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Abstract: A method for reliability analysis of the competing failure with the probabilistic failure threshold value
not the fixed threshold value is presented, which involves the random shocks and the degradation is independent
and dependent respectively. Specifically, for the dependent condition, the effect due to the random shocks on the
degradation is considered with a damage factor. In addition, the dependent competing failure model is applied to
the reliability analysis of the k-out-of-n systems. Finally, two studied cases are presented to illustrate the proposed
method, and the results show the proposed method is reasonable.
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0 Introduction

Reliability analysis has becoming more and more im-
portant particularly in the design, safety assessments,
and optimization of engineering materials and struc-
tures, and the reliability of a system is expressed by the
probability that the item will perform its required func-
tion under given conditions for a stated time interval[1].
According to the failure mechanisms of many engineer-
ing structures and applications, there are generally two
kinds of failure modes: one is the catastrophic failure
which is caused by the external shocks; the other is the
degradation failure which is resulted from the degrada-
tion and the cumulative random shocks, and if any one
of the failure modes reaches the failure threshold value,
the system or product will break down immediately,
which is the competing failure[2]. Thus, it is necessary
to evaluate the reliability based on the competing fail-
ure.

So far, there are lots of theoretical results and ap-
plications have been achieved on the competing failure.
Klutke and Yang[3] developed an availability model for
a system that deteriorates due to the Poisson shock
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and graceful degradation. Based on the copula method,
Wang and Pham[4] put forward a novel dependent
model for the multiple competing failure system which
subjects to the degradation and random shocks. Li
and Pham[5] investigated a reliability assessment model
for a generalized multi-state degradation system un-
der three independent failure processes, two degrada-
tion processes and a random shock process. Huang
and Askin[6] gave an extension of reliability analysis for
the electronic devices with multiple competing failure
modes which involve the performance of aging degrada-
tion, and this approach can predict the dominant failure
mode on the product. Peng et al.[7] studied a reliability
modeling for the micro-electro-mechanical systems de-
vices under two failure processes: one is the soft failure
process that is caused by the continuous degradation
and the additional abrupt degradation damages due to
the random shocks process; the other is the catastrophic
failure process which is caused by excessive shock mag-
nitudes from the same shock process. However, in these
models, the probabilistic failure threshold is not consid-
ered.

It should be noticed that the reliability analysis
is usually based on the probabilistic failure thresh-
old rather than pre-determined threshold. Therefore,
in this paper, we will conduct reliability analysis un-
der the dependent and independent competing failure
process respectively based on the probabilistic failure
threshold. Furthermore, the proposed dependent model
is applied to the reliability analysis of the k-out-of-n
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systems, because the traditional way to obtain a high
reliability system is the k-out-of-n systems. Thus, the
reliability analysis of the k-out-of-n systems is also con-
sidered in this paper. And different from the conven-
tional method is that the probabilistic failure threshold
and the dependent relationship between the degrada-
tion and the random shocks are all considered.

1 The Random Shocks Analysis and the
Degradation Analysis

1.1 The Random Shocks Analysis
It is obvious that the random shocks can cause the

decreasing of component’s life directly and may affect
a degradation process indirectly as it often accelerates
the speed of degradation process, thus it is one of the
important subjects in the reliability modeling. In order
to obtain the mathematical formulations for modeling
the system reliability in random environments, shock
models have been widely studied by Chen and Li[8],
Mallor and Santos[9], Li and Zhao [10], Sgarbossa and
Pham[11]. Traditionally, there are four principal cate-
gories of random shock model[12]: ① cumulative shock
model, where a system is considered to fail when the cu-
mulative damage from shocks exceeds the critical value;
② run shock model, which models a system operating
normally until k consecutive shocks with critical mag-
nitude occur prefixed critical level; ③ extreme shock
mode, where a system will break down as soon as the
magnitude of any shock exceeds a specified threshold;
④ δ-shock model, where a system failure occurs when
the time lag between two successive shocks is shorter
than a threshold[13]. Here, the cumulative shock model
is considered to calculate the random shocks to the com-
ponent, the arrival time of random shocks follow Poison
distribution, and the magnitude of random shocks and
time interval can be described in Fig. 1, where cs is
the magnitude of small damage, cl is the magnitude of
large damage, ti (i = 1, 2, · · · , n) is the different time
interval.

Magnitude

Time

cl

cs

O t1 t2 t3 t4 tn t

Fig. 1 The relationship between the magnitude of random

shocks and time interval

If the random shocks are the cumulative shock model,
then the probability of the total sum of the random
shocks is less than the threshold can be represented as:

P [X(t) � S] = P

[
N(t)∑
i=1

xi(t) � S

]
=

∞∑
n=0

{P [N(t) = n]×

P [x1 + x2 + · · · + xN(t) � S
∣∣N(t) = n]} =

∞∑
n=0

{
(λt)ne−λt

n!
P [x1 + x2 + · · · + xN(t) � S]

}
, (1)

where P is the probability, X(t) is the cumulative dam-
age of random shocks at time, S is the critical value of
random shock, xi is the size of the shock load, and λ is
the arrival rate of random shocks.
1.2 The Degradation Analysis

From the viewpoint of more reliable with a longer
lifetime and higher quality of the product, it is really a
significant challenge to obtain the sufficient and accu-
rate time-to-failure data. To overcome the obstacles to
obtain the information of the reliability specifications
of the products under the normal operating conditions,
the approach of the degradation analysis model is often
used to evaluate the system reliability, which involves
the measurement of the degradation of a product at
various time points and then the degradation data can
be used to estimate the eventual failure lifetime for the
product. Furthermore, there are some advantages of
performing reliability analysis in terms of the degra-
dation data. On the one hand, the major advantage
is that it relates the reliability analysis directly to the
physics of failure mechanism. On the other hand, differ-
ent physical deterioration processes such as cumulative
wear, crack growth, fatigue, erosion, corrosion and so
on can also be directly reflected. If the resistance of a
deterioration structure and components decreases be-
low the failure threshold, it will incur high cost losses.
Therefore, many of papers have been public on the re-
search of the reliability degradation model.

Based upon the methodology, the studies of the
degradation analysis can be divided into three main cat-
egories. Firstly, one of the most widely used methods to
model the degradation data is the General Path Model,
in which the maximum likelihood estimation, Bayesian
estimation are usually utilized to estimate the general
path model and the distribution function of failure time
respectively[14-15]. Then, the second method is employ-
ing the stochastic process including the Markov process,
Brownian motion and Gamma process to perform the
degradation analysis[16-17]. And the third approach is
the statistical method, such as parametric and nonpara-
metric estimation where the additive and multiplicative
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functions are often adopted to construct the degrada-
tion path function[18-19]. In this research, the tradi-
tional additive degradation path function is introduced
to model the degradation D, and it can be expressed as

D(t, Y (t), θ) = η(t, θ) + Y (t), (2)

where η(t, θ) is a mean degradation level, θ is the fixed
effect parameter; and Y (t) represents the random vari-
ation around a mean degradation level at time t.

Without loss of generality, if Y (t) follows the Weibull
distribution with the cumulative distribution function
(CDF):

Y (t) = 1 − exp
[
−
(

y

β

)α]
, (3)

then the CDF of the degradation process can be ob-
tained, that is

P [η(t, θ) + Y (t) � L] = P [Y (t) � L − η(t, θ)] =

F (L − η(t, θ)) = 1 − exp
[
−
(

L − η(t, θ)
β

)α]
, (4)

where L is the failure threshold of the degradation, α
is the shape parameter of the Welbull distribution, and
β is the scale parameter of the Welbull distribution.

Similarly, if the Y (t) follows the normal distribution
Y ∼ N(μ1, σ

2
1), the corresponding CDF of the degra-

dation can also be obtained easily:

P [η(t, θ) + Y (t) � L] = P [Y (t) � L − η(t, θ)] =

F (L − η(t, θ)) = Φ

(
L − η(t, θ) − μ1

σ1

)
, (5)

where Φ is the CDF of a normal distribution.

2 The Random Shocks and the Degra-
dation Pcesses are Independent and
Dependent

2.1 The Random Shocks and the Degradation
Pcesses are Independent

Assuming the component experience one degradation
process and one random shocks process, and if the two
processes are independent with each other, the reliabil-
ity of component can be expressed by

R(t) =P [D(t) � L, X(t) � S] =

P [D(t) � L]P [X(t) � S]. (6)

Considering the probabilistic failure threshold for
each component, the probability of no degradation fail-
ure RD is

RD(t) = P [D(t) � L(t)] =
∫ ∞

0

Y (t, u)dL(u), (7)

where u is a random variable.

And the probability of no shock cumulative damage
failure RS is

RS(t) = P [X(t) � S(t)] =
∞∑

n=0

{
P [N(t) = n]×

P
[
x1 + x2 + · · · + xN(t) � S(u)

∣∣N(t) = n
]}

=
∞∑

n=0

[ (λt)ne−λt

n!

∫ ∞

0

Fn
X(u)dS(u)

]
, (8)

where F n
X(u) is the CDF of the sum of n independent

and identically distributed X variables.

Substituting Eqs. (7) and (8) into Eq. (6), the relia-
bility of component based on the probabilistic failure
threshold can be obtained, that is

R(t) =RS(t)RD(t) =
∫ ∞

0

Y (t, u)dL(u)×
∞∑

n=0

[
(λt)ne−λt

n!

∫ ∞

0

Fn
X(u)dS(u)

]
. (9)

If the performance degradation follows Weibull distri-
bution, and the cumulative damages caused by random
shocks follows geometric process[10], the evaluation of
system reliability can be achieved by

R(t) =
∫ ∞

0

{
1 − exp

[
−
(

u

β(t)

)α(t)
]}

dL(u)×
∞∑

n=0

[
(λt)ne−λt

n!

∫ ∞

0

n∏
m=1

F (an−mu)dS(u)

]
, (10)

where a is a ratio of the geometric process.

In fact, it is not easy to solve the convolution in
Eq. (9). Therefore, we utilize the following numerical
methods to calculate the results.

R(t) =
∫ ∞

0

Y (t, u)dL(u)×
∞∑

n=0

⎧⎨
⎩ (λt)ne−λt

n!
P

⎡
⎣N(t)∑

i=1

xi � S(u)|N(t) = n

⎤
⎦
⎫⎬
⎭ =

∫ ∞

0

{
1 − exp

[
−
(

u

β(t)

)α(t)
]}

dL(u)×
∞∑

n=0

{
(λt)ne−λt

n!
Φ

[
S(u) − (μ1 + μ2 + · · · + μn)√

σ2
1 + σ2

2 + · · · + σ2
n

]}
=
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∫ ∞

0

{
1 − exp

[
−
(

u

β(t)

)α(t)
]}

dL(u)×

∞∑
n=0

⎧⎪⎪⎨
⎪⎪⎩

(λt)ne−λt

n!
Φ

⎡
⎢⎢⎣

S(u) − μ(1 − a−n)
1 − a−1√

σ2(1 − a−2n)
1 − a−2

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ . (11)

2.2 The Random Shocks and the Degradation
Processes are Dependent

In the previous section, we developed an independent
of the random shocks and the degradation model, in
other words, the relationship between them is not con-
sidered. However, the effects on the degradation due
to random shocks, especially those with serious dam-
ages, may not be neglected. Therefore, our objective in
this section is to conduct dependent reliability analysis
model with consideration of the random shocks effect-
ing on the degradation under the probabilistic thresh-
old.

Now assuming the component has two failure modes,
which is similar to the former model, one is degrada-
tion process and the other is the cumulative damage
of the random shocks. At the same time, we utilized
the random variable Ci which is called “effect factor”
to describe the effect factor of the ith shock, while Ci

follows an normal distribution for simplify.
For the random shocks, if the damage xi caused by

every random shock follows the identical normal distri-
bution with CDF

F (xi) =
1√

2πσs

∫ xi

−∞
e
− (t−nμs)

2

2nσ2
s dt, (12)

where μs is the mean value of random shock, and σs is
the variance of random shock.

According to the characteristic of normal distribu-

tion, X(t) =
n∑

i=1

xi still follows normal distribution

with CDF

F (X) =
1√

2πnσs

∫ xi

−∞
e
− (t−nμs)

2

2nσ2
s dt. (13)

Taking into the probabilistic threshold account, the
probability of no random shocks failure can be rewritten
as:

RS =
∞∑

n=0

(λt)ne−λt

n!

∫ ∞

0

Φ

(
u − nμs√

nσ2
s

)
dS(u). (14)

Then for the issue of the degradation failure pro-
cess under the probabilistic failure threshold, assum-
ing the performance of the internal degradation follows
the normal distribution Y (t) ∼ N(μd, σ2

d), and the ef-
fect factor Ci also follows the normal distribution Ci ∼

N(μc, σ
2
c ), then the compound effect of the degradation

is
N(t)∑
i=1

Ci + Y (t) ∼ N(μd + nμc, σ
2
d + nσ2

c ), therefore

RD(t) = P

[
Y (t) +

N(t)∑
i=1

Ci � L(u)

]
=

N(t)∑
i=1

{
P [N(t) = n]×

P

[
Y (t) +

N(t)∑
i=1

Ci � L(u)
∣∣∣N(t) = n

]}
=

N(t)∑
i=1

{
P [N(t) = n]×

∫ ∞

0

Φ

(
u − (μd + nμc)√

σ2
d + nσ2

c

)
dL(u)

}
. (15)

Then the reliability function of the component can
be obtained, and it is given by:

R (t) =

P

[
N(t)∑
i=1

xi(t) � S(u), Y (t) +
N(t)∑
i=1

Ci � L(u)

]
=

N(t)∑
i=1

{
P [N(t) = n]P

[
N(t)∑
i=1

xi(t) � S(u),

Y (t) +
N(t)∑
i=1

Ci � L(u)
∣∣∣N(t) = n

]}
=

∞∑
n=0

[
(λt)ne−λt

n!

∫ ∞

0

Φ

(
u − nμs√

nσ2
s

)
dS(u)×

∫ ∞

0

Φ

(
u − (μd + nμc)√

σ2
d + nσ2

c

)
dL(u)

]
. (16)

3 The Reliability Analysis of k-out-of-n
Systems Under the Probabilistic Fail-
ure Threshold Value

Because the dependent competing failure is more
realistic in practical, we apply the proposed depen-
dent model to the k-out-of-n systems reliability anal-
ysis. As well known, the k-out-of-n systems is a sys-
tem with n components such that the system is op-
erational if and only if at least k of its n components
are operational[19-20]. In other words, the system occurs
failure as soon as (n−k+1) components fail. In reality,
applications of the k-out-of-n systems model, such as
these systems which require more than one component
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to function in order for the entire system to operate. In
this section, we will discuss the reliability analysis for
the k-out-of-n systems under the probabilistic failure
threshold.

It can be shown from literature[9], the estimation of
reliability functions for a k-out-of-n identical and inde-
pendent component systems can be represented as

RS(t) =
n∑

i=k

(
n

i

)
Ri(t)[1 − R(t)]n−i. (17)

Considering the special case of the dependent random
shocks and the degradation, and substituting Eq. (16)
into Eq. (17), we have

RS(t) =
n∑

i=k

(
n

i

)
×

{
P

[
N(t)∑
i=1

xi(t) � S(u), Y (t) +
N(t)∑
i=1

Ci � L(u)

]}i{
1−

P

[
N(t)∑
i=1

xi(t) � S(u), Y (t) +
N(t)∑
i=1

Ci � L(u)

]}n−i

=

n∑
i=k

(
n

i

) ∞∑
n=0

{
(λt)ne−λt

n!

∫ ∞

0

Φ

(
u − nμs√

nσ2
s

)
dS(u)×

∫ ∞

0

Φ

(
u − (μd + nμc)√

σ2
d + nσ2

c

)
dL(u)

}i

×
{

1 −
∞∑

n=0

[
(λt)ne−λt

n!

∫ ∞

0

Φ

(
u − nμs√

nσ2
s

)
dS(u)×

∫ ∞

0

Φ

(
u − (μd + nμc)√

σ2
d + nσ2

c

)
dL(u)

]}n−i

. (18)

It can be seen that the reliability function of the k-
out-of-n systems can also be rewritten as follows.

RS(t) =
n∑

j=k

(−1)j−k

(
j − 1

k − 1

)(
n

j

)
Rj(t). (19)

Therefore, the reliability of the k-out-of-n systems,
simply, is

RS(t) =
n∑

j=k

(−1)j−k

(
j − 1

k − 1

)(
n

j

){
P

[
N(t)∑
i=1

xi(t) � S(u),

Y (t) +
N(t)∑
i=1

Ci � L(u)

]}j

=

n∑
j=k

(−1)j−k

(
j − 1

k − 1

)(
n

j

)
×

[ ∞∑
n=0

(λt)ne−λt

n!

∫ ∞

0

Φ

(
u − nμs√

nσ2
s

)
dS(u)×

∫ ∞

0

Φ

(
u − (μd + nμc)√

σ2
d + nσ2

c

)
dL(u)

]j

. (20)

4 Number Examples

The studied case in this section aims to demonstrate
the mathematical modeling and deduction of system
reliability which subject to the competing failure un-
der the independent and dependent between the ran-
dom shocks and degradation in previous sections, re-
spectively.
4.1 Case One

Although dependent competing model may be more
suitable for practical product, of course, in some cer-
tain conditions, the independent model is more con-
venient to get the failure feature. Therefore, we uti-
lize the data which can be found in literature[22], to
illustrate the proposed independent competing fail-
ure model. That is, supposing a component suf-
fers the internal degradation and the external ran-
dom shocks process. On the one hand, for the inter-
nal degradation, follows the Weibull distribution with
the shape parameter β(t) and scale parameter α(t)
is

β(t) = a1t
b1 exp(c1t)

and

α(t) = a2

(
1
t

+ 1
)b2

exp
(c2

t

)
respectively, the relative parameters are

a1 = 0.665, b1 = 0.395, c1 = 0.003

and

a2 = 6.546, b2 = −528.965, c2 = 542.128.

On the other hand, for the random shocks, assume
it follows a Poisson distribution with the arrival rate
λ = 0.1, which means the mean arrival time for a ran-
dom shock is 1/λ = 10, the magnitude of the random
shocks follow the F (t) ∼ N(1.0, 0.05), and to overcome
the difficulty of solving the convolution of the cumu-
lative random shock, geometric process is adopted in
Eq. (11) and a = 0.95. In addition, the probabilistic
failure threshold of the component is L(u) ∼ W (3.2, 10)
and S(u) ∼ W (2.5, 35), and the fixed failure thresh-
olds is S = 31.054 and L = 8.956, which are used to
demonstrate the results of the proposed model through
comparison.

Substituting these parameters into Eq. (11), we can
obtain the reliability of the component subjected to the
independent competing failure, that is:
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R(t) =
∫ ∞

0

⎧⎪⎨
⎪⎩1 − exp

⎡
⎢⎣−( u

0.665t0.395 exp(0.003t)

)6.546

(
1
t +1

)−528.965

exp

(
542.128

t

)⎤
⎥⎦
⎫⎪⎬
⎪⎭ dL(u)×

∞∑
n=0

⎡
⎢⎢⎣(0.1t)ne−0.1t

n!
Φ

⎛
⎜⎜⎝

S(u) − 1.0 × (1 − 0.95−n)
1 − 0.95−1√

0.052 × (1 − 0.95−2n)
1 − 0.95−2

⎞
⎟⎟⎠
⎤
⎥⎥⎦ . (21)

Furthermore, the results of the component reliability
for the probabilistic failure threshold and the fixed fail-
ure threshold are plotted in Fig. 2. At the same time,
the reliability of corresponding to the internal degra-
dation, external random shocks and are also shown in
Fig. 3 respectively. From these results, we can see it
clearly that the reliability of the fixed failure threshold
model is higher than the probabilistic failure threshold
model. And the probabilistic failure threshold model
evaluating reliability may be more precisely than the
fixed failure threshold since it is more realistic to prac-
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Fig. 2 The reliability of the probabilistic failure threshold
and the fixed failure threshold
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Fig. 3 The internal degradation and the external random
shocks versus time

tical phenomena. Thus, we can conclude that the reli-
ability of fixed failure threshold may overestimate the
reliability which is dangerous in the real world.
4.2 Case Two

In this subsection, we will firstly implement the re-
liability analysis under the independent and the de-
pendent condition using the proposed method. And
then, apply the dependent model to the k-out-of-n sys-
tems reliability analysis which is described in previ-
ous section. Now let internal degradation Y (t) fol-
lows normal distribution with mean μd = 0.016t0.37

and variance σd = 0.039t0.066; the random shocks fol-
low the Poisson distribution with λ = 0.25 and the
magnitude of the random shocks follow the normal dis-
tribution with xi ∼ N(0.16, 0.012); the probabilistic
failure threshold S(u) and L(u) follow the normal dis-
tribution with N(0.6, 0.01), the fixed failure threshold
of S = 0.5 and L = 0.7; finally, the effect factor is
Ci ∼ N(0.03, 0.0032).

According to Eq. (12), the reliability of independent
competing failure can be rewritten as

R(t) =
∫ ∞

0

Y (t, u)dL(u)×
∞∑

n=0

{
(λt)ne−λt

n!
P

[
N(t)∑
i=1

xi � S(u)

]}
=

∫ ∞

0

Φ
(u − 0.016t0.37

0.039t0.066

)
e−

(u−0.6)2

0.02 du×
∞∑

n=0

[
(0.25t)ne−0.25t

n!

∫ ∞

0

Φ
(u − 0.016

0.01

)
×

1√
2π× 0.1

e−
(u−0.6)2

0.02 du

]
. (22)

Meanwhile, substituting the corresponding parame-
ters into Eq. (16), the reliability of the component un-
der the dependent competing failure can be obtained
by

R (t) =

P

[
N(t)∑
i=1

xi(t) � S(u), Y (t) +
N(t)∑
i=1

Ci � L(u)

]
=
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∫ ∞

0

Φ
( u − 0.016t0.37 − 0.03n√

0.0032 + (0.039t0.066)2

)
×

1√
2π× 0.1

e−
(u−0.6)2

0.02 du×
∞∑

n=0

[
(0.25t)ne−0.25t

n!

∫ ∞

0

Φ
(u − 0.016

0.01

)
×

1√
2π× 0.1

e−
(u−0.6)2

0.02 du

]
. (23)

Finally, we apply the dependent model to the k-out-
of-n systems (considering the special case 2-out-of-3),
and substitute the relative parameters into the Eq. (20)

RS(t) =
n∑

j=k

(−1)j−k

(
j − 1

k − 1

)(
n

j

){
P

[
N(t)∑
i=1

xi(t) � S(u),

Y (t) +
N(t)∑
i=1

Ci � L(u)

]}j

=

3∑
j=2

(−1)j−k

(
j − 1

k − 1

)(
n

j

)
×

{∫ ∞

0

Φ

(
u − 0.016t0.37 − 0.03n√
0.0032 + (0.039t0.066)2

×

1√
2π× 0.1

e−
(u−0.6)2

0.02

)
du×

∞∑
n=0

[
(0.25t)ne−0.25t

n!

∫ ∞

0

Φ

(
u − 0.016

0.01

)
×

1√
2π× 0.1

e−
(u−0.6)2

0.02 du

]}j

. (24)

The results of the dependent and the independent
competing failure are shown in Fig. 4, from Fig. 4 we
can see that the reliability result of independent com-
peting failure model is lower at the early stage, and
then it becomes higher than the dependent condition.
We can see that the effect of the random shocks to the
degradation is important, and if we will not consider the
correlation between the degradation and shocks, the re-
liability estimation will not accurate and it may be too
optimistic.

Furthermore, the reliability of the independent com-
peting failure based on the probabilistic failure thresh-
old and the fixed failure threshold are represented in
Fig. 5 respectively. From the comparison, it is clear
that the reliability of the probabilistic threshold model
is lower than the fixed model.

Finally, for the reliability analysis of the dependent
competing failure in the k-out-of-n systems which is
based on the probabilistic failure threshold, we conduct

the sensitivity analysis of the parameter k to the relia-
bility, that is, given a fixed n, and changing the k, and
the results are shown in Fig. 6. From the results we can
see that the reliability shifts left with the increasing of
the k, which means if k decreases, the working require-
ments of the system will be much lower. That is true,
for example, when k = 1, the system will function if
at least one component operates, and according to the
reliability is higher than choosing other k.
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Fig. 4 Comparison of reliability between independent and
dependent competing model
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Fig. 5 The reliability of the probabilistic failure threshold
and the fixed failure threshold
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5 Conclusion

Reliability analysis plays an important role in eval-
uating the performance of a system and making main-
tenance decision in engineering. Generally, the system
failure may be caused by the internal degradation and
the external random shocks, both of them are impor-
tant source to cause the system failure, and whenever
one of them reaches the failure threshold, the system
failure occurs. This paper firstly developed the reliabil-
ity analysis for the competing failure process including
the degradation and the random shocks based on the
probabilistic threshold, and the independent and the
dependent competing failure reliability analysis model
is presented, respectively. And then the proposed de-
pendent competing failure model is applied to the re-
liability analysis for the k-out-of-n systems. At last,
two studied examples are given to illustrate the pro-
posed model, and from the different comparison, we
can clearly see that the reliability of the fixed failure
threshold model is higher than the probabilistic failure
threshold model. In addition, the results of the relia-
bility under the independent and the dependent com-
peting failure are different from each other, and the
effect of random shocks on the degradation process is
important. Furthermore, through the sensitivity anal-
ysis of the parameter k to the k-out-of-n systems re-
liability, it is shown that the reliability is shifts left
with the increasing of the k. It is worth considering in
the later research that to incorporate the different in-
spection and/or maintenance into the developed model,
and how to minimize the cost of the inspection and/or
maintenance and maximize the availability will also be
considered.
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