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Abstract: An adaptive inverse optimal attitude controller for flexible spacecraft with fault-free actuator is de-
signed based on adaptive control Lyapunov function and inverse optimal methodology subjected to unknown
parameter uncertainties, external disturbances and input saturation. The partial loss of actuator effectiveness and
the additive faults are considered simultaneously to deal with actuator faults, and the prior knowledge of bounds
on the effectiveness factors of the actuators is assumed to be unknown. A fault-tolerant control version is designed
to handle the system with actuator fault by introducing a parameter update law to estimate the lower bound of
the partial loss of actuator effectiveness faults. The proposed fault-tolerant attitude controller ensures robustness
and stabilization, and it achieves H∞ optimality with respect to a family of cost functionals. The usefulness of the
proposed algorithms is assessed and compared with the conventional approaches through numerical simulations.
Key words: fault-tolerant, attitude control, inverse optimization, flexible spacecraft, adaptive control, input sat-
uration
CLC number: TP 13 Document code: A

0 Introduction

Stability and accuracy are of prime importance in the
satellite attitude control. However, during the space-
craft mission, factors like aging and accident may cause
damage to the actuators and sensors. Actuator faults
can lead to control system instability or even end up
with catastrophic events if they are not well handled.
Hence, fault tolerance of the spacecraft attitude con-
trol system is one of the crucial issues that need to be
studied. Fault-tolerant control (FTC) has been counted
as one of the most promising control technologies for
maintaining the specified safety performance of a sys-
tem in the presence of unexpected faults. Several FTC
methods have been proposed for attitude control of a
spacecraft in recent years[1-5]. Xiao and Hu[6] addressed
a fault-tolerant controller for a flexible spacecraft to ef-
fectively accommodate the case where both the loss of
control effectiveness and the additive faults occurred
in actuators simultaneously. However, in that paper
the knowledge of the lower bound of the effectiveness
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factor was needed to implement the controller. In ad-
dition, control input saturation in the controller design
was not considered explicitly. In fact, due to the phys-
ical limitations in practice, the outputs of the actuator
are constrained. As an actuator reaches its input limit,
any effort to further increase the actuator output would
result in no variation in the output, which may lead to
a performance deterioration or even instability of the
system[4]. Hence taking control input saturation ex-
plicitly into account in the attitude control algorithm
is of interest and significance in practice[7-8]. Although
control input saturation and fault tolerance were con-
sidered by Cai et al.[9] and Zou and Kumar[10] in the
control design, the information about the lower bound
of the effectiveness factor was needed, and the additive
fault was not taken into account. Hu and Xiao[11] pro-
posed a fault-tolerant sliding mode attitude controller
for a spacecraft with input saturation, and the knowl-
edge of the lower bound of the effectiveness factor was
not needed via the adaptive estimate method. How-
ever, the degree of optimality of that controller was not
presented explicitly, and once again the additive fault
was not considered.

It is well known in optimal control theory that the
optimal feedback systems enjoy several desirable stabil-
ity and robustness properties as long as the optimiza-
tion is meaningful[12]. An additional consequence of
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optimality is the fact that the robust optimal controllers
do not waste unnecessary control effort to achieve ro-
bust stabilization. Therefore, optimality is a key pre-
requisite for any controller design strategy that tries to
effectively address the problem. Furthermore, the ben-
efits of optimality listed above do not depend on the
specific choice of the performance index as long as it is
a meaningful one. In recent years, increasing attention
has been focused on the optimal control problems of
a spacecraft[13-18]. Even though the above works pro-
vide the controllers that are optimal with respect to a
meaningful cost, in general, they do not lead to accurate
and reliable attitude control when the faults or distur-
bances occur in the components, actuators and sensors.
Recently, the H∞ optimal fault-tolerant control[19] was
addressed for a rigid satellite with time-varied actua-
tor fault. Though fault-tolerant was considered and
robust optimality was achieved in that control design,
the associated Hamilton-Jacobi-Isaacs partial differen-
tial (HJIPD) equation solution was a big challenge due
to the high nonlinearity of the attitude dynamics model.
Therefore, the practical application of that method was
still questionable.

A so-called inverse optimal control[20-22] is an alter-
native method to solve the nonlinear optimal control
problem by circumventing the need to solve the HJIPD
equation directly. The method was first addressed by
Bharadwaj et al.[23] and Krstić and Tsiotras[24] to solve
the attitude control problem. They designed an inverse
optimal feedback controller for the attitude regulation
problem of a rigid spacecraft without external distur-
bances and uncertainties in the inertia matrix. Later,
the H∞ inverse optimal attitude-tracking controller
with respect to extended disturbances[25] and the adap-
tive inverse optimal control with external disturbance
and uncertainty inertial matrix for a rigid spacecraft[26]

were proposed. In Ref. [26], an adaptive control Lya-
punov function was employed to deal with the uncer-
tainty of the inertial matrix. However, these proposed
inverse optimal approaches were limited only to dealing
with rigid spacecraft and thereby could hardly directly
be extended to the flexible spacecraft system, since the
vibration in the flexible appendages induced by the or-
biting attitude slewing operation may degrade the at-
titude pointing accuracy. Moreover, these controllers
did not explicitly consider actuator faults and input
saturation, and so could not be applied directly to the
spacecraft system with actuator faults and control con-
straint.

In this work, a novel fault-tolerant attitude control
strategy is addressed for flexible spacecraft to over-
come the shortcomings of the preceding research for
the spacecraft attitude control systems. The satura-
tion compensator based on radial basis function (RBF)
neural network (NN) is employed to reduce the effect
of the control input saturation of system. The addi-

tive faults and the partial loss of actuator effectiveness
are considered simultaneously in the attitude controller
design, and the lower bound of the actuator effective-
ness factor is assumed to be unknown. Three adap-
tive parameter update laws are addressed to estimate
the weight matrix of neural network, the lower bound
of the partial loss actuator effectiveness factor and the
unknown inertia matrix, respectively. The attitude of
spacecraft is represented by the unit quaternion, which
is singularity-free. The proposed fault-tolerant attitude
controller accounting for control input saturation is ex-
plicitly optimal with respect to a family of cost func-
tionals and achieves the H∞ disturbance attenuation
without solving the associated HJIPD equation directly
subjected to the actuator failures, uncertainty inertia
matrix and external disturbances. The derived con-
trol law can achieve the goal of fault-tolerant control
without the need of any fault detection and isolation
mechanism to determine the fault information.

1 Model Description and Problem For-
mulation

This section briefly introduces the attitude motion of
a flexible spacecraft with actuator faults, which incor-
porates the attitude kinematics and spacecraft dynamic
equations.

A unit quaternion is employed to represent the atti-
tude of the spacecraft, which is free of singularity. The
unit quaternion Q is defined by

Q =

[
q0

q

]
=

[
cos(θ/2)

e sin(θ/2)

]
, (1)

where, e ∈ R3 and θ denote the Euler axis and Euler
angle, respectively; q = [q1 q2 q3]T ∈ R3 and q0 ∈ R1

are called the vector part and the scalar part of the unit
quaternion, respectively. The quaternionQ satisfies the
unit norm constraint ‖Q‖ = 1. Then, the kinematic
equation is given by

Q̇ =

[
q̇0

q̇

]
=

1
2

[
−qT

q× + q0I3

]
ω, (2)

where ω ∈ R3 is the angular velocity of the spacecraft
with respect to an inertial frame I and expressed in
the body frame B, I3 ∈ R3×3 is the identity matrix,
and symbol “×” is an operator on the three-dimensional
vector q such that q× denotes

q× =

⎡
⎢⎢⎣

0 −q3 q2

q3 0 −q1
−q2 q1 0

⎤
⎥⎥⎦ , (3)

which is a skew-symmetric matrix.
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Next, consider the dynamic equations of a flexible
spacecraft. Here, both the partial loss of control effec-
tive and the additive faults in actuators are considered
simultaneously, and the general nonlinear spacecraft at-
titude dynamic model can be given by[6]

Jsω̇ + σTη̈ =

− ω × (Jsω + σTη̇) + (δu + f) + ds, (4)

η̈ +Dη̇ +Eη + σω̇ = 0, (5)

where, Js ∈ R3×3 is the symmetric inertia matrix of
the whole structure; η ∈ RN is the model coordinate
vector; σ ∈ RN×3 is the coupling matrix between the
elastic and rigid structures; u ∈ R3 is the actual con-
trol torques generated by the actuators or thrusters;
ds ∈ R3 is a term taking disturbance torque into ac-
count; whereas, D = diag{2ξiΛ1/2

i , i = 1, 2, · · · , N}
andE = diag{Λi, i = 1, 2, · · · , N} are the damping and
stiffness matrices, respectively, in which N is the num-
ber of elastic modes considered, ξi is the correspond-
ing damping ratio, and Λ

1/2
i is the natural frequency;

δ = diag{δ11, δ22, δ33} denotes the partial loss of actu-
ator effectiveness fault with

0 < μ � δii � 1, i = 1, 2, 3, (6)

and f ∈ R3 represents the additive actuator fault.
Remark 1 Note that, if δ = I3 and f = 03×1 in

the attitude control of the whole process, then the dy-
namic system in Eqs. (4) and (5) becomes the nominal
system in which all of the actuators are fault-free[6].

Remark 2 In fact, due to onboard payload mo-
tion, rotation of solar arrays, fuel consumption and
out-gassing during operation, the inertial matrix Js of
spacecraft may be time varying. Here, we divide it into
two parts, i.e., Js = J + ΔJ , where J and ΔJ repre-
sent the nominal value component and the parameter
perturbation component of the inertial matrix Js, re-
spectively. Both of the nominal value component of J
and the perturbation matrix ΔJ are symmetric since
Js is always a symmetric matrix.

If the terms ΔJω̇ and ω × ΔJω are considered as
the disturbances, then Eq. (4) can be rewritten as

Jω̇ + σTη̈ = −ω × (Jω + σTη̇) + δu + (d+ f), (7)

where d(t) = ΔJω̇ −ω×ΔJω+ds(t) is considered as
the lumped disturbance of spacecraft.

Throughout this paper, the following assumptions
are considered.

Assumption 1 The nominal components J and
(J − σTσ) are unknown positive definite symmetric
and bounded constant matrices.

Assumption 2 The lumped disturbance d and the
extended disturbance (d + f) in the flexible space-
craft system Eq. (7) are unknown but bounded with a

known bound, i.e.,
∫ t

0

‖d(κ)‖2dκ <∞ and
∫ t

0

‖d(κ)+

f(κ)‖2dκ < ∞ for all finite t � 0, where ‖ · ‖ denotes
the Euclidean norm.

Assumption 3 The lower bound μ of the partial
loss of actuator effectiveness faults is unknown.

Assumption 4 The actual control torque u(t) =
[u1(t) u2(t) u3(t)]T is constrained, that is

‖u‖ � τmax, (8)

where τmax > 0 is a known constant.
In this paper, we consider the rest-to-test maneu-

vers. For the fault attitude system consists of Eqs. (2),
(4) and (5), under Assumptions 1—4, the control ob-
jective is to design a fault-tolerant controller to realize
the desired rotations and, at the same time, to damp
out the vibrations induced by these maneuvers in the
flexible elements of the spacecraft and in the presence
of actuator faults, control input saturation, uncertainty
inertia matrix and external disturbances. The problem
at hand can be summarized as follows. Find a con-
troller u subjected to Eq. (8) such that for all physi-
cally realizable initial conditions, the desired rotations
are achieved, i.e.,

lim
t→∞ q = 0, lim

t→∞ q0 = 1, lim
t→∞ω = 0, (9)

and at the same time, the vibrations induced by the
maneuver rotation are also damped out, i.e.,

lim
t→∞η = 0, lim

t→∞ η̇ = 0. (10)

It is worth noting that when q → 0, we have q0 → 1
due to the constraint relation.

2 Inverse Optimal Control for Flexible
Spacecraft

2.1 Mathematical Preliminaries
Consider the nonlinear dynamic system

ẋ = f(x) + F (x)θ + g1(x)d+ g2(x)u, (11)

where x ∈ Rn is the state, u ∈ Rp is the input, d ∈ Rs

is the disturbance, f : Rn → Rn, F : Rn → Rn×m,
g1 : Rn → Rn×s and g2 : Rn → Rn×p are the smooth
vector- or matrix-valued functions, respectively, and
θ ∈ Rm is a constant unknown parameter vector. Be-
sides, θ̂ denotes an estimate of θ with the estimation
error θ̃ = θ − θ̂ and ‖θ̃‖2

Γ−1 = θ̃TΓ−1θ̃.
Definition 1[27] A smooth function V (x,θ): Rn×

Rn → R⊥, positive definite and radially unbounded in
x for each θ, is called an adaptive control Lyapunov
function (ACLF) for the nonlinear dynamic system

ẋ = f(x) + F (x)θ + g2(x)u. (12)
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There exist a positive definite symmetric matrix Γ ∈
Rp×p, a continuous function W (x,θ) positive definite
in x for each θ ∈ Rp and a control u = α(x,θ) smooth
on (Rn\{0}) × Rp with α(0,θ) ≡ 0 such that V (x,θ)
satisfies

∂V

∂x

{
f + F

[
θ + Γ

(
∂V

∂θ

)]T

+ g2u

}
�

−W (x,θ), (13)

for the auxiliary system

ẋ = f(x) + F (x)

[
θ + Γ

(
∂V

∂θ

)T
]

+ g2(x)u. (14)

Definition 2[26] Consider the nonlinear system in
Eq. (11) and the auxiliary system

ẋ = f(x) + F (x)

[
θ + Γ

(
∂V

∂θ

)T
]

+

1
γ2
g1(x)(Lg1V )T + g2(x)u, (15)

where γ > 0, V (x,θ) is a Lyapunov function candi-
date, Lg1V denotes the Lie derivative of the Lyapunov
function V (x) with respect to g1(x), i.e., Lg1V =
[∂V (x)/∂x]g1(x). Suppose that there exists a real ma-
trix R2(x,θ) = RT

2 (x,θ) > 0 such that the control
law

u = α(x,θ) = −R−1
2 (x,θ)(Lg2V )T (16)

asymptotically stabilizes Eq. (15) with respect to
V (x,θ). Then, the dynamic feedback control

u = α∗(x, θ̂) = −2R−1
2 (x, θ̂)(Lg2V )T, (17)

˙̂
θ = Γτ (x, θ̂) = Γ (LFV )T (18)

can solve theH∞ inverse optimal adaptive control prob-
lem for the nonlinear system Eq. (11) by minimizing the
cost functional

Ja = sup
d∈D

{
lim
t→∞

[
4V (x(t), θ̂(t)) +

∫ t

0

(
l(x, θ̂)+

uTR2(x, θ̂)u− γ2‖d‖2
)
dκ

]}
, (19)

where

l(x, θ̂) = −4LfV − 4LFV

[
θ̂ + Γ

(
∂V

∂θ̂

)T
]
−

4
γ2
Lg1V (Lg1V )T + 4Lg2VR

−1
2 (Lg2V )T, (20)

D is the set of locally bounded functions of x. Here,
l(x, θ̂) is positive definite in x for each θ̂ ∈ Rm.

Remark 3 Definition 2 is a direct result of Theo-
rem 3 and Definition 4 of Ref. [26]. As mentioned in
Ref. [26], the H∞ adaptive inverse optimal controller
u = α∗(x, θ̂) in Eq. (10) achieves γ-level of the H∞
disturbance attenuation for all t � 0 and for each
θ ∈ Rm. Compared with the nonlinearH∞ control, the
inverse optimal method solves the nonlinear optimal-
assignment problem with respect to a meaningful
cost functional without solving the HJIPD equation
explicitly.
2.2 H∞ Inverse Optimal Adaptive Fault-

Tolerant Attitude Control for Flexible
Spacecraft with Actuator Faults

Note that kinematic equation given by Eq. (2) de-
scribes a system in cascade interconnection, which im-
plies that the system is controlled indirectly through
the angular velocity vector ω. Therefore, ω can be
regarded as the virtual control input to stabilize the
kinematic system, and the control law can be designed
as follows:

ωd = −Kq, (21)

with K ∈ R3×3 and K = KT > 0. It has been proved
in Ref. [16] that the control law ωd globally asymptot-
ically stabilizes the kinematic system at the origin.

For the simplicity of the development, the total angu-
lar velocity expressed in model variables is introduced
as follows:

ν = σω + η̇. (22)

Note that

ν̇ = σω̇ + η̈ = −Dν −Eη +Dσω.

Therefore, given

ξ = [ηT νT]T (23)

and according to Eq. (5), the following equation can be
yielded as

ξ̇ = Aξ +Bω, (24)

where

A =

[
0 I

−E −D

]
, B =

[
−σ
Dσ

]
, (25)

I ∈ RN×N is the identity matrix.
In view of Eqs. (7) and (24), one has

(J − σTσ)ω̇ = −ω×Jω + [σTE σTD − ω×σT]ξ−
(σTD − ω×σT)σω + δu+ d+ f . (26)

To isolate the inertia parameters Jij(i, j = 1, 2, 3),
we define a linear operator L : R3 → R3×6 acting on
b = [b1 b2 b3]T by[28]

L(b) =

⎡
⎢⎢⎣
b1 0 0 0 b3 b2

0 b2 0 b3 0 b1

0 0 b3 b2 b1 0

⎤
⎥⎥⎦ .
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Let ϑ = [J11 J22 J33 J23 J13 J12]. Then Jb =
L(b)ϑ. Let ϑ̂ = [Ĵ11 Ĵ22 Ĵ33 Ĵ23 Ĵ13 Ĵ12] represent
the parameter estimate of ϑ. The estimation error ϑ̃
is defined by ϑ̃ = ϑ − ϑ̂. Define the expected error as
follows:

x = ω − ωd = ω +Kq. (27)

As a result, the subsystem Eq. (26) becomes

Jσẋ = [φ(ω) +ϕ(q, q0,ω)]ϑ+ r1(ω)ξ+
r2(q, q0,ω)ω + δu+ d+ f , (28)

where Jσ ∈ R3×3, φ(ω) ∈ R3×6, ϕ(q, q0,ω) ∈ R3×6,
r1(ω) ∈ R3×1 and r2(q, q0,ω) ∈ R3×1 are expressed
by

Jσ = J − σTσ, (29)

φ(ω) = −ω×L(ω), (30)

ϕ(q, q0,ω) = L
(1

2
K(q0I3 + q×)ω

)
, (31)

r1(ω) = [σTE σTD − ω×σT], (32)

r2(q, q0,ω) = −(σTD − ω×σT)σ−
1
2
σTσK(q0I3 + q×). (33)

Remark 4 It has been proven in Ref. [29] that
for the kinematic subsystem in Eq. (2), lim

t→∞ q(t) =
0 can be achieved if there exists a control law u
for Eq. (28) satisfying lim

t→∞x(t) = 0 with any initial

state, which implies that lim
t→0

ω(t) = 0 according to

Eq. (27). Therefore, the achievement of lim
t→∞ q(t) = 0

and lim
t→0

ω(t) = 0 can be accomplished simultaneously

only by lim
t→∞x(t) = 0. Also from Eqs. (22) and (23),

lim
t→∞η(t) = 0 and lim

t→∞ η̇(t) = 0 can be achieved if

lim
t→∞ ξ = 0 and lim

t→0
ω(t) = 0 hold. Therefore, the

achievement of lim
t→∞ q(t) = 0, lim

t→0
ω(t) = 0, lim

t→∞η(t) =

0 and lim
t→∞ η̇(t) = 0 can be accomplished simultane-

ously by lim
t→∞x(t) = 0 and lim

t→∞ ξ = 0.

If the state vector is defined as z = [1− q0 q x ξ]T,
then the state-space representation of attitude control
system in Eqs. (2), (4) and (8) can be obtained as

ż = f1(z) + f2(z)ϑ + h1(z)(d + f) + h2(z)u, (34)

where

f1(z) =

⎡
⎢⎢⎢⎢⎢⎣

1
2
qω

(q× + q0I3)ω

r1(ω)ξ + r2(q, q0,ω)ω

Aξ +Bω

⎤
⎥⎥⎥⎥⎥⎦ ,

f2(z) =

⎡
⎢⎢⎢⎢⎣

01×3

03×3

φ(ω) +ϕ(q, q0,ω)

02N×3

⎤
⎥⎥⎥⎥⎦ ,

h1(z) =

⎡
⎢⎢⎢⎢⎣

01×3

03×3

I3

02N×3

⎤
⎥⎥⎥⎥⎦ , h2(z) =

⎡
⎢⎢⎢⎢⎣

01×3

03×3

δ

02N×3

⎤
⎥⎥⎥⎥⎦ .

2.2.1 Inverse Optimal Adaptive Controller (IOAC)
Design for the Fault-Free System

In this section, the H∞ inverse optimal adaptive atti-
tude controller is addressed using the adaptive control
Lyapunov function and the inverse optimal approach in
the case that the actuators are fault-free, i.e., f = 03×1

and δ = I3. Consider that ϑ is an unknown constant
vector. Therefore, an adaptive parameter update law
is employed to estimate ϑ.

In practice, due to the physical constraints, the
actuator saturation in the attitude control of space-
craft is unavoidable. The RBF NN based saturation
compensator[30-31] is developed to compensate for the
effects of input saturation on the system to guarantee
that the resulting closed-loop attitude system is stable.
Let

�(x) = u− τ . (35)

Here, u ∈ R3 is the applied control torque acting on
the spacecraft and τ ∈ R3 is the commanded con-
trol torque. According to the RBF NN approximation
property[32], there exists an NN that is arbitrary closely
approximated by �(x), that is

�(x) = ψTS(x) + ε(x), (36)

where S(x) = [s1(x) s2(x) · · · sm(x)] ∈ Rm is a
known continuous smooth vector-valued function, m is
the NN node number, and ε(x) is the NN approxima-
tion error. The reconstruction error is bounded on a
compact set Φ by ‖ε(x)‖ � εN. Moreover, for any
εN > 0, one can find an NN such that ‖ε(x)‖ � εN
for all x ∈ Φ; ψ ∈ R3×m is the ideal target weight
matrix. Specially, each argument si(x) of S(x) is com-
monly chosen as Gaussian function si(x) = exp(−|xi−
di|2/a2), where di is a constant called the center of si(x)
and a > 0 is a real number called the width of si(x).
Because the ideal target weight matrix ψ is difficult to
determine, the implemented NN is actually an approx-
imation of the ideal NN in Eq. (36) and is given by

�(x) = ψ̂TS(x), (37)

where ψ̂ is the estimation of ψ. Let �̂ be the estimation
of �. Let �̃ = � − �̂ be the estimation error of � and
ψ̃ = ψ − ψ̂ be the estimation error of ψ.
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Theorem 1 Consider an auxiliary system that con-
sists of Eqs. (2), (4) and the following equation

Jσẋ =(φ(ω) +ϕ(q, q0,ω))ϑ+ r1(ω)ξ+

r2(q, q0,ω)ω + u+
x

γ2
, (38)

for which Assumptions 1—4 hold, under the dynamic
feedback control law

u =α(q, q0,ω, ϑ̂, τmax) =

−R−1(q, q0,ω, ϑ̂, τmax)x =⎧⎨
⎩
−τmaxx

2‖x‖ , ‖τ‖ > τmax

2
τ , ‖τ‖ � τmax

2

(39)

together with the adaptive parameter update laws
˙̂
ϑ(q, q0,ω) = Ππ(q, q0,ω) =

Π [φ(ω) +ϕ(q, q0,ω)]Tx, (40)

˙̂
ψ = ΓS(x)xT, (41)

where

τ = −1
2
χ, (42)

χ =

[
‖ΩTΩ +ΔTK−1

1 Δ+ 2K1‖+

2
γ2

+
2(‖�̂‖ + εN )

‖x‖

]
x, (43)

Ω =
1√
c
K1/2

[
cK−1 + ω×Ĵ−

1
2
ĴK(q0I3 + q×) − r2(q, q0,ω)

]T
, (44)

Δ =
[
− ω×Ĵ +

1
2
ĴK(q0I3 + q×)+

r2(q, q0,ω)
]
, (45)

γ > 0 is given, Π ∈ R3×3, Γ ∈ R3×3, K ∈ R3×3 and
K1 ∈ R3×3 are the positive definite symmetric matri-
ces, εN > 0 satisfies ‖ε(z)‖ � εN , c is an adjustable
parameter satisfying c > 0, Ĵ is the estimate of J , and
the matrices or vectors Jσ, φ(ω), ϕ(q, q0,ω), r1(ω)
and r2(q, q0,ω) are defined in Eqs. (29)—(33), respec-
tively. Then if there exist β > 0 and ρ > 0, c, K, K1

and λξ satisfy the following inequalities

ξTPBKq � 2ρ‖ξ‖‖q‖, (46)

xT[σTE σTD −Kq×σT]ξ + ξTPBx �
2β‖x‖‖ξ‖, (47)

Λ =

⎡
⎢⎢⎢⎢⎣

c

2
λmin

K 0 −ρ

0
1
2
λmin

K1
−β

−ρ −β λξ

⎤
⎥⎥⎥⎥⎦ , (48)

where λmin
K , λmin

K1
and λξ are the minimum eigenvalues

of matrices K, K1 and ξ, respectively; the dynamic
feedback control u in Eq. (39) together with the adap-
tive parameter update laws in Eqs. (40) and (41) can
adaptively stabilize the auxiliary system in Eqs. (2),
(24) and (38), that is, lim

t→∞ q = 0, lim
t→0

ω = 0, lim
t→0

η = 0

and lim
t→0

η̇ = 0 for all initial conditions.

Proof Since A defined in Eq. (25) has all its eigen-
values in the left-hand plane, for every fixed λξ > 0
there exists a symmetric and positive definite solution
P ∈ R2N×2N of the Sylvester equation

(PA+ATP )/2 = −λξI, (49)

given by

P = λξP̃ (50)

with

P̃ =

[
D−1 +E−1D +ED−1 E−1

E−1 D−1 +E−1D−1

]
.

Consider the smooth positive definite radially-
unbounded Lyapunov function as follows:

V =
1
2
zTΘz +

1
2
ϑ̃TΠ−1ϑ̃+

1
2
tr(ψ̃TΓ−1ψ̃), (51)

where Θ is positive definite symmetric matrix given by

Θ =

⎡
⎢⎢⎢⎢⎣

c 01×3 01×3 01×2N

03×1 cI3 03×3 03×2N

03×1 03×3 Jσ 03×2N

02N×1 02N×3 02N×3 P

⎤
⎥⎥⎥⎥⎦ . (52)

Based on Eqs. (30), (31), (44), (45) and (49), the time
derivate of V along Eqs. (2), (24) and (38) is

V̇ = − cqTKq + xT
[
cq +

(
φ(ω) +ϕ(q, q0,ω)

)
ϑ+

r1(ω)ξ + r2(q, q0,ω)ω + τ + �+
x

γ2

]
+

ξTP (Aξ +Bω) + ϑ̃T
[− (

φ(ω)+

ϕ(q, q0,ω)
)
x
]
+ tr

[
ψ̃(−S(x)xT)

]
=

− cqTKq + xT
[
cq +

(
φ(ω) +ϕ(q, q0,ω)

)
ϑ̂+

r1(ω)ξ + r2(q, q0,ω)ω + τ + �+ ε+
x

γ2

]
−

λξξ
Tξ + ξTPBω − xT(ψ̃TS(x)) =

− cqTKq − λξξ
Tξ + xT

[
cq − ω×Ĵ(x−Kq)+

1
2
ĴK(q0I3 + q×)(x−Kq) + r1(ω)ξ+
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r2(q, q0,ω)(x−Kq) + τ + �̂+ ε+
x

γ2

]
+

ξTPB(x−Kq) =

− cqTKq − λξξ
Tξ + xT

[
cK−1 + ω×Ĵ−

1
2
ĴK(q0I3 + q×) − r2(q, q0,ω)

]
Kq+

xT

[
−ω×Ĵ +

1
2
ĴK(q0I3 + q×) + r2(q, q0,ω)

]
x+

xTr1(ω)ξ + ξTPBx− ξTPBKq+

xT(τ + �̂+ ε) +
1
γ2
xTx =

− cqTKq − λξξ
Tξ + xT(τ + �̂+ ε)+

√
cxTΩTK1/2q + xTΔx+ xTr1(ω)ξ+

ξTPBx− ξTPBKq +
1
γ2
xTx. (53)

Substituting Eq. (42) into Eq. (53) yields

V̇ � − c

2
qTKq − λξξ

Tξ − 1
2
xTK1x−

1
2
‖√cK1/2q −Ωx‖2−

1
2
xT(K1 −Δ)TK−1

1 (K1 −Δ)x+

xTr1(ω)ξ + ξTPBx− ξTPBKq. (54)

Note that
xT[0 − x×σT]ξ = 0.

Therefore, we have

xTr1(ω)ξ = xT[σTE σTD −Kq×σT]ξ.

If Inequalities (46) and (47) hold, we have

V̇ � − c

2
λmin

K ‖q‖2 − λξ‖ξ‖2 − 1
2
λmin

K1
‖x‖2−

1
2
‖√cK1/2q −Ωx‖2−

1
2
xT(K1 −Δ)TK−1

1 (K1 −Δ)x+

2ρ‖ξ‖‖q‖+ 2β‖x‖‖ξ‖ �

− c

2
λmin

K ‖q‖2 − 1
2
λmin

K1
‖x‖2 − λξ‖ξ‖2+

2ρ‖ξ‖‖q‖+ 2β‖x‖‖ξ‖ �

− [‖q‖ ‖x‖ ‖ξ‖]Λ
⎡
⎢⎢⎣
‖q‖
‖x‖
‖ξ‖

⎤
⎥⎥⎦ . (55)

Here the matrix Λ is defined in Eq. (48). Then if Λ
is positive definite, i.e., there exists a triplet of posi-
tive parameters (λmin

K , λmin
K1

, λξ) such that the following

conditions are satisfied

1
2
λmin

K1
> β2/λξ, (56)

‖Λ‖ =
c

2
λmin

K

(1
2
λmin

K1
λξ − β2

)
− 1

2
ρ2λmin

K1
> 0, (57)

we have

V̇ � −λmin
Λ (‖q‖2 + ‖x‖2 + ‖ξ‖2), (58)

where λmin
Λ > 0 is the minimum eigenvalue of matrix Λ.

It follows from the Barbalat’s theorem[33] that q → 0,
x → 0 and ξ → 0, and therefore ω → 0, η → 0 and
η̇ → 0 as t→ ∞ based on Remark 4.

Theorem 2 Suppose that Assumptions 1—4 are
satisfied. Then the dynamic feedback control law

u =α∗(q, q0,ω, ϑ̂, τmax) =

− 2R−1(q, q0,ω, ϑ̂, τmax)x =⎧⎨
⎩
−τmaxx

‖x‖ , ‖τ‖ > τmax

τ , ‖τ‖ � τmax

(59)

together with the adaptive parameter update laws given
in Eqs. (40) and (41), where τ = −χ and χ is defined
in Eq. (43), for some given γ > 0, can solve the H∞
inverse optimal assignment problem for the fault-free
attitude control system in Eqs. (2), (24) and (28) with
f = 03×1 and δ = I3 in the whole process of attitude
control by minimizing the cost functional

La = lim
t→∞

{
4V (t) +

∫ t

0

[
l(q, q0,ω, ϑ̂, ξ)+

uTRu − γ2‖d‖2
]
dκ

}
, (60)

for each ϑ ∈ R6, where

l(q, q0,ω, ϑ̂, ξ)=

− 4
{
cqTω + xT

[
(φ(ω) +ϕ(q, q0,ω))ϑ̂+

r1(ω)ξ + r2(q, q0,ω)ω
]
+ ξTP (Aξ +Bω)

}
+

4xTR−1x− 4
γ2
xTx. (61)

Proof From the definition of l(q, q0,ω, ϑ̂, ξ) in
Eq. (61) and the proof of Theorem 1, we have

l(q, q0,ω, ϑ̂, ξ) =

− 4
{
cqTω + xT

[
(φ(ω) +ϕ(q, q0,ω))ϑ̂+

r1(ω)ξ + r2(q, q0,ω)ω
]
+

ξTP (Aξ +Bω) −R−1x+
xTx

γ2

}
�

4λmin
Λ (‖q‖2 + ‖x‖2 + ‖ξ‖2),
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from which we observe that l(q, q0,ω, ϑ̂, ξ) is positive
definite in q, q0, ω, ϑ̂ and ξ for each ϑ ∈ R6. Therefore,
the cost functional La in Eq. (60) is a meaningful cost
functional, penalizing q, q0, ω, ϑ̂ and ξ as well as the
control effort u. Next, we prove that the control law
in Eq. (59) with Eqs. (40) and (41) minimizes the cost
functional in Eq. (60).

La= lim
t→∞

{
4V (t) +

∫ t

0

[
− 4

(
cqTω+

xT((φ(ω) +ϕ(q, q0,ω))ϑ̂+

r1(ω)ξ + r2(q, q0,ω)ω) + ξTP (Aξ +Bω)
)
+

4xTR−1x− 4
γ2
xTx+ uTRu − γ2‖d‖2

]
dκ

}
=

lim
t→∞

{
− 4

∫ t

0

[
cqTω + xT

(
(φ(ω) +ϕ(q, q0,ω))ϑ+

r1(ω)ξ + r2(q, q0,ω)ω + d+ u
)
+

xT
(
− (F (ω) +G(q, q0,ω))Tϑ̃

)
+

ξTP (Aξ +Bω)
]
dκ−∫ t

0

(4xTx

γ2
− 4xTd+ γ2‖d‖2

)
dκ+

∫ t

0

(uTRu + 4xTu+ 4xTR−1x)dκ+ 4V (t)

}
=

lim
t→∞

[
4V (t) − 4

∫ t

0

d
dt

(
cqTq + c(1 − q0)2+

1
2
xTJσx+

1
2
ϑ̃TT−1ϑ̃+

1
2
ξTPξ

)
dκ−

2
∫ t

0

(2xTx

γ2
− 2xTd+

γ2‖d‖2

2

)
dκ+∫ t

0

(u−α∗)TR(u − α∗)dκ
]

=

lim
t→∞

[
4V (0) − 2

∫ t

0

(√2x
γ

− γ√
2
d
)T

×
(√2x

γ
− γ√

2
d
)
dκ+

∫ t

0

(u−α∗)TR(u − α∗)dκ
]
. (62)

The “worst-case” disturbance is d∗ =
2x
γ2

, and the

minimum of Eq. (60) is L∗
a = 4V (0) with u = α∗. To

this end, from the controller in Eq. (59), the inequality
‖u‖ �

∥∥∥τmaxx

‖x‖
∥∥∥ � τmax can be obtained. The proof is

completed.
Remark 5 Based on the control law given in

Eq. (59), the parameters c, K and K1 can be deter-

mined. Note that given a spacecraft with certain struc-
tural properties, it is always possible to fix values λξ, c
and a matrix K, and accordingly determine the values
for β, ρ based on Inequalities (46) and (47) such that
the conditions (Eqs. (56) and (57)) can be satisfied by
the appropriate gain matrix K1.

Remark 6 In the proof of Theorem 2, we establish
that the resulting closed-loop system renders the cost
functional in Eq. (60) meaningful and guarantees that
the constrained controller in Eq. (59) with Eqs. (40)
and (41) is optimal with respect to the cost under As-
sumptions 1—4.

Remark 7 This proposed H∞ inverse optimal
adaptive approach for flexible spacecraft with input sat-
uration is greatly inspired by Theorem 6 of Ref. [26].
However, the method addressed by Luo et al.[26] was
limited only to handling rigid spacecraft and did not
explicitly consider the influence of flexible vibration in
attitude control, and thereby could hardly be directly
extended to the flexible spacecraft system as mentioned
in the introduction. In addition, the control input sat-
uration was also not taken into account in Ref. [26] to
implement the control law, which may result in perfor-
mance deterioration or even instability of the system in
the actual control.

Remark 8 A discontinuous projection[34] is em-
ployed to modify the adaption law in Eq. (40) to avoid
the divergence of the estimates of the parameters by a
small disturbance in the updating law, that is

˙̂
ϑi = Projϑ̂i

{Π [φ(ω) +ϕ(q, q0,ω)]T(ω +Kq)},
i = 1, 2, · · · , 6,

where the projection mapping operator is defined as

Proje(�) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, e = emax and � < 0

−�, emin < e < emax, e = emin

and � � 0, e = emin and � � 0

0, e = emin and � > 0

; (63)

emin and emax are the known constants.
2.2.2 Inverse Optimal Adaptive Fault-Tolerant Con-

troller (IOAFTC) Design Under Actuator
Faults

The proposed constrained control law in Eq. (59)
can achieve the asymptotical stability of the resulting
closed-loop attitude system and is optimal with respect
to the cost functional in Eq. (60) with fault-free actu-
ators. However, when actuator fault occurs, it will not
ensure the stabilization and accuracy for the attitude
control system in Eqs. (2), (24) and (28). Therefore, a
fault-tolerant controller design is required for the flexi-
ble spacecraft with actuator faults. In this section, the
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additive faults and the partial loss of actuator effective-
ness are considered simultaneously to design the atti-
tude controller for the flexible spacecraft in the presence
of control input saturation, uncertainty inertia matrix
and external disturbances. An inverse optimal adap-
tive control method is employed to design a robust and
optimal controller against actuator faults and external
disturbances. In this section, � is redefined as follows:

� =
1
μ̂

(u− τ ), (64)

where 1/μ̂ is the parameter estimate of μ in Eq. (6)
with the estimate error defined by μ̃ = 1/μ̂− μ.

Theorem 3 Consider an auxiliary system that con-
sists of Eqs. (2), (24) and the following equation

Jσẋ =
[
φ(ω) +ϕ(q, q0,ω)

]
ϑ+ r1(ω)ξ+

r2(q, q0,ω)ω + δu +
x

γ2
, (65)

for which Assumptions 1—4 hold, under the dynamic
feedback control law

u =α(q, q0,ω, ϑ̂, τmax) =

−R−1
1 (q, q0,ω, ϑ̂, τmax)x =⎧⎪⎨

⎪⎩
−τmaxx

2‖x‖ , ‖τ‖ > τmax

2

τ , ‖τ‖ � τmax

2

(66)

together with the adaptive parameter update laws

˙̂μ =
1
2
xTμ̂3χ, (67)

˙̂
ϑ = Ππ, (68)
˙̂
ψ = ΓS(x)xT, (69)

where
τ (q, q0,ω, ϑ̂) = −1

2
μ̂χ,

π and χ are defined in Eqs. (40) and (43), respectively;
Π ∈ R3×3 and Γ ∈ R3×3 are the positive definite ma-
trices. Then if β, ρ, c,K,K1 and λξ satisfy Inequalities
(46)—(48), the dynamic feedback control u in Eq. (66)
together with the adaptive parameter update laws in
Eqs. (67)—(69) can adaptively stabilize the auxiliary
system in Eqs. (2), (24) and (65), that is, lim

t→∞ q = 0,
lim
t→0

ω = 0, lim
t→0

η = 0 and lim
t→0

η̇ = 0 for all initial
conditions.

Proof Following the same steps as in Theorem
1, we consider the smooth positive definite radially-
unbounded Lyapunov function as follows:

V1 =
1
2
zTΘz +

1
2
ϑ̃TΠ−1ϑ̃+

1
2
μ̃2 +

1
2
tr(ψ̃TΓ−1ψ̃), (70)

where positive definite symmetric matrix Θ is defined
in Eq. (52). The time derivate of V1 along Eqs. (2), (24)
and (65) is given by

V̇1 = −cqTKq + xT
{
cq + [φ(ω) +ϕ(q, q0,ω)]ϑ+

r1(ω)ς + r2(q, q0,ω)ω + δu+
x

γ2

}
+

ξTP (Aξ +Bω) + ϑ̃T{−[φ(ω)+

ϕ(q, q0,ω)]x} − μ̃ ˙̂μ
μ̂2

+ tr[ψ̃(−S(x)xT)] =

− cqTKq − λξξ
Tξ + xTδu+

√
cxTΩTK1/2q+

xTΔx+ ξTr1(ω)x+ ξTPBx− ξTPBKq+

1
γ2
xTx− μ̃ ˙̂μ

μ̂2
+ tr[ψ̃(−S(x)xT)] �

− cqTKq − λξξ
Tξ + xTμu+

√
cxTΩTK1/2q+

xTΔx+ ξTr1(ω)x+ ξTPBx− ξTPBKq+

1
γ2
xTx− μ̃ ˙̂μ

μ̂2
+ tr[ψ̃(−S(x)xT)] =

− cqTKq − λξξ
Tξ +

√
cxTΩTK1/2q+

xTΔx+ ξTr1(ω)x+ ξTPBx− ξTPBKq+

1
γ2
xTx+ xTμ

(
− 1

2
μ̂χ+

�

μ

)
−

1 − μ̂μ

2μ̂
xTμ̂χ− xT(ψ̃TS(x)) =

− cqTKq − λξξ
Tξ +

√
cxTΩTK1/2q+

xTΔx+ ξTr1(ω)x+ ξTPBx− ξTPBKq+

1
γ2
xTx+ xT

(
− 1

2
χ+ �+ ε

)
�

− c

2
qTKq − λξξ

Tξ − 1
2
xTK1x−

1
2
‖√cK1/2q −Ωx‖2−

1
2
xT(K1 −Δ)TK−1

1 (K1 −Δ)x+ xTr1(ω)ξ+

ξTPBx− ξTPBKq �

− λmin
Λ

(‖q‖2 + ‖x‖2 + ‖ξ‖2
)
, (71)

where λmin
Λ > 0 is the minimum eigenvalue of matrice

Λ, and Λ is defined in Eq. (48). As analyzed in Theo-
rem 1, we can conclude that, under the controller given
in Eq. (66) with the adaptive parameter update laws in
Eqs. (67)—(69), the auxiliary system in Eqs. (2), (24)
and (65) is globally adaptively stable, that is q → 0,
x→ 0, ω → 0, η → 0 and η̇ → 0 as t→ ∞.

Theorem 4 Suppose that Assumptions 1—4 are
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satisfied. Then the dynamic feedback control law

u =α∗(q, q0,ω, ϑ̂, τmax) =

− 2R−1
1 (q, q0,ω, ϑ̂, τmax)x =⎧⎨

⎩
−τmaxx

‖x‖ , ‖τ‖ > τmax

τ , ‖τ‖ � τmax

(72)

together with the adaptive parameter update laws in
Eqs. (67)—(69), where τ = −μ̂χ and χ is defined in
Eq. (43), for given γ > 0, can solve the H∞ inverse
optimal control problem for the attitude control sys-
tem in Eqs. (2), (24) and (28) by minimizing the cost
functional

La = lim
t→∞

{
4V1(t) +

∫ t

0

[
l(q, q0,ω, ϑ̂, ξ)+

uTRu − γ2‖(f + d)‖2
]
dκ

}
, (73)

for each ϑ ∈ R6, where

l(q, q0,ω, ϑ̂, ξ) =

− 4
{
cqTω + xT

[
(φ(ω) +ϕ(q, q0,ω))ϑ̂+

r1(ω)ξ + r2(q, q0,ω)ω
]
+ ξTP (Aξ +Bω)

}
+

4xTR−1
1 x− 4

γ2
xTx− 4μ̃ ˙̂μ

μ̂2
. (74)

Proof From definition of l(q, q0,ω, ϑ̂, ξ) in Eq. (74)
and the proof of Theorem 3, we have

l(q, q0,ω, ϑ̂, ξ) =

− 4
{
cqTω + xT

[(
F (ω) +G(q, q0,ω)

)
ϑ̂+

r1(ω)ξ + r2(q, q0,ω)ω
]
+

ξTP (Aξ +Bω) −R−1
1 x+

x

γ2
− 4μ̃ ˙̂μ

μ̂2

}
�

4
( c

4
λmin

K ‖q‖2 +
1
4
λmin

K1
‖x‖2 +

1
2
λξ‖ξ‖2

)
. (75)

According to the same steps as in Eq. (62) and by com-
pleting square

La =4V1(0) −
∫ ∞

0

2
[√2x

γ
− γ√

2
(f + d)

]T
×

[√2x
γ

− γ√
2
(f + d)

]
dt+∫ ∞

0

(u−α∗)TR1(u−α∗)dt, (76)

the “worst-case” disturbance is given as follows:

f + d =
2x
γ2
.

Hence, the minimum of the cost functional La is
reached only if u = α∗, that is, the control law u =

α∗(q, q0,ω, ϑ̂, τmax) given in Eq. (72) with Eqs. (67)—
(69) is inverse optimal and minimizes the cost func-
tional Eq. (73). The value function of Eq. (73) is L∗

a =
4V (0).

Remark 9 From L∗
a = 4V1(0), we obtain∫ t

0

[
l(q, q0,ω, ϑ̂, ξ) + uTRu

]
dκ �

γ2

∫ t

0

‖f + d‖2dκ+ 4V1(0),

which implies that the closed-loop system for the feed-
back control law given in Eq. (72) has L2 gain less than
or equal to γ from the extended disturbance (d+ f) to
the state vector [q q0 ω θ̂ ξ]T and the control input
u.

Remark 10 The proposed controller is not only
robust against the system parametric uncertainties and
the external disturbances, but also able to accommo-
date the actuator faults under control input saturation.
Furthermore, it does not require fault detection and iso-
lation mechanism to detect, separate and identify the
actuator faults on-line. In addition, if an adaptive pa-
rameter update law in Eq. (67) is employed, the infor-
mation of certain bounds on the effectiveness factors of
the actuator is not needed.

Remark 11 In the updating laws, the adaptation
laws in Eqs. (67) and (69) can also be modified as

˙̂μ = Projμ̂
(1

2
xTμ̂3χ

)
,

˙̂
ψij = Projψ̂(ΓS(z)x)ij .

3 Numerical Example

Numerical simulations have been conducted for a
flexible spacecraft system in Eqs. (2), (4) and (5) with
the developed IOAFTC to illustrate and evaluate the
effectiveness of the proposed control schemes. For
the purpose of comparison, the IOAC and the anti-
windup proportional-integral-derivative (AWPID) con-
trol method [8,11] are also carried out in the following
simulations. The AWPID is designed as

u =ω × Jω −Kdω −Kpq−
KI

∫
qdt−Ka

∫
(usat − u)dt, (77)

where Kd, Kp, KI and Ka are the designed parameters,
and

usat =

{
umaxsgn(usat), |usat| > umax

usat, |usat| � umax

.

The rest-to-rest maneuver is considered in the simu-
lation. Table 1 gives the numerical simulation param-
eters. These parameters are used for all cases of the
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simulation. In the simulation analysis, only the first
three elastic modes are considered in the controller de-
sign, due to the possible spillover effects. Two cases
of actuator are considered to demonstrate the superior

performance of the addressed fault-tolerant controller,
i.e., all actuators are healthy and time-varying loss of
actuator effectiveness and time-varying additive faults,
respectively.

Table 1 Simulation parameters

Parameter Definiton

Mass moment of inertia tensor J0 =

⎡
⎢⎢⎣
350 3 4

3 280 10

4 10 190

⎤
⎥⎥⎦ kg/m2

Natural frequency ωn1 = 0.768 1 rad/s, ωn2 = 1.103 8 rad/s, ωn3 = 1.873 3 rad/s, ωn4 = 2.549 6 rad/s

Damping ration ξ1 = 0.005 6, ξ2 = 0.008 6, ξ3 = 0.013, ξ4 = 0.025

Coupling matrix σ =

⎡
⎢⎢⎢⎢⎢⎣

6.456 37 1.278 14 2.156 29

−1.256 19 0.917 56 −1.672 64

1.116 87 2.489 01 −0.836 74

1.236 37 −2.658 1 −1.125 03

⎤
⎥⎥⎥⎥⎥⎦

Initial conditions q(0) = [−0.2 0.7 − 0.35]T, ω(0) = [0 0 0]T, ηi(0) = η̇i(0) = 0 (i = 1, 2, 3, 4),

ϑ̂(0) = [340 290 175 1 2 10], μ̂(0) = 1

External disturbance d(t) = (‖ω‖2 + 0.15)[cos(0.1t) sin(0.5t) sin(0.35t)]

Control parameters (IOAC,
IOAFTC and AWPID)

c = 1200, K = 0.4I3, K1 = 700I3, Π = 200I6, γ = 2, εN = 0.005, Kd = 100, Kp = 100,
KI = 1, Ka = 0.5

Maximum allowable torque input umax = 5N·m

RPF NN m = 20, di(i = 1, 2, · · · , 20) evenly spaced in [−π/5,π/5]×[−π/5,π/5]×[−π/5,π/5], a = π/20

3.1 Healthy Actuators

In this case, all actuators are considered to be
healthy, i.e., f = 03×1 and δ = I3. The numerical
results of the simulations obtained by IOAC, IOAFTC
and AWPID are presented in Figs. 1—4. The quater-
nion and angular velocity responses of the attitude sys-
tem are shown in Figs. 1 and 2, respectively. One can

observe that, for both IOAC and IOAFTC, high con-
trol precision of the attitude and angular velocity is ob-
tained within 20 s even in the presence of system para-
metric uncertainties, external disturbances and under
control input saturation, while for AWPID, it experi-
ences more than 50 s to stabilize the attitude, which is
longer than that of IOAC and IOAFC. In addition, it
can be found that the pointing precision of IOAC and
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Fig. 1 Time responses of quaternion with healthy actuators
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IOAFTC is higher than that of AWPID. The responses
of the modal displacements η1, η2 and η3 are presented
in Fig. 3, in which a low vibration level for the proposed
IOAC and IOAFTC is illustrated and there are almost
no oscillations after 20 s. This illustrates that the de-
signed controllers are capable of suppressing the system
vibration while controlling the attitude of the space-
craft with the healthy actuators. While for AWPID,

there exist severe oscillations, and the eventually set-
tling time is more than 150 s. The applied control
torques on the flexible spacecraft are shown in Fig. 4.
It can be observed that more output torques are needed
for AWPID in comparison with IOAC and IOAFC.
3.2 Actuator Fault

In this case, we consider the conditions that both
the partial loss of actuator effectiveness and the
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additive faults occur. Each actuator undergoes a se-
rious partial loss of effectiveness and an additive fault
at t � 10 s. The actuator effectiveness matrix δ =
diag{δ11, δ22, δ33} and the additive fault vector f are
respectively given by

δii(t) =

{
1, t < 10 s

0.35 + 0.2 sin(2πt), t � 10 s
,

fi(t) =

{
1, t < 10 s

0.35 + 0.05 sin(2πt), t � 10 s
.

Figures 5—8 show the simulated results obtained by
IOAC, IOAFTC and AWPID, respectively. It can be
seen that for IOAFTC, a fairly good control perfor-
mance is achieved within 20 s and no significant amount
of vibration occurs even under the severe thruster faults
after 10 s. For IOAC, it can be observed that when the
actuator experiences serious partial loss of effectiveness
and additive faults after 10 s, it experiences more than
100 s to stabilize the attitude and severe oscillations are
excited again by maneuvering. While for AWPID, it is
found that when the actuator faults occur after 10 s,
the attitude pointing accuracy becomes very low and
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the severe oscillations are also excited again by maneu-
vering. Moreover, it is unable to maintain stability and
therefore cannot satisfy the requirement of the mission.
The reason of this behaviour is that once the actuators
undergo partial loss of effectiveness especially the seri-
ous case, the value of control input is not big enough
to compensate the fault. From the simulation results,
we can conclude that the IOAFTC can significantly im-
prove the control performance over those of the IOAC
and AWPID subjected to the actuator faults, input sat-
uration, inertia matrix uncertainty and external distur-
bances. Further, extensive simulations are also done
using different control parameters.

4 Conclusion

This paper presents a fault-tolerant attitude control
algorithm for the flexible spacecraft in the presence of
actuator fault, control input saturation, parametric un-
certainty and external disturbances. The control algo-
rithm is based on an adaptive control Lyapunov func-
tion and an inverse optimal methodology, which can
guarantee robustness and stabilization and achieve H∞
optimality with respect to a family of cost function-
als. The proposed adaptive fault-tolerant controller
doesn’t require the process of fault identification, de-
tection and isolation, and even the information of cer-
tain bounds on the effectiveness factors of the actuator
is not needed. The control design is assessed and com-
pared to other methods through numerical simulations.
The results show that the proposed fault-tolerant at-
titude controller is able to accommodate the actuator
fault and achieve high precision pointing while the con-
ventional methods fail to attain the control objective.
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