
J. Shanghai Jiaotong Univ. (Sci.), 2015, 20(2): 149-155

DOI: 10.1007/s12204-015-1603-1

Application-Oriented Cloud Monitoring Data
Distribution Mechanism

LI Da-zhi1,2∗ (李大志), LIU Jian-hua3 (刘建华), DONG Xin1 (董 鑫)
LI Lu-qun2 (李鲁群), CHEN Jun-hua2 (陈军华)

(1. School of Electronic Information and Electric Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
2. College of Information, Mechamical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China;
3. College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China)

© Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2015

Abstract: Cloud computing system consists of private clouds and public clouds. It merges its resources on each
layer (e.g. IaaS, PaaS and SaaS), which poses a challenge for resource management. The cloud monitoring system
is a solution to managing cloud system data from the heterogeneous resources. This paper discusses the monitoring
and collection of the heterogeneous resources, studies the adaptive system, and proposes a real-time extensible
distributed framework of monitoring data processing. Based on this framework, a system of monitoring data
distribution, publication and subscription is proposed. The simulation results show that the proposed mechanism
can adaptively determine the distribution action of monitoring data flow, and effectively reduce the costs for data
monitoring and distribution.
Key words: cloud computing, cloud monitoring, data aggregation, resource management
CLC number: TP 399 Document code: A

0 Introduction

Cloud computing is a computing grid. It can provide
IT-related services for customers flexibly. It includes
three layers: IaaS, PaaS and SaaS. IaaS layer converts
physical resources into virtual resources by visual ma-
chine for the use of PaaS layer. PaaS layer uses the
resources provided by IaaS to achieve a variety of mid-
dleware services (e.g. data security and data process-
ing). SaaS application software provides services for
consumers. The consumers are able to be accessible to
unlimited computing capabilities by Internet with a ter-
minal device that has limited computing and storage ca-
pacity. The current terminal device can access the fol-
lowing deployed cloud applications: video-on-demand
(VOD), the Internet TV, file sharing, etc. In order to
make these cloud applications operate in a more reli-
able and efficient way and meet users’ satisfaction, we
should further improve the service of cloud applications
through the monitoring data analysis from the network,
CPU and memory conditions in cloud systems. How-
ever, the three-layer structure of cloud computing sys-

Received date: 2014-11-07
Foundation item: the Scientific Research Foundation of

Zhejiang Provincial Education Department of China
(No. Y201431192)

∗E-mail: lijunzhi@sjtu.edu.cn

tem is not designed to monitor the physical resources
and virtual resources to improve the service. The exist-
ing distributed monitoring technology is designed based
on C/S mode. When a large amount of data come to
the center node, data processing will be blocked. More-
over, the monitoring data distribution is tightly coupled
with various monitoring data communication formats.
This paper mainly makes the following contributions:
the establishment of a distributed monitoring frame-
work to improve the collection and distribution of the
monitoring data, the design of a distributed algorithm
in order to reduce the amount of data distribution in
the cloud computing system, and the establishment of
a prototype system to evaluate the algorithm.

1 Related Works

Efficient resource monitoring is an emerging subject
in the field of cloud computing. It is divided into
network-oriented monitoring and service-oriented mon-
itoring in view of the current distributed systems. Gan-
glia is an open source monitoring system. It operates
on high performance computers and grid environment,
with its monitoring program running on each node in
the cluster using multicast transmission protocol to
send cluster status information to other cluster nodes[1].
Nagios is an open source monitoring tool for network

150 J. Shanghai Jiaotong Univ. (Sci.), 2015, 20(2): 149-155

system. It uses plug-in technology to obtain the mon-
itoring data and uses a set of distributed servers to
configure the distributed monitoring[2]. In Ref. [3], a
large-scale integrated service-oriented architecture was
proposed, and monitoring agents could carry out vari-
ous monitoring tasks in cooperation with other agents.
In Ref. [4], Kanstrén and Savola defined a distributed
monitoring framework which includes scalability, accu-
racy, security and adaptability. In Ref. [5], the authors
adopted a service-oriented concept and used informa-
tion exchange technology to integrate the existing sys-
tem. In Ref. [6], a framework was proposed to evaluate
the index. Amazon CloudWatch, based on the Ama-
zon Web service MaaS, obtains the monitoring data
from server nodes[7]. In a cloud computing system,
a large number of log files are stored on the server
nodes. Apache flume is a Hadoop distributed file sys-
tem (HDFS) to collect and store large amounts of log
data based on the flow processing. Each of its compo-
nents executes corresponding flow processing[8].

Compared with the above methods, our method fo-
cuses on the multicast distributed processing in hy-
brid cloud system. This paper identifies the exten-
sibility and loosely-coupled cloud monitoring “pub-

lish/subscribe” framework to improve the efficiency of
data distribution.

2 Loose Coupling Cloud Monitoring
Framework

The hybrid cloud monitoring service needs multiple
cloud providers. Each cloud provider controls its own
infrastructure, and provides a different virtual infras-
tructure control mechanism. Therefore, the monitoring
service must receive monitoring data from multiple het-
erogeneous data sources. At the beginning, cloud mon-
itoring service can monitor small cluster systems, but
later the increase of servers forms a large system, so that
a hybrid cloud monitoring framework must have good
scalability. The purpose of monitoring is to make the
cloud system run reliably. Any monitoring data should
not be lost in order to achieve reliable data distribu-
tion and node status updates. This paper designs a
monitoring service framework based on the above con-
sideration to meet the needs of cloud monitoring in-
frastructure. The framework is deployed on the cloud
computing platform. Loosely-coupled cloud monitoring
framework is shown in Fig. 1.

Cluster
Hybird cloud resources

Apache
server

Cluster
adapter

Apache
publisher Storage broker

Apache server
adapter

Cluster
publisher

Cloudwatch
publisher

Aggregation
broker

Subscription
request endpoint

Notification
broker

Fig. 1 Loosely-coupled cloud monitoring framework

Data flow serves as a basic unit of the transmission
among modules in a “publish/subscribe” model. A bro-
ker, as a medium of data transmission, is responsible
for receiving and sending the monitoring data flow, as
well as receiving customers’ requests. Apache adapter
is installed on the Apache server. It transmits the orig-
inal log to the format converter, then to the Apache
publisher, and finally transmits the data flow to the
broker. Cluster adapter is installed on the cluster, and
the cluster publisher transmits the original flow to the
broker. Cloudwatch publisher provides a configuration
document, listing the examples of monitoring, the mea-
surement attributes to be collected and the frequency
of collection. Subscription request endpoint requests
the monitoring data. Storage broker monitors the up-

coming data flow and saves it in HBase database.

3 The Design of Monitoring Algorithm

3.1 A Distributed Monitoring Method
Loose coupling “publish/subscribe” mechanism

sends subscription data flow only to the broker, but
does not across the broker to other adapters. Because
no subscription data flow is produced from the adapter
to the broker, the number of the messages is reduced.
But how to further reduce the number of messages
from the adapter to the broker remains a great
challenge. In Ref. [9], the method of time window
was utilized to consider local and global monitoring
data polling, and the parameters were optimized by

J. Shanghai Jiaotong Univ. (Sci.), 2015, 20(2): 149-155 151

adjusting the parameters of the monitoring, but the
dynamic adjustment of local and global monitoring
parameters on monitoring nodes was not considered.
In Ref. [10], hybrid update threshold and dynamic
time interval adjustment method were adopted, but
the status updates of threshold and time intervals on
distributed monitoring nodes were not considered lo-
cally and globally. This paper considers the above two
points and studies dynamic time-interval regulating
mechanism, namely dynamic announcing with local
change and global time consideration (DALCGTC).
3.2 The Reduction of Distributed Monitoring

Task Messages
In a hybrid cloud system, monitoring messages in-

crease as the growth of the number of nodes, so that
consumption of bandwidth and CPU cycles from the
adapter to the broker increase. In fact, the Apache
publisher does not have to send a notice of each change
of local state that Apache adapter receives to the cluster
publisher, so the data flow updates of each change are
avoided. However, because the resource state changes
are recorded locally in a given time interval, the real-
time updates of state change cannot be transmitted
to the broker. One solution is to adjust the time
window[10]. Based on DALCGTC monitoring task, this
paper mainly considers the following aspects: ① the
monitoring nodes related with monitoring task which
include the Apache publisher sets and cluster publisher
sets; ② the dynamic thresholds of global and local re-
sources changes.
3.3 Adaptive Distributed Monitoring Data

Flow Processing Strategy
The resource threshold value of local nodes depends

on the degree of changes in number that the Apache
adapter obtains. Here, Na denotes the number of mes-
sages about the state change of resources that Apache
adapter sends to Apache publisher; Ci denotes the value
of changing resources; R denotes the set of resources,
R = {r1, r2, · · · , rj}, i < j; ΔR denotes the increment
of the resource states, ΔR = {Δr1, Δr2, · · · , Δrk},
k < j. The dynamic resource threshold value of the
local node Apache adapter is

θ =
1

Na

m∑

i=1

(
ΔrCpu

i + ΔrBw
i + ΔrMem

i

)
,

where ΔrCpu
i , ΔrBw

i and ΔrMem
i are CPU’s increment

of the resource states, bandwidth’s increment of the re-
source states and memory’s increment of the resource
states in Apache adapter i, respectively; m is the num-
ber of Apache adapter. When the Apache adapter mon-
itors the resource change threshold value ri(t) on a node
i at time t and ri(t) > θ, then the data flow of resource
information is sent to the Apache publisher.

The data flow from the cluster adapter to the adapter
publisher includes two parts. One is the data flow from

all local nodes’ Apache publishers, and the other is the
data flow from virtual machines (VMs) in the cluster
server. Let Nb be the number of messages about state
change of resources that the cluster adapter sends to
the cluster publisher.

The dynamic resource change threshold value of each
cluster adapter on VMs is

λ =
1

Nb

q∑

j=1

(
ΔrCpu

j + ΔrBw
j + ΔrMem

j

)
,

where ΔrCpu
j , ΔrBw

j and ΔrMem
j are CPU’s increment

of the resource states, bandwidth’s increment of the re-
source states and memory’s increment of the resource
states in cluster adapter j, respectively; q is the num-
ber of cluster adapter. The dynamic resource change
threshold value of the cluster adapter on global nodes
is

π =
1

Nv

Nv∑

l=1

λl,

where λl corresponds to the dynamic resource change
threshold value of each cluster adapter on the lth VM,
and Nv is the number of VMs. Let rv

i (t) be resource
changes’ total value that is observed by cluster adapter
i on VM v at time t. Let rs

i(t) be resource changes’
total value that is observed by the cluster adapter i on
the server s at time t. If rv

i (t) > λ, then the data flow
of resource information is sent to cluster publisher. If
rs
i(t) > π, then the data flow of resource information

is sent to the broker. If the cluster adapter monitors
the state changes of the resources on a node, then the
resource information data flow processing event is e1,
and its processing actions include save (a1), notice (a2)
and reject (a3). The option of actions depends on the
state of CPU resources, memory resources and band-
width resources.

Definition 1 The cluster adapter monitors the
change of resource state on a node, and the set of events
is

E = {e1, e2, · · · , eNv}.
Accordingly, the possible set of processing actions is
A = {a1, a2, a3}.

Definition 2 The event set of the cluster adapter
is

E = {e1, e2, · · · , eNv}.
The action set is

A = {a1, a2, a3},
E × A = {(ei, aj)|ei ∈ E, ai ∈ A}.

Denote sij = (ei, aj), where sij is the processing strat-
egy of data flow.

Definition 3 Let k = (rCpu, rMen, rBw) be the
property of resources, where rCpu, rMen and rBw de-
note the properties of CPU, memory and bandwidth

152 J. Shanghai Jiaotong Univ. (Sci.), 2015, 20(2): 149-155

resources, respectively. Let o
(k)
ij be the action effect of

sij in k. Let rCpu
1 and rCpu

2 be the critical values of
resource state changes of rCpu. Let rMem

1 and rMem
2 be

the critical values of resource state changes of rMem.
Let rBw

1 and rBw
2 be the critical values of resource state

changes of rBw. The three-variable decision set of re-
source state changes of cluster adapter is given by

S(3) = {(rCpu, rMen, rBw)|rCpu
1 � rCpu � rCpu

2 ,

rMem
1 � rMem � rMem

2 , rBw
1 � rBw � rBw

2 }.

Let oCpu
ij , oMem

ij and oBw
ij be the action effects of sij

for the properties of CPU, memory and bandwidth re-
sources in k, respectively. If the action effect is oij and
oij = (oCpu

ij , oMem
ij , oBw

ij) ∈ S(3) under data flow process-
ing strategy sij , then data flow processing strategy sij

can get desirable resource status value in the constraints
of CPU resources, memory resources and bandwidth re-
sources, and aj is the desirable action of events ej of the
cluster adapter under the resource state constraints.

Definition 4 If rv
i (t) > λ, then the cluster adapter

sends out the data flow. Set λ = ρ, then

R(Nv) = {[rv
1(t), rv

2 (t), · · · , rv
Nv

(t)] |(rv
1 (t) − ρ

(1)
0)2+

(rv
2 (t) − ρ

(2)
0)2 + · · · + (rv

Nv
(t) − ρ

(Nv)
0)2 � α2},

where ρ0 = {ρ(1)
0 , ρ

(2)
0 , · · · , ρ

(Nv)
0 }, R(Nv) is the thresh-

old value of resources as the center, and α is the radius
of the sphere. Then ρ0 is the optimal threshold of re-
source change on each VM.

Definition 5 Let |ρ1 − ρ0| = [(ρ(1)
1 − ρ

(1)
0)2+

(ρ(2)
1 − ρ

(2)
0)2 + · · ·+ (ρ(Nv)

1 − ρ
(Nv)
0)2]1/2, where ρ1 =

{ρ(1)
1 , ρ

(2)
1 , · · · , ρ

(Nv)
1 } ∈ R(Nv). Here, |ρ1 − ρ0| is the

center distance of resource variable ρ1, and it reflects
the superiority of action effect on the incident response
vector on the cluster adapter.

Definition 6 Let smn be the different processing
strategies of data flows. Let omn be the effect of actions
of processing strategy smn, and

omn = (oCpu
mn , oMen

mn , oBw
mn),

where oCpu
mn , oMem

mn and oBw
mn are the action effects of

smn for the property of CPU, memory and bandwidth
resources in k, respectively. If |oij − ρ0| � |omn − ρ0|,
then smn is better than sij , denoted by smn � sij .
When the equation is true in the formula, then smn is
equivalent of sij , denoted by smn

∼= sij . Let OP be
the data flow processing strategy under the constraints
of CPU resources, memory resources and bandwidth
resources. Algorithm 1 describes the adaptive moni-
toring data flow decision on the cluster adapter.

Algorithm 1 Adaptive monitoring data flow deci-
sion on the cluster adapter

(1) Creating set monitoring data flow processing
s11 = (e1, a1),
s12 = (e1, a2),
s13 = (e1, a3)

(2) Computing action effect
o11 = [oCpu

11 , oMem
11 , oBw

11],
o12 = [oCpu

12 , oMem
12 , oBw

12],
o13 = [oCpu

13 , oMem
13 , oBw

13]
(3) Computing |o1j − ρ0| according to

ρ0 = {ρ(1)
0 , ρ

(2)
0 , ρ

(3)
0 },

OP = min{|o1j − ρ0|}

In the adaptive monitoring data processing algo-
rithm, if the action save is chosen, the storage time must
be considered. There are two time intervals. One is the
storage time interval on the Apache server that deter-
mines how soon to send the data flow to the Apache
publisher, and the other one is the storage time inter-
val that determines how soon to send the data flow from
the Apache publisher to the cluster publisher. During
the interval when the cluster publisher waits to submit
the data flow to the broker, all of the data flow must be
transmitted from the Apache publisher cluster to the
cluster publisher. Likewise, during the interval when
the Apache publisher waits to submit the data flow to
the cluster publisher, all of the cache data flows must
be transmitted from the Apache adapter cluster to the
Apache publisher. Assuming TCp is the time interval
that cluster publisher sends query to Apache publisher.
Let Tq be the query time to send query to each local
node. Let TAp be the delivery time that Apache pub-
lisher sends data flow to cluster publisher. The time to
obtain query data is

TQ = Tq + nTAp,

where n is the number of the Apache publisher, then
TQ � TCp. The cluster publisher sets its own waiting
time T W

Ap,i for transmission from Apache adapter af-
ter Apache publisher i receives query message from the
cluster publisher,

T W
Ap,i = TQ(i − 1) + TAp,

where TQ(i − 1) is the transmission time that the
(i − 1)th Apache publisher sends data flows to cluster
publisher.

4 Monitoring Data Flow Distribution

Definition 7 A monitoring data model is defined
as a four-tuple:

s = {Timestamp, Metricname, Value, Source},
where Timestamp is the time of sending monitoring
data flow, Metricname is the property of measure-
ments, Value is the monitored value of measurements,

J. Shanghai Jiaotong Univ. (Sci.), 2015, 20(2): 149-155 153

and Source is the object of measurements (e.g. mysql,
apache, server, and os). A spread flow can be denoted
as f = (sizef , u, v), where sizef is the bit of flow, u
is the source of measurements, and v is the cluster
server. We implement adaptive monitoring data
flow distribution by using Java language to call VM
monitoring interface. The detail procedure is described
in Algorithm 2. The adaptive monitoring data flow
distribution on the cluster adapter is described as
follows:

Algorithm 2 Adaptive monitoring data flow distri-
bution on the cluster adapter

(1) jmxServerConn =
getMBeanServerConnection (urlForJMX)
/getMBeanServerConnection is a function of VM
connection*/

(2) domains = jmxServerConnection.getDomains()

(3) copM = jmxServerConnection.getAttribute
(memory, “HeapMemoryUsage”)

(4) copN = jmxServerConnection.getAttribute
(bandwidth, “NetworkUsage”)

(5) copC = jmxServerConnection.getAttribute
(CPU, “CPUUsage”)

/* copM, copN and copC are real-time resource
state in VMs */

(6) maxm = copM.get(“max”);
usedm = copm.get (“used”)

(7) maxn = copN.get(“max”);
usedm = copN.get (“used”)

(8) maxc = copC.get(“max”);
usedm = copC.get (“used”)

/* maxm, maxn and maxc are maximum resource
threshold in VMs */

(9) Call adaptive monitoring data flow decision on the
cluster adapter

/* call Algorithm 1 */

We create task queue to execute monitor on cluster
publisher. The detail procedure is described in Algo-
rithm 3. The monitoring task execution on the cluster
publisher is described as follows:

Algorithm 3 Monitoring task do Execution() on the
cluster publisher

(1) for each monitor task mt in current execution
queue do

(2) if mt.currstage = “run” then
(3) send notification to broker for starting task
(4) mt.currnumstage++
(5) update the Q(mt.currnumstage)
(6) end if

(7) if mt.currstage = “Send” then

(8) insert the flow packet into send queue
according to OP

(9) mt.currnumstage++
(10) update the Q(mt.currnumstage)
(11) end if
(12) if mt.currstage = “Recv” then
(13) insert the flow packet into recv queue
(14) mt.currnumstage++
(15) update the Q(mt.currnumstage)
(16) end if
(17) if mt.currstage = mt.totalNum then
(18) mt.currstage = Finished
(19) end if
(20) if mt.currstage = “Finished” then

(21) update the total monitoring task execution
time

(22) remove the monitoring task from current
execution queue

(23) insert another monitoring task from waiting
queue to current execution queue

(24) notify the broker about the completion of
monitoring task

(25) end if
(26) end for

Algorithm 3 describes the execution of monitoring
data flow processing on the cluster publisher. For
each monitoring task, the scheduling detector checks
the current state of task execution. The monitoring
tasks on the cluster publisher involve four stages:
Send, Receive, Run and Finish. If the current stage
Run has been completed, the execution time of the
current monitoring task is updated according to the
execution time of the next task. If the current state is
Send, the cluster publisher task scheduler encapsulates
the data flow packets and submits it to the transmit
queue. Then the cluster publisher sends the data
flow to the broker. If the current state is Receive,
the cluster publisher tests whether the current queue
has received a data flow packet. If a package has
been received, then the current task is updated. If
the current status is Finish, the total monitoring task
execution time is calculated, and the finished task is
removed from the current execution queue. Then,
cluster publisher sends the message of finished task to
the broker. Algorithm 4 describes the scheduling al-
gorithm of the monitoring task on the cluster publisher.

Algorithm 4 Monitoring task scheduling on the
cluster publisher

(1) for each monitoring task mt in current execution
queue do

154 J. Shanghai Jiaotong Univ. (Sci.), 2015, 20(2): 149-155

(2) repeat
(3) do Execution()
(4) if mt.currstage == “Recv” then
(5) execute the Monitoring Task at the top of

waiting queue

(6) end if
(7) until mt.currstage == “Send”
(8) end for

Algorithm 4 describes multiple monitoring tasks that
can be performed at the same time. When a monitor-
ing task is waiting for input/output operations, other
tasks in the waiting queue are also executable. Thus,
the efficiency of data distribution is improved with the
reduced delay time.

5 The Simulation and Analysis of
Performance

The simulation platform is developed by Eclipse +
JAVA. In the simulation, 200 users are randomly se-
lected to access the data center server. The num-
ber of the servers varies from 20 to 100. Different
CPU frequency is allocated for each server: 4, 8 and
16GHz. The frequency of each virtual host varies
from 1 to 4 GHz. We carry out our experiments us-
ing VMware server-2.0 that installs Microsoft Win-
dows XP operation system. Hardware configuration is
CPU i3-2330, 2.20GHz and 4GB RAM. The simula-
tion platform sets three target functions o11, o12 and
o13. Three thresholds of CPU, memory and network
bandwidth resources are factors to make a decision for
data distribution. Given a set of threshold parameters
φ = {0.55, 0.44, 0.33}, a collected set of resource value
is δ = {0.6, 0.3, 0.2}. Because of 0.6 > 0.55, it means
that only CPU resources are more than the threshold.
Because of 0.44−0.3 > 0.33−0.2, the memory resource
cost is less, so the data can be cache. The experimental
structure diagram is shown in Fig. 2.

Cluster node
cluster publisher

VM server 1
adapter

XP
application

VM server 2
adapter

XP
application

VM server 3
adapter

XP
application

Fig. 2 The experimental structure diagram

Figure 3 shows the resource incremental change fre-
quency of different VMs. VM1 receives 10 user requests;
VM2 and VM4 receive 50 user requests; VM3 and VM5
receive 100 user requests. The incremental change of

VM1 is the smallest, while the incremental changes
of VM2 and VM4 are medium, and the incremental
changes of VM3 and VM5 are the largest.

14
12
10
8
6
4
2
0T

he
 i
nc

re
m

en
ta

l
ch

an
ge

s
of

 r
es

ou
rc

es
 p

er
 V

M

VM1 VM2 VM3 VM4 VM5

Fig. 3 Incremental change in the VM resources

Figure 4 shows the changes in notice rate of moni-
toring data in DALCGTC method. As the users in-
crease, the resource increments of each virtual machine
VM change from small to large. The notice rate of
monitoring data of DALCGTC method changes more
slowly than that of the single threshold method, be-
cause DALCGTC method combines the multi-threshold
parameter decision and reduces the notices of monitor-
ing data.

Single threshold
DALCGTC

0.8

0.6

0.4

0.2

0 20 40 60
The number of users

T
he

 n
ot

ic
e

ra
te

 o
f

m
on

it
or

in
g

da
ta

80 100

Fig. 4 The notice rate of monitoring data

Figure 5 shows the bandwidth utilization rate of mon-
itoring data in DALCGTC method. As the users in-
crease, the resource increments of each virtual machine
VM change from small to large. More data are ob-
tained. Since there is no data processing behavior deci-

Single threshold
DALCGTC

T
he

 u
ti

liz
at

io
n

ra
te

 o
f

m
on

it
or

in
g

da
ta

 b
an

dw
id

th
s

1.0

0.8

0.6

0.4

0.2

0 25 50
The number of users

75 100

Fig. 5 The utilization rate of monitoring data bandwidths

J. Shanghai Jiaotong Univ. (Sci.), 2015, 20(2): 149-155 155

sion in a single threshold method, the data will be sent
to the cluster publisher only when the use of resources
exceeds the threshold. The increase in monitoring data
and use of bandwidth slows down the transmission of
media data. But the DALCGTC method combines the
multiple threshold parameter decision by using cache
and notice. It discards unnecessary monitoring data,
and reduces the volume of monitoring data and the
bandwidth utilization.

6 Conclusion

This paper studies the solution to reducing the fre-
quency of data distribution under the premise that the
monitoring data are effective and valid. With the es-
tablishment of a “publish/subscribe” data distribution
framework, this paper provides an efficient monitoring
data distribution strategy and model monitoring data
distribution as a multi-objective optimization prob-
lem, which is solved by using multi-objective decision-
making algorithm. In order to test the performance of
the strategy, we develop the simulation platform and
test different processing strategies of monitoring data
flows in the platform. Simulation results show that the
use of multiple parameter threshold decision can effec-
tively reduce the distributed data. The future work
will focus on the solution to multi-objective optimiza-
tion problem by considering the time threshold and re-
source threshold.

References

[1] Khanli L M, Analoui M. An approach to grid re-
source selection and fault management based on ECA
rules [J]. Future Generation Computer Systems, 2008,
24(4): 296-316.

[2] Guo Y, Guo L. IC cloud: Enabling compositional

cloud [J]. International Journal of Automation and
Computing, 2011, 8(3): 269-279.

[3] Newman H B, Legrand I C, Galvez P, et al. Mon-
ALISA: A distributed monitoring service architecture
[C]//Proceedings of the Computing in High Energy and
Nuclear Physics Conference. La Jolla, Ca, USA: IEEE,
2003: 1-8.

[4] Kanstrén T, Savola R. Definition of core require-
ments and a reference architecture for a dependable,
secure and adaptive distributed monitoring framework
[C]//Proceedings of the 3 International Conference on
Dependability. Venice, Italy: IEEE, 2010: 154-163.

[5] Sun Y, Xiao Z, Bao D, et al. An architecture model
of management and monitoring on cloud services re-
sources [C]//Proceedings of the 3 International Con-
ference on Advanced Computer Theory and Engineer-
ing. Chengdu, China: IEEE, 2010: V3207-V3211.

[6] Lahmadi A, Andrey L, Festor O. Perfor-
mance of network and service monitoring frameworks
[C]//Proceedings of the IEEE International Sympo-

sium on Integrated Network Management. [s. l.]: IEEE,
2009: 815-820.

[7] He Q, Han J, Yang Y, et al. Formulating cost-
effective monitoring strategies for service-based sys-
tems [J]. IEEE Transactions on Software Engineering,
2014, 40(5): 461-482.

[8] Buyya R, Yeo C S, Venugopal S, et al. Cloud
computing and emerging it platforms: Vision, hype,
and reality for delivering computing as the 5th utility
[J]. Future Generation Computer Systems, 2009, 25(6):
599-616.

[9] Meng S, Liu L, Wang T. State monitoring in cloud
data centers [J]. IEEE Transactions on Knowledge and
Data Engineering, 2011, 23(9): 1328-1344.

[10] Chung W C, Chang R S. A new mechanism for re-
source monitoring in Grid computing [J]. Future Gen-
eration Computer Systems, 2009, 25(1): 1-7.

