al.[13] presented four different ways
to couple the functional and timing simulator to man-
age simulator complexity. Timing-directed simulation
is one way. In timing-directed simulation, the func-
tional model keeps track of the architecture state such
as memory values, and the timing model has no notion
of values. The functional model can be viewed as a set
of functions, and the timing model invokes them to get
the effective addresses, the warp’s active mask, and so
on. The serial relation between timing simulator and
functional simulator can restrict the simulation speed.

Streaming Multiprocessor 0 Streaming Multiprocessor 1 Streaming Multiprocessor 2

ThreadBlock0 Warp0 Instruction 0 ThreadBlock1 Warp0 Instruction 0 ThreadBlock3 Warp0 Instruction 0

ThreadBlock3 Warp2 Instruction 8

ThreadBlock87 Warp19 Instruction 201

ThreadBlock2 Warp0 Instruction 0

ThreadBlock2 Warp4 Instruction 20

ThreadBlock297 Warp9 Instruction 90

ThreadBlock297 Warp8 Instruction 90

ThreadBlock1 Warp0 Instruction 0

ThreadBlock1 Warp2 Instruction 6

ThreadBlock298 Warp8 Instruction 90

ThreadBlock1 Warp2 Instruction 10

ThreadBlock89 Warp20 Instruction 201

ThreadBlock0 Warp1 Instruction 4

ThreadBlock0 Warp0 Instruction 0

ThreadBlock0 Warp1 Instruction 4

ThreadBlock300 Warp8 Instruction 90

ThreadBlock300 Warp9 Instruction 90

ThreadBlock90 Warp20 Instruction 200

ThreadBlock90 Warp20 Instruction 201
Kernel 1
Launch

Kernel 0
Launch

Warp Instruction scheduler Warp Instruction scheduler Warp Instruction scheduler

Fig. 1 GPGPU simulation overview
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2.3 GPGPU-sim

GPGPU-sim developed by Bakhoda et al.[10] provides
cycle-level timing simulation as well as functional sim-
ulation of GPGPU. As shown in Fig. 2, GPGPU-sim
consists of four parts: the simultaneous multithread-
ing (SIMT) core cluster, the L2 cache, the dynamic
random-access memory (DRAM) and the interconnec-
tion network (ICNT). The SIMT core cluster consists of
several SIMT cores which represent the compute units
in GPGPU, and it uses the timing-directed simulation
to simulate the execution of warp instructions. The
L2 cache and the DRAM represent the storage units,
and the ICNT models the communication backbone be-
tween compute units and storage units.

Fig. 2 The structure of GPGPU-sim

GPGPU-sim supports four independent clock do-
mains: the SIMT core cluster clock domain, the ICNT
clock domain, the L2 cache clock domain, and the
DRAM clock domain. The four clock domains are used
to drive the simulation of four different parts. Units in
adjacent clock domains communicate with each other
by filling and draining shared buffers. For example,
when SIMT core cluster cycle comes, SIMT core clus-
ter advances each SIMT core’s state and writes memory
accesses into the shared buffer between SIMT core clus-
ter and ICNT. When ICNT cycle comes, ICNT reads
these memory accesses and regards them as the injec-
tions of the interconnection network.

3 Intra-Kernel Parallelization

In the simulation of a kernel, the serial simulation
of multiple compute units is a factor to slow down the
simulation time. In this section, the serial simulation of
clusters in one cycle and the serial relation between the
timing/functional simulators are parallelized to reduce
the simulation time of a kernel.

3.1 Cycle-by-Cycle Parallelization
Figure 3(a) shows the original simulation of multiple

compute units. The simulator sequentially simulates all
the clusters in every SIMT core cluster cycle; this serial
process restricts the simulation speed and cannot fully
utilize the power of multi-core processor. Figure 3(b)
shows that multiple threads are used to simulate dif-
ferent clusters. Each cluster thread advances the state
of a cluster and simulates operations during the cycle.
Because the cycle-by-cycle parallelization synchronizes
all simulation threads in every cycle, it has almost the
same cycle-accuracy as the typical single-threaded sim-
ulation.

Fig. 3 Cycle-by-cycle parallelization

The cycle-by-cycle parallelization is a well-known
parallel simulation technique for its accuracy, but the
synchronization in every cycle restricts its speed and
its usage. Using relaxed synchronization scheme to
break the cycle-by-cycle synchronization brings speed-
up. However, it causes unacceptable errors. In the next
section, a parallelism model between timing simulator
and functional simulator is proposed to overcome the
performance degradation of the cycle-by-cycle paral-
lelization. The parallelism model does not affect the
simulation accuracy while further accelerates the cycle-
by-cycle parallelization.
3.2 Parallelism Model Between Timing and

Functional Simulators
As we mention earlier, the timing-directed simulation

method is used in the simulation of SIMT core cluster.
Figure 4(a) shows that the timing simulator calls the
functional model in the simulation of each warp instruc-
tion to get values such as program counter (PC) and
memory address. Although every function call costs
little time, too many function calls can degrade the
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Fig. 4 Simulation of warp instructions

simulation performance, and there are always millions
of warp instructions in CUDA programs.

Figure 4(b) shows that a shared buffer is added to
break the call/return relation between the timing sim-
ulator and the functional simulator. After the buffer is
added, the timing simulator and the functional simu-
lator can simulate the kernel concurrently. When the
kernel launches, the timing simulator and the functional
simulator begin the simulation at the same time. Af-
ter the functional simulation of a warp instruction is
completed, the functional simulator stores the values
into the buffer before simulating the next warp instruc-
tion. The timing simulator indexes the buffer and then
gets the values directly when it needs the values. This
parallelism model reduces simulation time of each warp
instruction without affecting the simulation accuracy.

After the cycle-by-cycle parallelism, the accelerated
timing simulator runs faster than the original functional
simulator. If the timing simulator cannot find the val-
ues which it needs in the buffer, it stops and waits for
the functional simulator to store the values.

In order to avoid the potential bottleneck caused
by the functional simulator, we put up a new paral-
leled functional simulator to improve the performance
of the parallelism model in advance. The main idea of
the functional parallelism is that there are no relations
between different TBs in kernel. If there are enough
hardware resources on the GPGPU, all the blocks can
be executed at the same time. In the paralleled func-

tional simulator, the simulator divides different blocks
in a kernel into several groups and begins every group’s
functional simulation at the same time.

4 Inter-Kernel Parallelization

The sequential simulation of kernel functions in
CUDA program is another factor to slow down the sim-
ulation time. This section accelerates the simulation by
splitting the simulation progress into a set of N chunks
and distributing them over the same number of ma-
chines. Implementing simulation splitting and distri-
bution is rather direct, except for the accuracy error.

Because of the CUDA characteristic and the way ker-
nels use to launch on GPGPU, when the GPGPU sim-
ulator simulates the current kernel, it uses little tim-
ing information produced by the simulation of previous
kernels. But the functional information must be trans-
formed from the previous kernels to the current kernel
to assure the accurate execution of CUDA programs.

Figure 5 shows the principle of distributed simula-
tion. Assume that one wants to run a simulation of N
kernels with 2 machines. Each machine simulates N/2
kernels. The first N/2 kernels are simulated on the
first machine. The second N/2 kernels are simulated
on the second machine. Each machine runs the CUDA
program from the beginning, but starts simulating at
the first kernel of the specified group. Thus, each ma-
chine must emulate the kernels (functional simulation
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only) until it has reached the first kernel of the specified
group. So the first machine starts simulating immedi-
ately, and the second machine emulates the first N/2
kernels before it starts simulating.

Original
simulation

Machine 0

Machine 1

0 1 2 3 5 6 7 8

Simulation time

Execution-driven simulation Functional simulation

0 1 2 3 4

Simulate kernel function one by one

0 1 2 3 4

4

5 6 7 8

Fig. 5 Simulation of kernel functions

5 Evaluation and Analysis

5.1 Experimental Environment
The intra-kernel parallelization experimental results

are obtained on power leader server PR48040R with
4 Intel(R) Xeon(R) E5-4620 CPU processors running
at 2.67GHz and 512GB of DRAM. The inter-kernel
parallelization experimental results are obtained on a
system with four machines, and each machine has an
i3-2130 CPU running at 3.2GHz and 4 GB of DRAM.
The operating system is Red Hat Server6.0 with kernel
2.6.4. The version of GPGPU-sim is 3.4. The simula-
tors and CUDA benchmark applications are compiled
by gcc 4.3.3 and NVCC 2.3. Table 2 shows the CUDA
applications which are selected from the NVIDIA GPU
computing software (Development Kit, Parboil, Ro-
dinia and other sources). The target GPU architecture
parameters are summarized in Table 3.

Table 2 Benchmarks for evaluation

Benchmark Source Input Kernel count

Cutcp Ref. [14] Small data set 11

MM Ref. [14] Large: (1 024, 992) × (992, 1 056)
Large 2: (2 048, 1 984) × (1 984, 2 112)

1

Mri-q Ref. [14] Large data set 3

Stencil Ref. [14] Default128: <128, 128, 64, 32, 2, 100>
Default: <512, 512, 64, 32, 8, 100>

100

Blacksholes Ref. [15] 4 million options 512

Mergesort Ref. [15] N = 4 × 1 048 576 49

Libor Ref. [16] NPATH = 96 000 3

Table 3 GPGPU-sim configuration

Parameter Definition

Number of clusters 10

Number of core per cluster 3

Warp size 32

SIMD pipeline width 8

Number of threads per core 1 024

Number of CTAS per core 8

Number of registers per core 16 384

Shared memory per core/KB 16

Constant cache size per core/KB 8

Number of memory channels 8

L1 data cache None

L2 data cache/KB 256

Memory controller type Out of order (FR-FCFS)

Branch divergence method Immediate post dominator

Warp scheduling policy Round robin among ready
warps

5.2 Performance of Intra-kernel Parallelization
Figure 6 shows the speed-up and the total simulated

cycle error of the intra-kernel parallelization, as com-

pared with the single-threaded simulation. The results
are presented for 9 CUDA benchmark applications, and
they are normalized to the performance with a single
host core. Figure 6(a) shows that the average speed-
up of the cycle-by-cycle parallelization is 6 after us-
ing 10 threads to represent each cluster’s simulation in
GPGPU-sim. The speed-up of this parallelization is
smaller than 10 because the 10 simulation threads need
to be synchronized in every cycle. Although every warp
has the same instruction stream, each simulation thread
can simulate different instruction at a given simulation
cycle. Therefore, the time required for simulating 1 cy-
cle differs across the threads. If a thread requires a long
time for execution, the other threads must wait until it
has finished.

Based on combining the cycle-by-cycle parallelization
and the parallelism model between timing/functional
simulators together, the average speed-up of intra-
kernel parallelization is 8.1, ranging from 5 (Sten-
cil default128) to 12 (Mri-q). The intra-kernel paral-
lelization accelerates the simulation of compute part
in GPGPU-sim; with the increase of the kernel’s sim-
ulation time, the percentage of the compute part
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increases too, so the intra-kernel parallelization per-
forms well to accelerate the kernel which has a long
simulation time. But the long simulation time of Sten-
cil default128 mainly derives from the large number
of kernels and the single kernel costs less time com-
pared with other benchmarks, so the intra-kernel par-
allelization doesn’t perform well in Stencil default128.
However, as shown later, the inter-kernel paralleliza-
tion addresses this problem and accelerates the simula-
tion speed of Stencil default128 significantly. To evalu-
ate the scalability of intra-kernel parallelization mech-
anism, we increase the number of cores on the host
machine from 16 to 32. As shown in Fig. 6(b), with the
increase of the cores on the host, the performance of
intra-kernel parallelization does not be improved dra-
matically. There are two reasons: � the cycle-by-cycle
parallelization only uses 10 threads to represent each
cluster’s simulation, so it has achieved its maximum
performance on a 16-core host; � although exploit-
ing more cores improves the performance of the paral-
lelism model between timing/functional simulators, it
does not have obvious effect on the whole performance
of the intra-kernel parallelization mechanism.

12
8
4
0Sp

ee
d-

up

1 2 3 4 5 6 7 8 9 Average

12
8
4
0Sp

ee
d-

up

1 2 3 4 5 6 7 8 9 Average

0.06

0.04

0.02

0

T
ot

al
 c

ty
cl

e 
er

ro
r/

%

1 2 3 4 5 6 7 8 9 Average

Cycle-by-cycle parallelization
Intra-kernel parallelization

16-core 32-core

Benchmark application
(a)

Benchmark application
(b)

Benchmark application
(c)

1—Cutcp, 2—MM-larger, 3—Mri-q, 4—Stencil-default128,

5—Stencil-default, 6—Libor, 7—MM-larger2,

8—Mergesort, 9—Blackscholes
Fig. 6 Performance of intra-kernel parallelization

The cycle-by-cycle parallelization accelerates the
simulation of instructions in a cycle, and the parallelism
model accelerates the simulation of each instruction.
These two ways do not affect the number of simulated
instructions. Figure 6(c) shows the total simulated cy-

cle error of intra-kernel parallelization, as compared
with the single-threaded simulation. Compared with
the serial simulation, the parallelization causes viola-
tion to the memory access order which induces the cy-
cle errors. In the serial simulation, when the SIMT core
cluster cycle comes, the GPGPU-sim sequentially sim-
ulates SIMT core cluster to advance each SIMT core’s
state. In this process, if an SIMT core wants to access
the memory, it will inject the memory access into the
shared buffer between the SIMT core cluster model and
the ICNT model. The order of these memory accesses
is fixed. After exploiting the cycle-by-cycle paralleliza-
tion, the injection order depends on the speed of the
simulation threads. If a thread runs slowly than other
threads, it might inject the memory access lastly. Be-
cause of the violation of the memory accesses order, the
memory access latency and the cycles used to simulate
an instruction might be different with the serial simu-
lation. The intra-kernel parallelization shows 0.00%—
0.051% of total simulated cycle errors and the high sim-
ulation accuracy benefits from the cycle-by-cycle syn-
chronization.
5.3 Performance of Inter-Kernel Paralleliza-

tion
Figure 7 shows the speed-up and the total simulated

cycle error of the inter-kernel parallelization, as com-
pared with the single host simulation. The benchmark
MM has only one kernel, so it is not listed below. Fig-
ure 7(a) shows that the performance of inter-kernel
parallelization scales up with the increase of the ma-
chine count. On condition of using four machines, the
average speed-up is 3.2, ranging from 1.2 (Libor) to
3.9 (Stencil default128). Benchmark Stencil default128
has many kernels, and the simulation time for each is
almost the same. These two characteristics make it ben-
efit a lot from the inter-kernel parallelization, so it can
get almost linear speed-up with the increase of host ma-
chines. In contrast, Libor has only three kernels and the
third kernel costs most of the simulation time. The long
simulation time of the third kernel makes intra-kernel
parallelization perform well in Libor, but it limits the
performance of inter-kernel parallelization. The poor
performance of Mergesort has the same reason, because
its first kernel costs most of the simulation time.

The inter-kernel parallelization splits the kernels into
a set of N groups and distributes them over the same
number of machines. The parallelization simulates all
the instructions in the kernels, so the sum of the total
simulated instructions is the same as the serial sim-
ulation. Figure 7(b) shows the total simulated cycle
error of inter-kernel parallelization, as compared with
the single host simulation. The simulated cycle error
varies from about 0.06% to 0.11%. This value is a little
bigger than intra-kernel parallelization. The error de-
rives from the cold-start problem[17]. For example, the
inter-kernel parallelization uses 2 machines to simulate
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Fig. 7 Performance of inter-kernel parallelization

N kernels. The first N/2 kernels are simulated on the
first machine, and the second N/2 kernels are simu-
lated on the second machine. In the serial simulation,
when the GPGPU-sim begins to simulate the second
N/2 kernels, the microarchitecture state in the simu-
lator is warmed up by the simulation of the first N/2
kernels. In contrast, in the inter-kernel parallelization,
although the second machine emulates the first N/2
kernels, the microarchitecture state is still cold when
the machine starts simulating the second N/2 kernel.
Although there are many techniques posed before to
solve the cold-start problem[18-19], the inter-kernel par-
allelization doesn’t need to adapt any solutions. It is
because the microarchitecture warmed before is only
some L2 cache states and these states have little im-
pact on the memory access latency in the simulation of
the next kernel. This can by proved by the fact that
the maximum error is only 0.11%.

The intra-kernel parallelization accelerates the simu-
lation of a CUDA program by reducing the simulation
time of each kernel, and the inter-kernel parallelization
accelerates the simulation by splitting the simulation
process into a set of N chunks and distributing them
over the same number of machines. These two par-
allelization techniques are orthogonal, so further per-
formance improvements can be achieved by combining
these two techniques together. Due to the limitation
of the experimental environment, Fig. 8 only shows the
theoretical speed-up and the simulated cycle errors by
combining these two techniques. It is assumed that the
simulation process is distributed over several machines
and the simulation of each kernel on the machine is ac-
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celerated, so the speed-up is the product of these two
techniques and the error is the sum of these two.

6 Conclusion

After analyzing the structure of CUDA program, we
find that serial simulations of a single kernel and a
large number of kernels are two main factors to slow
down the simulation time. The inter-kernel paralleliza-
tion and the intra-kernel parallelization are proposed
to overcome the bottleneck of serial simulation through
using the computing power of multiple multi-core hosts.

We perform detailed performance evaluations with
various benchmarks, and observe that the intra-kernel
parallelization achieves a speed-up of up to 12 with
the maximum error rate of 0.009 4% on a 32-core host
machine, and the inter-kernel parallelization can accel-
erate the simulation by a factor of up to 3.9 with a
maximum error rate of 0.11% on four simulation hosts.
In fact, the intra-kernel parallelization and the inter-
kernel parallelization are orthogonal, so these two ways
can be combined together to get a further performance
improvement.

Some benchmarks (such as MM) only have a sin-
gle kernel function, so the performance cannot benefit
from the inter-kernel parallelization. The experimental
results also show that MM performs badly when it is
combined with the inter-kernel and intra-kernel paral-
lelization techniques together. In order to take advan-
tage of multiple machines, our future work will focus on
how to split the simulation process of blocks within a
kernel into several chunks and distribute them over the



288 J. Shanghai Jiaotong Univ. (Sci.), 2016, 21(3): 280-288

same number of machines. The main challenge is the
cold-start problem and it seriously impacts the simula-
tion accuracy in this situation. The problem must be
dealt with properly in the future work. With this en-
hancement and our parallel simulation techniques, the
GPGPU-sim should serve as a helpful cycle-level simu-
lation tool for the studies of GPGPU architectures.
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