
J. Shanghai Jiaotong Univ. (Sci.), 2015, 20(6): 654-659

DOI: 10.1007/s12204-015-1673-0

Price-Based Power Control Algorithm in
Cognitive Radio Networks Based on Monotone Optimization

WANG Zheng-qiang1∗ (���), JIANG Ling-ge2 (���), HE Chen2 (� �)
(1. School of Communication and Information Engineering, Chongqing University of Posts and

Telecommunications, Chongqing 400065, China; 2. Department of Electronic Engineering,
Shanghai Jiaotong University, Shanghai 200240, China)

© Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2015

Abstract: This paper considers a price-based power control problem in the cognitive radio networks (CRNs).
The primary user (PU) can admit secondary users (SUs) to access if their interference powers are all under the
interference power constraint. In order to access the spectrum, the SUs need to pay for their interference power.
The PU first decides the price for each SU to maximize its revenue. Then, each SU controls its transmit power
to maximize its revenue based on a non-cooperative game. The interaction between the PU and the SUs is
modeled as a Stackelberg game. Using the backward induction, a revenue function of the PU is expressed as a
non-convex function of the transmit power of the SUs. To find the optimal price for the PU, we rewrite the revenue
maximization problem of the PU as a monotone optimization by variable substitution. Based on the monotone
optimization, a novel price-based power control algorithm is proposed. Simulation results show the convergence
and the effectiveness of the proposed algorithm compared to the non-uniform pricing algorithm.
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0 Introduction

With the increasing demand for wireless service,
spectrum becomes scarce and increasingly crowded, and
it needs to be used efficiently. The Federal Commu-
nications Commission (FCC) found the utilization of
the spectrum is low at most of the time[1]. Thus, the
technology of cognitive radio networks (CRNs)[2] is pro-
posed to solve the problem of spectrum scarcity and
improve the spectrum efficiency.

There are two basic methods that allow secondary
users (SUs) to access the spectrum owned by the pri-
mary user (PU): overlay and underlay models[3]. In
the overlay model, the SUs use spectrum sensing[4] to
identify and exploit the spectrum availability. The SUs
can access the spectrum when the PUs do not use it.
In the underlay model, the SUs can coexist with the
PU if the interference power constraint (IPC)[5] at the
PU’s receiver is not violent. We investigate the price-
based power control problem in the CRNs under the
IPC. The issue about pricing in the CRNs was inves-
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tigated in Refs. [6-10]. The authors in Ref. [6] mod-
eled the spectrum allocation problem in the CRNs as a
non-cooperative game and proposed a price-based iter-
ative water-filling algorithm to reach the Nash equilib-
rium. In Ref. [7], the authors investigated the pricing
issue for the power control problem in the code division
multiple access (CDMA) based CRNs. In Ref. [8], the
authors proposed a joint-pricing and power allocation
scheme for the CRNs. We proposed a novel price-based
power control algorithm based on convex optimization
to maximize the revenue of the CDMA based CRNs
in Ref. [9]. However, the algorithm that we proposed
in Ref. [9] could not handle the more general model
as Ref. [10]. The authors only gave the optimal price
for the case that there was no interference between the
SUs. Since the utility of the PU was a non-convex func-
tion for more general case that there was interference
between the SUs, the authors proposed a sub-optimal
non-uniform pricing algorithm in Ref. [10]. We give the
optimal price-based power control algorithm to improve
the non-uniform pricing algorithm when there exists in-
terference between the SUs. The main contributions of
this paper are as follows. By characterizing the prop-
erty of the transmit power of SUs under the optimal
pricing scheme, we prove that the revenue maximiza-
tion problem of PU can be expressed as an equivalent
monotone optimization. Based on this result, a novel
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price-based power control algorithm based on mono-
tone optimization is proposed. Simulation results show
that the proposed pricing scheme can improve the rev-
enue of the PU, and the sum revenue of the SUs com-
pared with the non-uniform pricing algorithm proposed
in Ref. [10].

1 System Model

We consider an uplink transmission for the CRNs.
The system model is shown in Fig. 1. The PU is li-
censed to transmit, and the n SUs need to pay the PU
for their transmissions. Link gain between SUi (i.e. the
ith SU) and the PU is denoted by gi (i = 1, 2, · · · , n).
Let hij denote the link gain from the jth SU’s trans-
mitter to the ith SU’s receiver. The IPC of SUs to the
PU is T . The PU will charge the ith SU price (i.e. λi)
per unit interference power.

Fig. 1 System model

We model the strategy between the PU and the SUs
as a Stackelberg game[11]. The PU is the leader in this
game. It chooses a price for each SU to maximize its
own revenue under IPC. The SUs are the followers of
the game. After the PU chooses the price for each SU,
the SUs will decide the transmit power to maximize
its utility based on the non-cooperative power control
game.

The problem of the PU is as follows:

max up(λ1, · · · , λn) =
n∑

i=1

λigipi, (1)

s.t.
n∑

j=1

gjpj � T, (2)

pj � 0, j = 1, 2, · · · , n, (3)

where up denotes the revenue of the PU. Constraint (2)
means that the total interference power made by SUs

should be below a given threshold T to ensure the SUs’
transmission not to cause unendurable interference to
the PU. Constraint (3) means that the transmit power
of each SU can only take on the non-negative value.
The utility of the ith SU has two parts: one is the
income from the transmit rate when it transmits at a
given power pi; the other is the payment to the PU. The
signal-to-interference and noise ratio (SINR) of the ith
SU is given by

γi(p) =
hiipi∑

j �=i

hijpj + σ2
i

, (4)

where pi is the transmit power of the ith SU, p =
[p1 · · · pn] is the transmit power of all SUs, and σ2

i is
the PU’s interference plus the ambient noise at the ith
SU’s receiver. Thus, the utility of SUi is given by

ui(p, λi) = wi log[1 + γi(p)] − λigipi, (5)

where wi is the equivalent utility per unit data rate
valuation contributing to the ith SU’s utility, which is
a predefined coefficient that transforms the ith SU’s
transmission rate to a monetary utility. We refer to wi

as the preference factor of SUi. Therefore, the opti-
mization problem for the ith SU is as follows:

max ui(pi, p−i, λi), (6)
s.t. pi � 0,

where p−i denotes the transmit power of the SUs except
the ith SU.

2 Price-Based Power Control Algo-
rithm

In this section, a novel pricing algorithm for the PU
is given to maximize its revenue based on monotone
optimization by the variable substitution. According
to the property of the transmit power of SUs under the
optimal price, we illustrate the relationship between the
transmit power of SUs for the given price of λi.

Lemma 1 Let (p1, · · · , pn) be the transmit power
of the SUs when the PU charges the ith SU for a given

price λi such that λi is less than or equal to
wihii

giσ2
i

(i =

1, 2, · · · , n). Then the transmit power pi of the SUs at
the PU satisfies the following equation:

⎡

⎢⎢⎣

h11 · · · hn1

...
...

h1n · · · hnn

⎤

⎥⎥⎦

⎡

⎢⎢⎣

p1

...

pn

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

w1h11/(λ1g1) − σ2
1

...

wnhnn/(λngn) − σ2
n

⎤

⎥⎥⎦ . (7)
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Proof Using the optimal condition for the ith SU
in Eq. (6), we have

∂ui(pi, p−i)
∂pi

=
wihii

n∑

j=1

hijpj + σ2
i

− λigi = 0. (8)

Then, we can get the following equation:

n∑

j=1

hijpj + σ2
i =

wihii

λigi
. (9)

For the SUi (i = 1, 2, · · · , n), Eq. (7) is derived by
rewriting Eq. (9) in the matrix form.

According to Lemma 1, we have the following impor-
tant identities:

wihiipi
n∑

j=1

hijpj + σ2
i

= λigipi. (10)

It means that the revenue of the PU gets from the

ith SU can be expressed as
wihiipi

n∑

j=1

hijpj + σ2
i

such that

pi satisfies Eq. (7) for a given price. Then substituting
Eq. (10) into Eq. (1), we can rewrite the revenue of the
PU:

max
n∑

i=1

wihiipi
n∑

j=1

hijpj + σ2
i

(11)

s.t.
n∑

j=1

gjpj � T, (12)

pj � 0, j = 1, 2, · · · , n, (13)

Since the objective function in Problem (11) is not a
concave function, it is a non-convex optimization prob-
lem and thus cannot be solved globally and optimally by
the convex optimization algorithm[12]. However, we in-
troduce n auxiliary variables to change Problem (11) to
a monotone optimization problem[13]. Hence, we pro-
pose a novel pricing scheme in order to find the global
optimal solution to Problem (11) based on monotone
optimization.

Let

zi = wihiipi

/
n∑

j=1

hijpj + σ2,

i = 1, 2, · · · , n.

Problem (11) is equivalent to the following problem:

max up =
n∑

i=1

zi (14)

s.t.
n∑

j=1

gjpj � T, (15)

pj � 0, j = 1, 2, · · · , n, (16)

zi =
wihiipi

n∑

j=1

hijpj + σ2
i

, i = 1, 2, · · · , n. (17)

Because the function of Problem (14) increases mono-
tonically with zi, it is equivalent as follows:

max up = f(z) =
n∑

i=1

zi (18)

s.t.
n∑

j=1

gjpj � T, (19)

pj � 0, j = 1, 2, · · · , n, (20)

0 � zi � wihiipi
n∑

j=1

hijpj + σ2
i

, i = 1, 2, · · · , n. (21)

Let

S =
{
(p1, · · · , pn)

∣∣∣
n∑

i=1

gipi � T,

pi � 0, i = 1, 2, · · · , n
}
.

Feasible region defined by Formulas (19)—(21) can be
written as

Ω =
⋃

p∈S

{
(z1, · · · , zn)

∣∣0 � zi � wihiipi
n∑

j=1

hijpj + σ2
i

}
.

Therefore, the function of Problem (18) is equivalent to
the following problem:

max up =
n∑

i=1

zi (22)

s.t. z ∈ Ω.

Next, we prove the function of Problem (22) is a mono-
tone optimization problem over a normal set. First of
all, we give some useful definitions as follows[13]. In this
paper, for any two vectors y′ ∈ Rn and y ∈ Rn, y′ � y
means that y′ is component-wise smaller than or equal
to y, i.e., y′

i � yi, ∀i = 1, 2, · · · , n.
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Definition 1 A set G ⊂ Rn
+ is called normal if for

any point x ∈ G, all x′ ∈ Rn
+ with x′ � x also satisfy

x′ ∈ G.
Definition 2 If z ∈ Rn

+, the hyperrectangle

[0, z] = {y ∈ R+
n |0 � y � z}

is called a box.
Definition 3 Given any finite set T ∈ Rn

+, the
union of all the boxes [0, z], z ∈ T , is called a polyblock
with vertex set T .

According to the above definitions, we can verify that
Problem (22) satisfies the following properties:

(1) The object function of Problem (22) is an increas-
ing function with z.

(2) The feasible region Ω is a normal set. This is
because Ω can be viewed as the union of a family of
the normal set, and the union of a family of the normal
set is normal set.

From the properties of Problem (1) and Constraint
(2), Problem (22) maximizes an increasing function
over a normal set. Therefore, the function of Problem
(22) is a monotone optimization problem[13]. Moreover,
the global optimal solution of the monotone optimiza-
tion problem can be solved by a polyblock approxima-
tion approach[13]. Therefore, we use the polyblock ap-
proximation approach to give a novel price-based power
control algorithm.

The proposed algorithm for price-based power con-
trol in the CRNs based on monotone optimization is
described in pseudo-code.

Initialization Let tolerance ε > 0 and iterative
number k = 1, construct the initial polyblock S1 with
vertex set Z(1) = {z1}, where the ith element of {z1}
is given by

zi
1 = max

p∈S

wihiipi

σ2
i +

n∑

j=1

hjipj

=

wihiiT

gi

hiiT

gi
+ σ2

i

.

Repeat
(1) Find optimal vertex z(k) that maximizes the util-

ity of PU based on z(k) = arg max
z∈Z(k)

f(z).

(2) Compute the intersection point r(k) = δz(k) on
the pareto boundary of Ω, where δ is determined by
bisection method.

(3) Update the best intersection point r
(k)
best until the

kth iteration as follows:

r
(k)
best = argmax{f(r(k)), f(r(k−1)

best )}.

(4) Generate n new vertices z(n),1, · · · , z(n),n adja-
cent to z(k) by

z(n),i = z(n) − (z(n)
i − r

(n)
i )ei,

where ei denotes the vector whose every element equals
0 except the jth element being 1.

(5) Construct the vertex set Z(k+1) by

Z(k+1) = Z(n)\z(n)
⋃

{z(n),1, · · · , z(n),n}.

(6) k = k + 1.

Until f(z(k)) − f(r(k)
best) � ε.

Output Compute the optimal transmit power
(p1, · · · , pn) of all the SUs by solving the equation

zi =
wihiipi

n∑
j=1

hjipj + σ2
i

,

i = 1, 2, · · · , n,

where zi is the ith element of r
(k)
best. The optimal price

λi for the ith SU is given by

λi =
wihii

gi

( n∑

j=1

hijpj + σ2
i

) .

Let z∗ be the optimal solution to Problem (22). The
optimal revenue of the PU satisfies

f(r(i)
best) � f(z∗) � f(z(i))

for each iteration i. It has been proven in Ref. [13] that
the difference between f(z(i)) and f(rbest) will be less
than ε with a finite number of iterations for a given
tolerance ε > 0. Therefore, utility f(r(i)

best) achieved by
the PU from the proposed algorithm will converge to
the optimal solution.

3 Simulation Results

We first show the proposed algorithm is convergent,
and then we evaluate the performance of the pro-
posed pricing algorithm by comparing it with the non-
uniform pricing algorithm proposed in Ref. [10]. The
non-uniform pricing algorithm proposed in Ref. [10] has
two key steps. The first step is that each SU takes the
worst interference power from other SUs as noise to re-
move the cross-interference power. The second step is
that the PU computes the price and transmit power for
each SU without cross-interference power by the non-
uniform pricing algorithm. It is a suboptimal pricing
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scheme because it does not consider the cross inter-
ference channel gain by treating the worst interference
power among the SUs.

The convergence performance of the proposed algo-
rithms for three SUs is shown in Fig. 2. The interfer-
ence power constraint is T = 1 mW, and the channel
gain matrix among the SUs is

H =

⎡

⎢⎢⎣

0.344 5 0.001 0 0.009 2

0.007 8 0.602 2 0.083 4

0.006 8 0.003 9 0.462 4

⎤

⎥⎥⎦

The channel gain from the SUs to the PU is given by
g = [0.016 1 0.039 0 0.023 6], for all link i (i = 1, 2, 3)
there is σ2

i = 1, and the preference factor for all the
SUs is 1. The tolerance ε for the proposed algorithm is
set to be 0.05. Figure 2 shows the revenue of PU versus
iteration. The proposed algorithm converges to 2.432 1
after about 70 iterations. The optimal revenue of PU
obtained by exhaustive search is 2.433 8. Therefore, the
proposed algorithm finds the global optimal solution
within an allowable error of 0.001 7, which is less than
the given tolerance ε = 0.05.
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Fig. 2 The PU revenue versus iteration

We compare the system performance obtained by the
proposed algorithm with the non-uniform pricing al-
gorithm versus interference-to-noise ratio (INR), where
INR = T/σ2. The SUs are randomly located in a square
area with the PU located at the center. The radius of
the square area is 1 km. The distance of the transmitter
of the SU to its receiver is in the range of 100m. The
channel gains between the ith SU’s transmitter to the
jth SU’s receiver and the PU are modeled as

hij = 10αij/10Kd−4
ij ,

gi = 10βi/10Ks−4
i ,

where, dij and si are the distances of the ith SU’s trans-
mitter to the jth SU’s receiver and the PU, respectively;
αij and βi are the random Gaussian variables with zero
mean and 6 dB standard deviation; K = 103 indicates
the system and transmission effect, such as antenna

gain and carrier frequency. The number of SUs is 5,
and the σ2 equals 1 pW. The preference factor for all
SUs is 1. The results are averaged over 104 independent
realizations for the users’ locations and fading channel
coefficients. The INR changes from −20 to 20 dB, which
means that the IPC changes from 0.01 to 100pW.

Figure 3 shows the revenue of two algorithms versus
the INR. The PU revenue obtained by the two algo-
rithms increases as the INR increases. This is because
that the pricing strategy for the PU increases as the
INR increases. The PU revenue obtained by the pro-
posed algorithm will gain more than 2% profit com-
pared with the non-uniform pricing algorithm when the
INR equals 20 dB. The revenue of the PU is saturated
as the INR increases and is bounded by 5. The reason

is that the revenue of the PU is bounded by
n∑

i=1

wi.

Figure 4 shows the sum revenue of the SUs ver-
sus INR. Both algorithms’ sum revenues increase as
the INR increases. The proposed algorithm is better
than the non-uniform pricing algorithm for all the INR.
When the INR equals 20dB, the proposed algorithm
improves 20% sum revenue of the SUs compared to the
non-uniform pricing algorithm.
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Fig. 3 The PU revenue versus INR
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Fig. 4 Sum revenue of the SUs versus INR
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4 Conclusion

We have investigated the price-based power control
in the CRNs from the Stackelberg game. The revenue
of the PU is expressed as a function of the transmit
power of the SUs. Based on the variable substitution,
the revenue of the PU is rewritten as a monotonic opti-
mization. We propose a novel price-based power algo-
rithm based on the monotonic optimization. Compared
with the non-uniform pricing algorithm, the proposed
pricing algorithm improves the revenue of both the PU
and SUs.

We have assumed that the channel information is per-
fect in this paper. When the channel information is im-
perfect, the utility function and the interference power
constraint condition for PU and SUs will be changed
and the proposed work may not be applicable. The
price-based power control in the CRNs under imperfect
channel information will be part of our future work.
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