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Abstract: Based on the Reissner assumptions, the free vibration analysis of simply supported cylindrical and
rectangular sandwich panels with isotropic face sheets and a functionally graded core is concerned. Firstly, the
expressions of the displacements, stresses and internal forces are presented according to the constitutive relations
and stress states of the core and face sheets. Then, the dynamic stability and compatibility equations are given for
cylindrical sandwich panels with functionally graded core, elastic modulus and density in which vary continuously
in the thickness direction. Finally, the proposed solutions are validated by comparing the results of degener-
ate example with classical solutions, and a numerical analysis is performed on the example of simply supported
cylindrical and rectangular sandwich panels. The elastic modulus and density of the functionally graded core are
assumed to be graded by a power law distribution of volume fractions of the constituents, and the Poisson ratio
is held constant. The effects of the distribution of functionally graded core’s properties, the thickness-side ratios
and ratio of radius (R) to length (l) κ = R/l are also examined.
Key words: functionally graded materials, cylindrical sandwich panel, rectangular sandwich plate, simply sup-
ported, free vibration
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0 Introduction

Functionally graded materials (FGMs) are compos-
ite materials that are microscopically inhomogeneous,
and the mechanical properties vary continuously in one
(or more) direction(s)[1]. Recently, as a new genera-
tion of sandwich structures, the FGMs concept was
also applied to sandwich composites. The functionally
graded (FG) sandwich construction commonly exists
in two types: FGM face sheets-homogeneous core and
homogeneous face sheets-FGM core[2]. In this paper,
the later one is considered, where the core is function-
ally graded material, and the volume fraction of the
FGM core constituents vary gradually, giving a non-
uniform microstructure with continuously graded prop-
erties such as elastic modulus, damp, density, etc. This
type of sandwich plates with FG cores may be utilized
for many purposes, among them: dynamic or noise, vi-
bration, and harshness (NVH) behaviour enhancement,
thermal insulation, construction of light-weight struc-
tures with higher strength to weight ratios, and ease of
manufacturing[3-4].
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Heretofore, many researchers studied dynamic be-
haviour of pure functionally graded structures and
functionally graded sandwich structures in the past
few years. Pradyumna and Bandyopadhyay[5] car-
ried out free vibration analysis of functionally graded
curved panels employing the higher-order shear defor-
mation theory (HSDT). Zhao et al.[6] presented a free
vibration analysis of metal and ceramic functionally
graded plates using the element-free kp-Ritz method.
Based on the 3D linear theory of elasticity, Li et
al.[7] studied the 3D free vibration of multi-layer FGM
system-symmetric and unsymmetrical FGM sandwich
plates by Ritz method, and two common types of
FGM sandwich plates were considered. Implement-
ing a new model based on high-order sandwich panel
theory, Rahmani et al.[8] has given a free vibration
analysis of sandwich beams with syntactic foam as a
functionally graded flexible core. Using element free
Galerkin method and robust meshless method, the free
vibration behaviour of sandwich beam with FG core
was analyzed by Amirani et al.[9] and the penalty
method was used for satisfaction of essential bound-
ary condition and continuity of the beam. Neves et
al.[10] derived a higher-order shear deformation the-
ory for modelling functionally graded plates account-
ing for extensibility in the thickness direction, and
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studied the free vibration and buckling of functionally
graded isotropic plates and functionally graded sand-
wich plates. Alibeigloo and Liew[11] examined the vi-
bration behavior of FGM cylindrical sandwich panel us-
ing the Fourier series and state space technique.

To the best of the authors’ knowledge, limited litera-
ture is available related to the study on the free vibra-
tion behaviours of functionally graded sandwich struc-
tures with a functionally graded core and isotropic face
sheets, where the elastic modulus and density of the
face sheets and core are not discontinuous at the inter-
face. Therefore, in the present analysis, free vibration
of FG cylindrical and rectangular sandwich panels is
studied by employing assumptions in Reissner sandwich
plate theory. The elastic modulus and density of the
functionally graded core obey arbitrary function Ec(z)
along the thickness direction, and the Poisson ratio ν
keeps constant.

1 Basic Assumptions

As shown in Fig. 1, the sandwich cylindrical panel
with length l and width b investigated has stiff face
sheets and soft cores, the assumptions in Reissner sand-
wich plate theory are introduced as follows[12].

(1) Since the face sheet is thin, it is assumed to be
in membrane-stress state, the normal stresses σx, σy

through the thickness are uniform.

(2) Since the elastic modulus of the core is exception-
ally low in comparison with the faces’, the stresses in
the core σx = σy = τxy = 0.

(3) In the whole sandwich plate, the z-direction nor-
mal stress and strain are left out of account, i.e., σz = 0,
εz = 0.

x

l

z O

b

y

Fig. 1 FGM sandwich cylindrical panel

1.1 Stress and Displacement Fields in the Core
For the core, the stress equilibrium equations are

(body forces are neglected):

∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
= 0

∂τxy

∂x
+

∂σy

∂y
+

∂τyz

∂z
= 0

∂τxz

∂x
+

∂τyz

∂z
+

∂σz

∂z
= 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (1)

Considering the assumptions (2) and (3), the Eq. (1)
may be simplified to be:

∂τxz

∂z
= 0

∂τyz

∂z
= 0

⎫
⎪⎬

⎪⎭
. (2)

It can be derived from the Eq. (2) that the shear
stress is uniform through the thickness of the core. And
according to the boundary conditions, the shear stresses
at the top and bottom faces of the sandwich plate must
vanish:

z = ±
(dc

2
+ df

)
, τxz = 0, τyz = 0, (3)

where dc and df are the thickness of the core and face
sheet, respectively.

Since this is a thin-face sandwich, as shown in Fig. 2,
the shear stress τ in the face can also be assumed to
decrease uniformly across the thickness of each face to
zero at the free surface.

τ

Fig. 2 The assumption of variation of transverse shear
stress through the thickness

If the shear forces are Fx and Fy, the shear stresses
τxz and τyz of the core can be given by[12]:

τxz =
Fx

dc + df

τyz =
Fy

dc + df

⎫
⎪⎪⎬

⎪⎪⎭

, (4)

The shear strains are obtained from the strain-strain
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relations of linear elasticity, i.e.,

γxz =
Fx

Gc(z)(dc + df)

γyz =
Fy

Gc(z)(dc + df)

⎫
⎪⎪⎬

⎪⎪⎭

, (5)

where Gc(z) is the shear modulus of the core, it is given
by

Gc(z) =
Ec(z)

2(1 + μ)
, (6)

and Ec(z) is the elastic modulus of the core.
According to stress-displacement relations, the shear

strains can be also derived using the follow expressions:

γxz =
∂w

∂x
+

∂u

∂z

γyz =
∂w

∂y
+

∂v

∂z

⎫
⎪⎪⎬

⎪⎪⎭

, (7)

where u, v and w are the displacements along x, y and
z axis, respectively. Substituting Eqs. (5) and (6) into
Eq. (7) and integration with respect to z give

u =
2(1 + μ)Fx

(dc + df)
J0(z) − z

∂w

∂x

v =
2(1 + μ)Fy

(dc + df)
J0(z) − z

∂w

∂y

⎫
⎪⎪⎬

⎪⎪⎭

, (8)

where
J0(z) =

∫
1

Ec(z)
dz. (9)

It can be seen from the Eqs. (8) and (9) that the
displacements u and v are related to the variation of
the functionally graded core’s elastic modulus across
the thickness.
1.2 Displacement and Stress Fields in the Face

Sheets
With the assumption (1) and Eq. (8), the displace-

ment field in face sheets of the sandwich plate is as-
sumed to be given by

u± =
2Fx(1 + μ)
(dc + df)

J0

(
± dc

2

)
− dc + df

2
∂w

∂x

v± =
2Fy(1 + μ)
(dc + df)

J0

(
± dc

2

)
− dc + df

2
∂w

∂y

⎫
⎪⎪⎬

⎪⎪⎭

, (10)

where the superscripts (+) and (−) denote the bottom
and top surfaces of the sandwich plate, respectively.

Since the strain field of the face sheets is:

ε±x =
∂u±

∂x

ε±y =
∂v±

∂y

γ±
xy =

∂u±

∂y
+

∂v±

∂x

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (11)

The stress-strain relations of the face sheets can be
expressed in the following expressions:

σ±
x =

Ef

1 − ν2
f

(∂u±

∂x
+ νf

∂v±

∂y

)

σ±
y =

Ef

1 − ν2
f

(∂v±

∂y
+ νf

∂u±

∂x

)

τ±
xy =

Ef

2(1 + νf)

(∂u±

∂y
+

∂v±

∂x

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (12)

where Ef and νf are the elastic modulus and Poisson
ratio of the face sheets.
1.3 The Internal Forces of Sandwich Plate

For the sandwich structures, the bending moments
Mx, My and Mxy are defined as

Mx = (dc + df)df(σ+
x − σ−

x )/2

My = (dc + df)df(σ+
y − σ−

y )/2

Mxy = Myx = (dc + df)df(τ+
xy − τ−

xy)/2

⎫
⎪⎬

⎪⎭
. (13)

The substitution of the Eqs. (10) and (12) into
Eq. (13) yields the expressions of the moment compo-
nents:

Mx =

Ef

1 − ν2
f

[
χ

∂Fx

∂x
− η

∂2w

∂x2
+ νf

(
χ

∂Fy

∂y
− η

∂2w

∂y2

)]

My =

Ef

1 − ν2
f

[
χ

∂Fy

∂y
− η

∂2w

∂y2
+ νf

(
χ

∂Fx

∂x
− η

∂2w

∂x2

)]

Mxy =

Ef

2(1 + νf)

(
χ

∂Fx

∂y
− 2η

∂2w

∂x∂y
+ χ

∂Fy

∂x

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (14)

where, the parameters χ and η are

χ = (1 + μ)df

[
J0

(dc

2

)
− J0

(
− dc

2

)]

η =
df(dc + df)2

2

⎫
⎪⎬

⎪⎭
. (15)

2 Governing Equations

2.1 Equations of Motion
For the functionally graded sandwich cylindrical

panel, the equations of motion are:

∂Nx

∂x
+

∂Nxy

∂y
= 0

∂Nxy

∂x
+

∂Ny

∂y
= 0

∂Mx

∂x
+

∂Mxy

∂y
− Fx = 0

∂Mxy

∂x
+

∂My

∂y
− Fy = 0

∂Fx

∂x
+

∂Fy

∂y
+

Ny

R
+ ρsω̄

2w = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (16)
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where ω̄ is the natural frequency of FG sandwich
cylindrical panels, R is ratio of radius, and ρs is the
areal density of functionally graded sandwich structure,
which is calculated as follows,

ρs = 2dfρf +
∫ dc

2

−dc
2

ρc(z)dz, (17)

and ρf is the bulk density of face sheets, ρc(z) is the
distribution function of FGM core’s density.

To solve the Eq. (16), we introduce the stress function
Φ, and assume Nx, Ny, Nxy in terms of Φ as[12]

Nx =
∂2Φ

∂y2

Ny =
∂2Φ

∂x2

Nxy = − ∂2Φ

∂x∂y

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (18)

Substituting Eq. (18) into Eq. (16), it can be found
that the first two equations are satisfied. By substitut-
ing Eqs. (14) and (18) into the other three equations in
Eq. (16) and simplifying, we obtain

Hχ
∂2Fx

∂x2
+ Kχ

∂2Fx

∂y2
+ (Hνfχ + Kχ)

∂2Fy

∂x∂y
−

Hη
∂3w

∂x3
− (Hνfη + 2Kη)

∂3w

∂x∂y2
− Fx = 0

(Kχ + Hνfχ)
∂2Fx

∂x∂y
+ Hχ

∂2Fy

∂y2
+ Kχ

∂2Fy

∂x2
−

Hη
∂3w

∂y3
− (Hνfη + 2Kη)

∂3w

∂x2∂y
− Fy = 0

∂Fx

∂x
+

∂Fy

∂y
+

1
R

∂2Φ

∂x2
+ ρsω̄

2w = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (19)

where
H =

Ef

1 − ν2
f

K =
Ef

2(1 + νf)

⎫
⎪⎪⎬

⎪⎪⎭

. (20)

2.2 Compatibility Equation
For the functionally graded sandwich cylindrical

panel, its deformation is still guided by the following
compatibility equation:

∂2εx

∂y2
+

∂2εy

∂x2
=

∂2γxy

∂x∂y
. (21)

Strain-displacement relations are:

εx =
∂u

∂x

εy =
∂v

∂y

γxy =
∂v

∂x
+

∂u

∂y

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (22)

and equations of non-moment elasticity theory for
cylindrical panels are,

∂u

∂x
=

1
B

(Nx − νfNy)

∂v

∂y
=

1
B

(Ny − νfNx) +
w

R

∂u

∂y
+

∂v

∂x
=

2(1 + νf)
B

Nxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (23)

where B = 2Efdf .
After substituting Eqs. (22), (23) and (18) into the

compatibility Eq. (21), the deformation compatibility
equation for cylindrical plate can be ultimately trans-
lated into:

1
B

(∂4Φ

∂y4
+

∂4Φ

∂x4
+ 2

∂4Φ

∂x2∂y2

)
+

1
R

∂2w

∂x2
= 0. (24)

3 Boundary Conditions and Solutions

3.1 Boundary Conditions
For panels which are simply supported all round the

edges, the boundary conditions may be written as:

x = 0, l : w = 0, Mx = 0, σx = 0, v = 0
y = 0, b : w = 0, My = 0, σy = 0, u = 0

}

. (25)

According to the boundary conditions, we may assume

w(x, y) =
∞∑

m=1

∞∑

n=1

Wmn sin
mπx

l
sin

nπy

b

Fx(x, y) =
∞∑

m=1

∞∑

n=1

Qxmn cos
mπx

l
sin

nπy

b

Fy(x, y) =
∞∑

m=1

∞∑

n=1

Qymn sin
mπx

l
cos

nπy

b

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (26)

where Wmn, Qxmn , Qymn are unknown functions.
3.2 Solution Procedure

Substituting Eq. (26) into the third formula in
Eq. (19) gives:

Φ = R
( l

mπ

)2 ∞∑

m=1

∞∑

n=1

[
− mπ

l
Qxmn−

nπ

b
Qymn + ρsω̄

2Wmn

]
sin

mπx

l
sin

nπy

b
. (27)

Then, the substitution of Eq. (27) into compatibility
Eq. (24) yields:

mπ

l
φQxmn +

nπ

b
φQymn−

[
φρsω̄

2 − B

R2

(mπ

l

)2]
Wmn = 0, (28)

where
φ =

[ l

mπ

(nπ

b

)2

+
mπ

l

]2

. (29)
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At the same time, from the first two formulas of the
Eq. (19), we can obtain:

[
Hχ

m2π2

l2
+ Kχ

n2π2

b2
+ 1

]
Qxmn+

(Hνfχ + Kχ)
mnπ2

lb
Qymn−

[
Hη

m3π3

l3
+(Hνfη + 2Kη)

mn2π3

lb2

]
Wmn = 0

(Kχ + Hνfχ)
nmπ2

lb
Qxmn+

(
Hχ

n2π2

b2
+ Kχ

m2π2

l2
+ 1

)
Qymn−

[
Hη

n3π3

b3
+(Hνfη + 2Kη)

m2nπ3

l2b

]
Wmn = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (30)

The Eq. (30) can be also written in the following
form:

[
A11 A12

A12 A22

][
Qxmn

Qymn

]

=

[
B1

B2

]

Wmn, (31)

where

A11 = Hχ
m2π2

l2
+ Kχ

n2π2

b2
+ 1

A12 = (Hνfχ + Kχ)
mnπ2

lb

A22 = Hχ
n2π2

b2
+ Kχ

m2π2

l2
+ 1

B1 = Hη
m3π3

l3
+ (Hνfη + 2Kη)

mn2π3

lb2

B2 = Hη
n3π3

b3
+ (Hνfη + 2Kη)

m2nπ3

l2b

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (32)

Then, by solving the Eq. (31), the coefficients Qxmn

and Qymn can be obtained in terms of Wmn as

[
Qxmn

Qymn

]

=

⎡

⎢
⎢
⎣

D1

D

D2

D

⎤

⎥
⎥
⎦Wmn, (33)

where
D1 = A22B1 − A12B2

D2 = A11B2 − A12B1

D = A11A22 − A2
12

⎫
⎪⎬

⎪⎭
. (34)

Substitute Eq. (33) into Eq. (28), and consider of
Wmn �= 0, we can obtain:

(mπ

l

)
φ

D1

D
+

(nπ

b

)
φ

D2

D
−

φρsω̄
2 +

B

R2

(mπ

l

)2

= 0. (35)

3.3 Solutions
In the following, we will give the exact solutions for

free vibrating of the functionally graded sandwich cylin-
drical panels and rectangle plates by solving Eq. (35).
It will be straightforward because it is not needed to
solve the eigenproblem. The solutions are as follows.

(1) Natural frequency of FG sandwich cylindrical
panels

ω̄ =
√

mπ

l

D1

ρsD
+

nπ

b

D2

ρsD
+

(mπ

l

)2 B

ρsR2φ
. (36)

(2) Natural frequency of rectangle FG sandwich
plates. Let R = ∞, then the calculation formula for the
natural frequencies of rectangular functionally graded
sandwich plates are acquired as:

ω̄ =

√
mπ

l

D1

ρsD
+

nπ

b

D2

ρsD
. (37)

In the following discussions, the natural frequency f
is defined as

f =
ω̄

2π
. (38)

4 Numerical Results and Discussions

4.1 Free Vibration Analysis of Cylindrical and
Rectangular Sandwich Panels with Homo-
geneous Cores

To verify the correctness of proposed method, as
shown in Eqs. (1) and (2), the free vibration analysis of
cylindrical sandwich panels and rectangular sandwich
plates with a homogeneous core is given and the result
is compared with the classical solutions[12].

(1) Rectangular sandwich plate: l = 2 000mm, b =
1 000mm.

(2) Cylindrical sandwich panels: l = 2 000mm, R =
b = 1 000mm.

The thickness of the sandwich panels equals to
50mm, and the thickness of face sheet and core is 5
and 40mm respectively. The face sheet and core are
both isotropic materials, the engineering elastic con-
stants are as follows.

Face sheets: Ef = 20 GPa, νf = 0.2, ρf = 1.2 ×
10−6 kg/mm3.

Core: Ec = 0.1 GPa, ν = 0.45, ρc = 0.8 ×
10−6 kg/mm3.

The results of natural frequencies fobtained by the
present paper for sandwich cylindrical panels and rect-
angular plates are shown and compared with classical
solutions in Tables 1 and 2. It is obvious that the re-
sults of the present model closely agree with classical
solutions.
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Table 1 Comparison of natural frequencies of rect-
angular sandwich plates

Mode m n
f/Hz

Error/%

Presented Classical[12]

1 1 1 72.8 71.2 2.2

2 2 1 103.9 101.0 2.8

3 3 1 145.8 141.1 3.4

Table 2 Comparison of natural frequencies of
cylindrical sandwich panels

Mode m n
f/Hz

Error/%

Presented Classical[12]

1 1 1 99.5 98.3 1.2

2 1 2 175.0 169.1 3.5

3 2 1 198.9 197.4 0.8

4.2 Free Vibration Analysis of Cylindrical and
Rectangular Sandwich Panels with Func-
tionally Graded Cores

In this section, the free vibrations of simply sup-
ported functionally graded cylindrical and rectangular
sandwich panels with functionally graded cores are an-
alyzed. For the functionally graded core, the variation
of elastic modulus along the thickness direction is as-
sumed to be of the following form[13-14]:

Ec(z) = Et

[
(1 − λ)

(1
2
− z

dc

)n0

+ λ
]
, (39)

where Et is elastic modulus at the upper surface of the
core; λ is the ratio of elastic modulus at core’s upper
and lower surface; and n0 is the volume fraction expo-
nent (n0 is also called grading index[12]). In this exam-
ple, Et = 0.1GPa, the Poisson ratio of the core is held
constant ν = 0.45, while the other properties (including
thickness, density ect.) of the face sheets and core are
the same as the case in Subsection 4.1. The length (l)
and width (b) of the panels satisfy l = b.

In the following, the effects of parameters λ, n0, the
thickness-side ratios δ and κ on the natural frequen-
cies of functionally graded cylindrical and rectangular
sandwich panels are discussed. The ratios δ and κ are
defined as:

δ =
l

dc + 2df

κ =
R

l

⎫
⎪⎬

⎪⎭
. (40)

4.2.1 Effect of FGM Core Material Parameters λ and
n0

Based on the derived formulation, the natural fre-
quency of functionally graded sandwich cylindrical pan-
els (κ = 1) and rectangular plates are calculated and

various gradient parameters λ = 0.1, 0.2, 1, 5, 10 and
n0 = 0.5, 1, 2 are considered in the analysis. The length
and width of the panels satisfy l = b = 2 000mm.

Tables 3 and 4 display the effects of λ and n0 on
the natural frequency of functionally graded cylindri-
cal and rectangular sandwich panels when the density
of FGM core keeps constant along the thickness direc-
tion. It can be seen that: � the fundamental frequen-
cies of functionally graded cylindrical and rectangular
sandwich panels (ff) will rise with the increase of λ; �
when λ < 1, the fundamental frequency of functionally
graded sandwich panels become lower with the rise of
n0; when λ > 1, on the contrary.

Table 3 The fundamental frequency of FG cylin-
drical sandwich panels for different n0 and
λ when ρc is constant

λ
ff/Hz

n0 = 0.5 n0 = 1 n0 = 2

0.1 72.74 65.81 58.34

0.2 74.32 69.63 64.56

1 80.29 80.29 80.29

2 83.76 85.12 86.38

5 88.67 90.89 92.44

10 92.18 92.57 92.71

Table 4 The fundamental frequency of FG rectan-
gular sandwich plates for different n0 and
λ when ρc is constant

λ
ff/Hz

n0 = 0.5 n0 = 1 n0 = 2

0.1 31.47 28.97 25.69

0.2 31.98 30.40 28.46

1 33.75 33.75 33.75

2 34.67 35.01 35.32

5 35.84 36.34 36.73

10 36.61 37.07 37.40

In practice, the density ρc of the FGM core in func-
tionally graded sandwich structures varies along the
thickness. The distribution of density ρc can be as-
sumed to obey the same function as the elastic modulus
Ec(z):

ρc(z) = ρt

[
(1 − λ)

(1
2
− z

dc

)n0

+ λ
]
, (41)

where ρt is the density at the upper surface of the core.
Tables 5 and 6 show the effects of λ and n0 on the

natural frequency when the density ρc varies the along
the thickness direction accordance with the Eq. (41). It
is obvious that the effects of λ and n0 on the natural
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Table 5 The fundamental frequency of FG cylin-
drical sandwich panels for different n0 and
λ when ρc = ρc(z)

λ
ff/Hz

n0 = 0.5 n0 = 1 n0 = 2

0.1 82.26 80.23 77.71

0.2 82.78 82.69 82.52

1 80.29 80.29 80.29

2 75.14 72.89 70.89

5 63.18 58.01 53.92

10 51.68 44.79 40.03

Table 6 The fundamental frequency of FG rectan-
gular sandwich plates for different n0 and
λ when ρc = ρc(z)

λ
ff/Hz

n0 = 0.5 n0 = 1 n0 = 2

0.1 35.59 35.31 34.21

0.2 35.62 36.10 36.38

1 33.75 33.75 33.75

2 31.10 29.98 28.98

5 25.54 23.19 21.42

10 20.52 17.93 16.15

frequency are different from that of the case ρc keeps
constant. It can be seen that: � be contrary to the
rise of fundamental frequencies in Tables 3 and 4, the
frequencies become lower in Tables 5 and 6 with the
rise of λ (except for λ = 0.2 in rectangular sandwich
panels); � the fundamental frequencies get lower with
the rise of n0, regardless of λ < 1 or not (except for
λ = 0.2 in rectangular sandwich panels).

It can be seen from the above that when the density
of the FGM core changes in the thickness direction, it
is unable to conclude a uniform law of the effect of λ
and n0 on the natural frequency of the structures. In
practical applications, it is needed to analyze the effects
according to the specific distribution function of Ec(z)
and ρc(z).
4.2.2 Effect of Plate Side-to-Thickness Ratio δ

Simply supported functionally graded cylindrical and
rectangular panels are considered to study the effect
of the plate side-to-thickness ratio on the natural fre-
quency, where the density of FGM core keeps con-
stant and different λ and n0 are studied. The varia-
tion of fundamental frequency of functionally graded
cylindrical and rectangular sandwich panels with ratio

δ =
l

dc + 2df
are shown in Figs. 3 and 4 Respectively. It

can be seen that the natural frequencies always decrease
with increased side-to-thickness ratio δ in all cases.
4.2.3 Effect of Ratio κ = R/l

Simply supported functionally graded cylindrical
sandwich panels with l = b = 2 000mm are analyzed

10 20 30 40 50
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Fig. 3 Fundamental frequencies versus side-to-thickness
ratio δ (κ = 1)
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Fig. 4 Fundamental frequencies versus side-to-thickness
ratio δ

to study the effect of ratios κ = R/l on the natural fre-
quency. The density of FGM core keeps constant and
different λ and n0 are considered. The variations of
fundamental frequency with respect to the various pa-
rameters are given in Table 7. From Table 7 is seen that
the fundamental frequencies decrease with increase in

Table 7 The fundamental frequency of FG cylin-
drical sandwich panels for different κ, n0

and λ when ρc = ρc(z)

Condition
ff/Hz

κ = 1 κ = 10 κ = 100 κ = ∞ (plate)

λ = 0.1, n0 = 1 65.81 30.18 28.97 28.96

λ = 0.1, n0 = 2 58.34 27.05 25.70 25.69

λ = 10, n0 = 1 92.57 38.02 37.08 37.07

λ = 10, n0 = 2 92.71 38.35 37.41 37.40
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ratio κ.

5 Conclusion

The free vibration analysis of simply supported cylin-
drical and rectangle sandwich panels with isotropic face
sheets and a functionally graded core is investigated in
this paper based on the Reissner assumptions. The de-
generate numerical results for sandwich structures with
a homogeneous core are compared with the existing
classical solutions and good agreement is displayed. For
the functionally graded cylindrical and rectangle sand-
wich panels with constant density of FGM core along
the thickness, the fundamental frequency of the struc-
tures always rises with the increase of λ and decrease
with the increase in side-to-thickness ratios δ and κ;
and when λ < 1, the fundamental frequency becomes
lower with the rise of n0, when λ > 1, on the contrary.
However, if the density of the FGM core changed in the
thickness direction, it is needed to analyze the effects
according to the specific distribution function of Ec(z)
and ρc(z).
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