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Abstract: In the paper, an approach is proposed for the problem of consistency in depth maps estimation from
binocular stereo video sequence. The consistent method includes temporal consistency and spatial consistency to
eliminate the flickering artifacts and smooth inaccuracy in depth recovery. So the improved global stereo matching
based on graph cut and energy optimization is implemented. In temporal domain, the penalty function with co-
herence factor is introduced for temporal consistency, and the factor is determined by Lucas-Kanade optical flow
weighted histogram similarity constraint (LKWHSC). In spatial domain, the joint bilateral truncated absolute
difference (JBTAD) is proposed for segmentation smoothing. The method can smooth naturally and uniformly
in low-gradient region and avoid over-smoothing as well as keep edge sharpness in high-gradient discontinuities
to realize spatial consistency. The experimental results show that the algorithm can obtain better spatial and
temporal consistent depth maps compared with the existing algorithms.
Key words: consistent depth maps, binocular stereo video sequence, Lucas-Kanade optical flow weighted his-
togram similarity constraint (LKWHSC), joint bilateral truncated absolute difference (JBTAD)
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0 Introduction

Currently, the industry and technologies of stereo
video attract a great attention. The common format is
binocular stereo video which is represented as side-by-
side, top-and-down, interlaced synthesis or separated
left-right parts, and can be displayed and viewed with
complementary color or polarized lenses. The depth
maps estimation is one of the most popular technolo-
gies in recent years. The main application for these
depth maps is rendering new perspectives of the cap-
tured scene by means of depth image based rendering
(DIBR), and they are also widely used in many other
areas, such as feature extraction of stereo vision, 3D
scene reconstruction, robot vision and tracking.

In binocular stereo video system, depth maps can be
extracted by calculating the disparity and depth ac-
cording to stereo matching of left view and right view.
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Currently, although the technologies of stereo matching
are relatively perfect, the studies are few in temporal
and spatial consistency of depth maps. From the re-
lated work and practice, it can be found that flickering
artifacts occur without considering the temporal con-
sistency of depth maps and result in visual distortion
in synthesized or reconstructed views[1]. It is caused
by miscalculation of disparity over time in depth maps
sequence estimation. While the noise and blur of depth
maps are caused without considering the spatial consis-
tency, which has bad effect on the quality of synthetic
views. So it is necessary to eliminate flickering artifacts
and handle noise in order to achieve a spatial and tem-
poral consistency. In this way, the high quality depth
maps sequence can be obtained.

In related studies, the methods for handling tempo-
ral inconsistency of stereo video depth maps sequence
are mainly on smooth filtering in temporal domain and
temporal coherence constraint between frames. For
smooth filtering in temporal domain, bilateral filtering,
multilateral filtering and median filtering are mainly
used. Cigla and Alatan[2] introduced the median fil-
ter to static or background pixels based on constancy
of brightness to eliminate flickering artifacts. Gar-
cia et al.[3] proposed an algorithm of multilateral fil-
tering. Just as in these studies, only sparse depth
maps sequence can be obtained by smooth filtering. In
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addition, blur distortion is caused due to the lack of
treatment to time-domain motion. So the problem
of temporal inconsistency cannot be solved efficiently.
Temporal coherence constraint is to define temporal
weighting function for color, brightness, motion object,
scene or characteristics between adjacent frames or re-
lated frames. Several methods are mainly adopted, such
as extending single frame to sequence frames, separa-
tion of dynamic and static pixels in scenes and motion
tracking. Khoshabeh and Richardt et al.[1,4] studied
the depth map extraction from a single pair of images
and then extended to sequence frames. Although depth
map can be well obtained from a single pair of stereo
images for many stereo matching algorithms, it is not
sufficient to simply apply them to temporal frames in-
dependently without considering the temporal consis-
tency between adjacent frames. Lee and Pham et al.[5-6]

proposed an algorithm for separation of dynamic and
static pixels in scenes to introduce constraints, respec-
tively. These studies usually assume that the scene
is static or quasi-static, or the movement can be ig-
nored compared with the sampling frequency. It is dif-
ficult to deal with temporal inconsistency in dynamic
or constant brightness scenes. Meanwhile, the depth of
static scene is not constant and always changing, so the
problem of temporal inconsistency cannot be solved ef-
ficiently. Min et al.[7] studied the motion tracking based
on optical flow method to realize temporal consistency.
In these related studies, local related constraints are of-
ten used but there are many problems in object selec-
tion, construction of constraint functions, and optimal
solution.

For spatial consistency, it is usually to set smooth
term of energy optimization function. And the meth-
ods of smooth filtering in spatial domain and similarity
based on threshold are mainly used. Bilateral filtering
is mainly adopted for smoothing as it is efficient in noise
reduction and edges preserving. Richardt et al.[4] pro-
posed an improved bilateral filtering algorithm. Pham
et al.[6] introduced the information permeability algo-
rithm to implement smooth filtering. But these algo-
rithms usually need to use linear interpolation and may
lead to a decline in accuracy. Khoshabeh et al.[1] stud-
ied the truncated weighted function based on threshold
for smooth processing and edge preserving. Usually,
these methods could eliminate the noise effectively, but
were still poor in smooth effect and had difficulties in
non-texture regions.

This paper applies the method of graph cut and en-
ergy optimization to global matching and depth estima-
tion. An algorithm in spatial and temporal domain is
proposed in this paper to obtain high quality consistent
depth maps. In temporal domain, the penalty function
with constraint factor is introduced, and the factor is
determined by Lucas-Kanade optical flow weighted his-
togram similarity constraint (LKWHSC) to associate

adjacent frames for temporal consistency. In spatial
domain, joint bilateral truncated absolute difference
(JBTAD) is proposed to process the neighborhood pix-
els for spatial consistency.

1 Depth Estimation Based on Graph
Cut and Energy Optimization

1.1 Preprocessing on Binocular Stereo Video
Sequence

The method of quasi-euclidean uncalibrated epipo-
lar rectification is used for correcting and constrain-
ing the left and right video sequence frames in or-
der to improve the matching accuracy and handle the
occlusion[8]. Similarly, color standardization is also ap-
plied to frames of dual-channel video sequence to ac-
curately calculate the histogram as well as improve the
matching accuracy. In this way, the color consistency
can be obtained, too[9]. The brightness values of video
sequence frames are β(i, j), and the expressions in the
image window of m × n are defined by

β̄l(i, j) = [βl(i, j) − μl]/δl, (1)
β̄r(i, j) = [βr(i, j) − μr]/δr, (2)

where the subscripts l and r correspond to the left and
right video sequence frames, respectively; μ is the aver-
age brightness of the image window; δ is the parameter
of light intensity distribution and is defined by

δ2 =
1

mn

n∑

j=1

m∑

i=1

[β(i, j) − μ]2. (3)

1.2 Depth Estimation
Stereo matching of left and right views is the basis

for calculating the disparity and depth. Stereo match-
ing refers to finding the corresponding pixels in different
images which are obtained from two perspectives when
the same scene is observed. The essence is to find a
matching path. The key is to construct an optimiza-
tion model and find the optimal solution. The effec-
tiveness of stereo matching algorithm lies in choosing
the precise matching primitives, finding the appropri-
ate matching criteria, and building a stable algorithm
for solving process accurately.

The energy optimization based on graph cut is a
common stereo matching algorithm. It is also an ex-
cellent method for calculating the disparity of stereo
video. Based on the idea of minimum cut and maxi-
mum flow, the image blocks are selected as primitives
to establish a matching path. The global energy func-
tion can be constructed according to the path cost. The
matching path energy is minimized after the optimiza-
tion calculation, and then the best matching can be
achieved. The essence of the procedure is to convert
the corresponding point matching into seeking a global
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optimization solution of energy function. So the prob-
lem of disparity solving is converted into calculating the
energy optimization[10]. First, the matching energy is
calculated and the function is defined by

E(f) = Esmooth(f) + Edata(f), (4)

where f is a labeling of image P , Esmooth(f) measures
the extent to which f is not piecewise smooth, and
Edata(f) measures the disagreement between f and the
observed data. They are defined respectively by

Esmooth(f) =
∑

{p,q}∈N

V{p,q}(fp, fq), (5)

Edata(f) =
∑

p∈P

Dp(fp), (6)

where N is the set of pairs of adjacent pixels,
V{p,q}(fp, fq) = |fp−fq| indicates the difference of adja-
cent pixels, and Dp(fp) = (fp−Ip)2 indicates the inten-
sity difference of the pixel p between measured data fp

and observed data Ip. Then a directed graph is built
which includes nodes and non-negative weight edges.
According to the principle of minimum cut and maxi-
mum flow, the iterative optimization scheme is used for
solution and the directed graph is dynamically updated
in the iteration[10].

In the system of binocular camera, disparity can be
defined as vector difference of object points in each
channel image associated with the focus. Binocular
disparity is the difference of direction when a goal is
observed from two points. The distance between the
two points is called baseline. The relationship of dis-
parity and depth is shown in Fig. 1, where Ml and Mr

are the matching points, and O is the target point. The
depth Z can be defined by

Z = BF/(xl − xr) = BF/d, (7)

O

ZCl

Ml
xl

Mr xr

CrB

F
F

Epipolar
lineLeft view

Right view

Fig. 1 Disparity-depth relationship

where B, F and d represent the camera baseline, focal
length and disparity, respectively.

For stereo video, the depth maps can be represented
by an 8-bit greyscale image to render new views. When
the depth is represented by gray value from 0 to 255[5],
the depth value can be defined as

Z̄ =
⌊
255 − 255(Z − Zmin)

Zmax − Zmin
+ 0.5

⌋
, (8)

where Zmax and Zmin represent the farthest and the
nearest depth values, respectively.

2 Consistency in Depth Maps Estima-
tion

The framework of proposed method in this paper for
consistent depth maps is demonstrated in Fig. 2.

As described previously, the method of graph cut
based on epipolar rectification and energy optimization
is used for depth estimation. In temporal domain, the
penalty function with constraint factor is introduced for
temporal consistency; in spatial domain, smooth term
in global optimization function is rebuilt for spatial
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Fig. 2 The framework of proposed method
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consistency. The global optimization function is rede-
fined by

E(f) = Edata(f) + Esmooth(f) + Eocc(f), (9)

where Eocc(f) is a penalty function.
2.1 Temporal Consistency

In the global optimization function, the penalty func-
tion can be defined by

Eocc(f) =
∑

p

(λ|dp − di|), (10)

where dp represents the disparity of pixel p in current
frame, di represents the disparity of the pixel which
is most similar to p in the previous frame, and λ is
a constraint factor. This paper proposes an algorithm
of LKWHSC to obtain the factor and temporal consis-
tency. In the algorithm, the weighted histograms of ad-
jacent frames are calculated as the weights determined
by pixel similarity measurement according to the prin-
ciple of Lucas-Kanade optical flow. The number of pix-
els for similarity constraint between adjacent frames is
determined by the quantified color histogram. The cal-
culated values are compared with the color histogram
of current frame according to Kullback-Leibler diver-
gence. Based on the principle of brightness consistency,
the comparative values are calculated for optimal solu-
tion, and then the temporal consistency of depth maps
sequence can be achieved.
2.1.1 Coherence Based on LKWHSC

RGB is the most common color space in video, and
most of the digital images are also expressed with the
RGB color space. However, the spatial structure does
not meet people in subjective judgment of color simi-
larity. So it is necessary to convert it into HSV space
which is closest to the subjective perception of human
eyes[11]. Each component of HSV color space is quan-
tified as non-equal interval for 8 steps, 3 steps and 3
steps. According to the steps of quantization above,
these three components can be synthesized into one-
dimensional feature vector. The HSV color space can
be quantified for 72 steps[12]. Then the histogram dis-
tribution is calculated by

H(k) =
nk

Nt
(k = 0, 1, · · · , K − 1), (11)

where nk represents the number of pixels whose quan-
tified color value is k, K represents the number of col-
ors contained in the image, and Nt represents the total
number of pixels within the image.

LKWHSC is proposed to associate adjacent frames
for temporal consistency on the basis of optical flow
method[7]. The color histogram value of current frame
n0 is set as Hn0(k), and the coherence constraint with
the adjacent frame n is defined by

Hn0,n(k) = wk0 (pk0 , pk)Hn(k), (12)

where Hn(k) is the histogram value in each dimension
of the quantized frame n, and wk0(pk0 , pk) is similarity
measure between the pixel in each histogram and the
pixel in corresponding spatial of adjacent frame. The
similarity measure is defined by

wk0 (pk0 , pk) =

exp
[
−

∑

ph∈Nn(pk)

ρ|In(ph) − In0(pk0)|
]
, (13)

where Nn(pk) denotes the set of neighbors of pixel pk,
pk0 is pixel of the current frame n0, pk is pixel of
adjacent frame n, pk is also the similar pixel of pk0

and is denoted as pk ∼ pk0 , ph is the neighborhood
pixel of pk, |In(ph) − In0(pk0)| is the Euclidean dis-
tance of color brightness, and ρ is the weighting coeffi-
cient of color difference to adjust similar ratio between
pixels[13]. In the proposed algorithm, K pixels of each
frame are selected and they are combined with their
corresponding histogram values for similar constraint.
It can reduce computational complexity and improve
constraint effect compared with the algorithm that a
single pixel is selected[7] and the algorithm that all pix-
els are selected[14].

Shot segmentation is help for every scene epipolar
rectification and can be applied in different match-
ing disparity range. Moreover, the errors of scene
transition, forward reference for start frame and back-
ward reference for end frame can be avoided. Three-
dimensional video shot boundary detection algorithm
is introduced for video shot segmentation[15].

The reference constraint with forward and backward
adjacent frames can be constructed based on shot seg-
mentation, so Eq. (12) can be modified as

Hn0,n(k) =wk0(pk0 , pk)Hn(k)|n∈Tprev(n0)+

wk0(pk0 , pk)Hn(k)|n∈Tnext(n0), (14)

where Tprev(n0) and Tnext(n0) denote the forward and
backward adjacent frames of n0, respectively. There
is no forward constraint reference frame if the cur-
rent frame is the beginning of shot. Similarly, there is
no backward constraint reference frame if the current
frame is the ending.
2.1.2 The Optimal Solution

According to the principle of Kullback-Leibler diver-
gence, the similarity can be calculated between the his-
togram value Hn0(k) of current frame n0 and the con-
straint value Hn0,n(k), which is defined by

DKL(Hn0,n(k)||Hn0(k)) =
K−1∑

k=0

Hn0,n(k)ln
Hn0,n(k)
Hn0(k)

. (15)

If
Hn0,n(k) = Hn0(k),
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then
DKL(Hn0,n(k)‖Hn0(k)) = 0.

Symmetry calculation is performed and the expression
is defined by

DKL =
1
2

[ K−1∑

k=0

Hn0,n(k)ln
Hn0,n(k)
Hn0(k)

+

K−1∑

k=0

Hn0(k)ln
Hn0(k)
Hn

n0
(k)

]
. (16)

In video sequence, pixel intensity should keep con-
sistency between current frame and adjacent frames in
instantaneous motion. The energy function in tempo-
ral domain constraints the movement of pixels between
adjacent frames, and the variation of luminance value
should be minimized[13]. According to the method of
Lucas-Kanade optical flow, the pixels can be consid-
ered constant when the time interval between adjacent
frames is very short and the change of image gray is as
little as possible. The frame n0 is in time of t0, and the
adjacent frame n is in time of t. If Δt = t − t0 → 0
then ph → pk0 , there is

lim
Δt→0

DKL → 0. (17)

The minimum value of |In(ph)− In0(pk0)| can be ob-
tained by iteration and limitation solving. So the neigh-
boring pixels of ph can be normalized to pk. Because
pk is the most similar pixel of pk0 , it can be regarded
as an equivalent pixel, which is denoted by pk ≈ pk0 .

According to the solution of equivalent pixels, the
value of weighted histogram can be calculated and it is
also the corresponding constraint factor λ. Therefore,
the penalty function can be represented as

Eocc(f) =
K−1∑

k=0

Hn0,n(k)
∑

p

(|dp − di|). (18)

2.2 Spatial Consistency
It is necessary to smooth and reduce noise in order to

obtain high quality and spatial consistent depth maps
of stereo video. Based on the local consistency of pixels,
smooth energy function can be defined for each pixel in
spatial domain so that the function can smooth uni-
formly in low gradient region and maintain the proper-
ties in high gradient region[13]. Segmentation smooth-
ing is necessary for depth maps sequence estimation in
spatial domain. It needs not only to smooth, reduce
noise and realize consistency, but also to keep the dis-
parity information and object edge sharpness as much
as possible[16].

This paper proposes the algorithm of JBTAD in spa-
tial domain to smooth naturally in low-gradient region,

avoid over-smoothing and preserve edges of disconti-
nuities in high-gradient discontinuities[17]. In the al-
gorithm, smooth term in global optimization function
is rebuilt, and it includes the similarity term as well
as the smooth and boundary maintaining term. For
the similarity term, the color similarity truncated abso-
lute difference is adopted; while the smooth and bound-
ary maintaining term is the bilateral filtering function
which contains pixel space Gauss kernel function and
depth Gauss kernel function. As it is known, the depth
for the neighboring pixels has strong correlation in the
same plane, and so does the disparity. The smooth term
is defined as

Esmooth(f) =
∑

p

∑

q∈Nn(p)

φ(p, q)ρ(Tp, Tq). (19)

In Eq. (19),

φ(p, q) =
1
ωp

Qs(||p − q||)Qd(||dp − dq||)dq, (20)

where ωp is the regularization factor, Qs is the spatial
weighted Gaussian kernel function centered by pixel p,
and Qd is the weighted Gaussian kernel of depth differ-
ence. The expression is defined to process noise, pre-
serve edges and encourage the disparity discontinuity
to be coincident with abrupt intensity/color change for
depth maps sequence. The two kernel functions are
defined respectively by

Qs(‖p − q‖) = exp
(
− 1

2
|p − q|2

σ2
s

)
, (21)

Qd(‖dp − dq‖) = exp
(
− 1

2
|dp − dq|2

σ2
d

)
, (22)

where σs and σd denote the spatial and depth width
parameters, respectively[4]. They have effects on the
spread range of functions and smoothness. In Eq. (19),

ρ(Tp, Tq) = min(|Tp − Tq|, η) (23)

is defined to realize smooth uniformly between neigh-
boring pixels of objects in space-time as we enforce that
the disparity smoothness assumption values should vary
smoothly except object boundaries[1], where η is the
threshold and the value is set from 0.05 to 0.1 accord-
ing to the changing of smoothing gradient, and |Tp−Tq|
is the color similarity measurement of pixel and can
be represented by Euclidean distance of R, G, B color
components, which is defined by

|Tp − Tq| = |Rp − Rq| + |Gp − Gq| + |Bp − Bq|. (24)

Many of the existing algorithms usually can obtain
sparse or low-resolution depth maps by stereo match-
ing and depth calculation. In the algorithm, the spatial
depth super-resolution algorithm of iterative bilateral
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filtering for two-view is introduced as a post-processing
stage[18]. It executes up-sampling iteratively to enforce
the full resolution of input depth maps. In our imple-
mentation, the number of iterations is 3. The better ef-
fects of depth maps and running efficiency are achieved.

3 Experimental Results

In our experiment, we use the test sequences
“Street”, “Tanks”, “Temple” and “Tunnel” as well as
the ground truth disparities provided by the Univer-
sity of Cambridge Computer Laboratory for exper-
imental implementation and evaluation of results[4].
The length of each sequence is 100 frames, and each
frame is 400pixel × 300 pixel in resolution with a dis-
parity range of 64 pixels. For experimental environ-
ment, we use Windows 7 of 32-bit dual-core proces-
sor whose frequency is 3.3GHz. MATLAB 7.10.0 is
used for algorithm simulation. Experimental results
are compared with the DCBGrid, TDCBGrid[4] and IP
algorithms[6]. Average percentages of bad pixels (α)
and mean squared errors of pixels (MSE) for all frames
of each sequence in different algorithms are demon-

strated in Table 1 and Table 2, respectively. The sub-
jective comparison of depth maps is shown in Fig. 3.

Table 1 Average percentages of bad pixels for all
frames

Algorithm α/%

Street Tanks Temple Tunnel

DCBGrid 20.70 17.83 24.62 14.83

TDCBGrid 16.23 17.18 19.21 23.14

IP 13.79 16.43 10.77 13.99

The proposed 10.52 12.75 9.03 11.84

Table 2 Mean squared errors for all frames

Algorithm MSE

Street Tanks Temple Tunnel

DCBGrid 27.04 23.91 41.34 19.71

TDCBGrid 18.58 25.40 33.06 26.42

IP 16.89 22.56 12.46 18.49

The proposed 4.77 8.53 3.66 8.12

(a) DCBGrid (b) TDCBGrid (c) IP (d) The proposed

Fig. 3 Comparison of consistent depth maps in subjective effects
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From Table 1, the proposed algorithm always has
lower average percentage of bad pixels in spatial-
temporal stereo matching for each sequence. Similarly,
in Table 2 compared to the other algorithms, the pro-
posed method always has smaller average mean squared
errors for the test sequences.

Experiments are carried out on the test sequences.
Figure 3 only lists four corresponding depth maps of
the “Street” sequence in different algorithms. Accord-
ing to the experimental results, as demonstrated in
Fig. 3, the proposed method can reduce the flickering
artifacts and obtain more consistent depth maps se-
quence frames compared with the other algorithms. At
the same time, it can be also seen that the proposed

method can obtain smoother depth maps and more ef-
ficiently and clearly maintain the boundary of objects
in discontinuities.

The Gaussian noise is added in depth maps to vali-
date the robustness of the proposed method. The range
of standard deviation σ is from 0 to 100. The average
percentage of bad pixels gradually increases with the
addition of noise for each algorithm. Compared with
the DCBGrid, TDCBGrid and IP algorithms, the av-
erage percentage of bad pixels of the proposed method
is nearly always smaller in all cases. Experimental re-
sults show that the proposed algorithm has better ro-
bustness. The comparison results are demonstrated in
Fig. 4.
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Fig. 4 Comparison of robustness with Gaussian noise

4 Conclusion

This paper proposes a method of LKWHSC in tem-
poral domain and JBTAD in spatial domain for spatial-
temporal consistency to eliminate the flickering arti-
facts and smooth inaccuracy in binocular video depth
maps sequence estimation. In temporal domain, shot
segmentation and appropriate selection number of the
pixels can efficiently improve the matching accuracy
and reduce the flickering artifacts. In spatial domain,
smooth and noise reduction as well as object edge
sharpening can be achieved. Future work will focus
on the optimization for time complexity of correlation
constraint and spatial smoothing.
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