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Abstract: The extended finite element method (XFEM) is a numerical method for modeling discontinuities within
a classical finite element framework. Based on the algorithm of XFEM, the major factors such as integral domain
factor and mesh density which all influence the calculation accuracy of stress intensity factor (SIF) are discussed,
and the proper parameters to calculate the SIF are given. The results from the case analysis demonstrate that the
crack path is the most sensitive to the crack growth increment size, and the crack path is not mesh-sensitive. A
reanalysis method for the XFEM has been introduced. The example presented shows that there is a significantly
reduced computational cost for each iteration of crack growth achieved by using the reanalysis method and the
reanalysis approach has increasing benefits as the mesh density increases or the value of crack growth increments
size decreases.
Key words: extended finite element method (XFEM), stress intensity factor (SIF), crack, level set, numerical
methods
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0 Introduction

A great amount of engineering practice shows that
the structural instability is closely related to its in-
ternal crack propagation. Since the existence and
propagation of the crack, the bearing capacity of the
project structure is weakened to some extent and af-
fects the safety of engineering structures. The crack
problem has become one of the major factors affecting
the quality and stability of engineering structures, and
attracts more and more attention in engineering field
and academic community. So studying the stability of
crack and predicting the crack propagation path are of
great significance in theory and practice for estimat-
ing the safety and reliability of engineering structures.
Current numerical methods mainly include numerical
manifold method[1], finite element method[2], meshless
method[3] and boundary element method[4] for analyz-
ing the crack propagation process and they show differ-
ent characteristics in solving the mobile discontinuous
problem of the crack propagation process. Numerical
manifold method and finite element method need to set
fine element at the crack tip, so, may lead to complex
preprocessing and bad accuracy. Element-free method
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is without pre-processing such as mesh dissection, but
the calculations of its shape functions and derivative
cost greatly. The boundary element method must know
the fundamental solution of control equation for the
problem, but now the fundamental solution of the non-
linear problem is not easy to establish.

The extended finite element method (XFEM)[5] is a
numerical method for modeling discontinuities within a
standard finite element framework. It was first intro-
duced by Professor Belytschko at Northwest University
in 1999．Based on the partition of unity methods, ma-
ture theories and techniques of finite element method
are inherited by XFEM．In the XFEM, a Heaviside
function and the two-dimensional asymptotic crack-tip
displacement fields are added to the finite element ap-
proximation to account for discontinuity of the crack
surface and stress singularity near the crack tip respec-
tively. This enables the domain to be modeled by fi-
nite elements without explicitly meshing the crack sur-
faces, and hence crack growth simulations can be car-
ried out without remeshing. Since the unique advan-
tage of XFEM for fracture analysis, it has developed
applications rapidly and widely in the past a few years.
Moës et al.[6] introduced a much more elegant technique
by adapting an enrichment that includes the asymptotic
near-tip field and a Heaviside function. Réthoré et al.[7]

proposed a hybrid analytical and XFEM to study the
propagation of curved mixed-mode cracks. Gordeliy
and Anthony[8] used the XFEM to solve the elastic
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crack component of the elasto-hydrodynamic equations
that govern the propagation of hydraulic fractures in
an elastic medium. Zhu[9] presented a mathematical
derivation of the enrichment functions in the XFEM
for numerical modeling of strong and weak discontinu-
ities. Liu et al.[10] developed a high-order XFEM based
on the spectral element method for the simulation of
dynamic fracture.

In this study, we apply the XFEM to crack problems
in isotropic homogeneous media. Numerical examples
are presented to demonstrate the accuracy of the nu-
merical technique and to show its versatility of solv-
ing the challenging problems in computational fracture
mechanics.

1 Extended Finite Element Method

1.1 XFEM Discrete Displacement Field
1.1.1 XFEM Approximation for Cracks

For modeling cracks in XFEM, the approximation
function takes the following form:

u =
∑

i∈Ω

Ni(p)

⎡

⎢⎢⎢⎢⎣
ui + H(p)ai︸ ︷︷ ︸

i∈ΩΓ

+
4∑

l=1

Fl(p)b(l)
i

︸ ︷︷ ︸
i∈ΩΛ

⎤

⎥⎥⎥⎥⎦
, (1)

where, Ω is the entire domain; Ni(p) is the traditional
finite element shape function associated with node i; p
is a sample (Gauss) point; ui is the traditional degree
of freedom; ΩΓ is the domain cut by the crack; H(p)
is the Heaviside enrichment; ai denotes the nodal en-
riched degree of freedom associated with the discontin-
uous Heaviside function; ΩΛ is the domain containing
the crack tip; Fl(p) is the crack tip enrichment; b

(l)
i is

nodal degree of freedom corresponding to the near-tip
function.

For an element completely cut by a crack, the Heav-
iside enrichment function is used such that[6]

H(p) =

{
+1, (p − p∗) · n > 0

−1, otherwise
, (2)

where, p∗ (lies on the crack) is the closest point to p;
n is the unit outward normal to the crack at p∗.

The crack-tip enrichment function[11] in isotropic
elasticity is

Fl(p) =
√

r
[
sin
(θ

2

)
cos
(θ

2

)
sin(θ) cos

(θ

2

)
sin(θ) sin

(θ

2

)]
,

where (r, θ) are the polar coordinates in the local crack-
tip coordinate system (see Fig. 1). Nodes in set ΩΓ are
the elements that their supports are split by the crack
and nodes in set ΩΛ belong to the elements that contain

a crack tip. These nodes are enriched with the Heav-
iside and near-tip fields, respectively. When a node
would be enriched by both H(p) and Fl(p), only Fl(p)
is used (see Fig. 2), in which the nodes with circle are
enriched by the Heaviside step function, and the nodes
with square are enriched by the crack tip enrichment
functions.

Crack tip

r
θ

p*

p

n

n

Fig. 1 The local coordinate system

Crack

Fig. 2 The nodes enriched with the enrichment functions

1.1.2 XFEM Approximation for Holes
The enriched approximation for modeling holes in

XFEM takes the following form:

u =
∑

i∈Ω

Ni(p)
[
ui + H(p)ai︸ ︷︷ ︸

i∈ΩΓ

]
. (3)

The Heaviside jump function, H(p), takes a value of 0
inside the hole and 1 outside the hole.
1.2 Discretized Equations

The discrete system of linear equations using the
XFEM procedure in global form can be written by

Kd = f , (4)

where d is the vector of nodal degrees of freedom for
both classical and enriched ones, as defined in

d =
[
ui ai b

(1)
i b

(2)
i b

(3)
i b

(4)
i

]T
, (5)

K and f are the global stiffness matrix and external
force vector, respectively. The global stiffness matrix
K can be considered as

K =

⎡

⎢⎢⎣

Kuu Kua Kub

Kau Kaa Kab

Kbu Kba Kbb

⎤

⎥⎥⎦ . (6)
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The elemental stiffness matrix Ke for any member of
K may be calculated as

Ke =
∫

Ωe

BT
k DBsdΩ, (7)

where, k, s = u, a, b; Ωe is an element such that the
crack lies along the edges of these elements; D is the
constitutive matrix for an isotropic linear elastic mate-
rial; Bu, Ba and Bb are the matrices of shape function
derivatives,

Bu =

⎡

⎢⎢⎣

Ni,x 0

0 Ni,y

Ni,y Ni,x

⎤

⎥⎥⎦ ,

Ba =

⎡

⎢⎢⎣

(NiH)x 0

0 (NiH)y

(NiH)y (NiH)x

⎤

⎥⎥⎦ ,

Bb = [Bb1 Bb2 Bb3 Bb4],

Bbl =

⎡

⎢⎢⎣

(NiFl)x 0

0 (NiFl)y

(NiFl)y (NiFl)x

⎤

⎥⎥⎦ ,

l = 1, 2, 3, 4,

Ni,x and Ni,y are the derivatives of Ni with respect to x
and y, respectively, (NiH)x and (NiH)y are the deriva-
tives of (NiH) with respect to x and y, respectively, Ni

is finite element shape function.
Force vector f is the equivalent node force for body

force b and traction t, as defined in

f = [fu fa fb1 fb2 fb3 fb4]T, (8)

and the vectors that appear in Eq. (8) are defined as

fu =
∫

Γt

NitdΓ +
∫

Ωe

NibdΩ

fa =
∫

Γt

NiHtdΓ +
∫

Ωe

NiHbdΩ

fbl =
∫

Γt

NiFltdΓ +
∫

Ωe

NiFlbdΩ

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (9)

l = 1, 2, 3, 4,

where Γt is traction boundary.
1.3 Integration of Element with Discontinuity

The XFEM allows the mesh to be independent of the
geometry. Hence, special care has to be taken while
numerically integrating over the elements intersected
by the discontinuity. A standard quadrature rule is
not suitable for discontinuous functions, and it is the
reason why the elements intersected by the crack are
split into integration subdomains with their boundaries

aligned with the crack, as illustrated in Ref. [6], in such
a way that there is no discontinuity in any of the subdo-
mains. Integration would then be performed over each
subdomain, and a series of integrations over continuous
domains would be achieved. The common number of
Gauss points for integration in each triangular subdo-
main with the Heaviside enrichment is 3 while that for
the crack tip enrichment functions is 7. An example of
an element completely cut by a crack as well as con-
taining a crack tip and the associated subdomains for
integration is shown in Fig. 3.

Crack tip

Element

Subdomain

Element

Crack

Subdomain

(a) Element cut by crack divided into
     four continuous subdomains

(b) Element containing crack tip divided
     into five continuous subdomains

Fig. 3 Elements containing a discontinuity and the contin-
uous subdomains for integration

1.4 The Level Set Method
1.4.1 Level Sets for Cracks

The level set method introduced by Osher and
Sethian[12] as a numerical method can be used to track
the evolution of interfaces and shapes. XFEM and level
set method work together naturally for crack growth
modeling. Since the crack is an open curve, two or-
thogonal level set functions are required to represent
it. The first level set function ϕ(p, t) is normal to the
crack and the zero level set of this function represents
the crack surface. The other level set function φ(p, t) is
tangent to the crack at its tip and represents the crack
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location at any time t.
The level set function ϕ(p, t) which represents the

crack surface can be written as

ϕ(p, t) = ±min ‖p − pi‖ , (10)

where ϕ(p, t) is the signed-distance to the interface and
pi is the location of the ith crack tip. The sign of
the minimum distance depends on which side of the
interface where a point p is located.

The level set function φ(p, t) that represents the
crack tip is initially defined by

φi(p, 0) = (p − pi) · t′, (11)

where t′ is a unit vector tangent to the crack at its tip,
and pi is also the location of the ith crack tip. The ini-
tial level set functions ϕ and φi, and the representation
of the crack are shown in Fig. 4.

φ1>0

φ2>0

φ2<0

Crack

φ1<0

ϕ<0

ϕ>0

Fig. 4 Crack described by the level set method

For the case of more than one crack tip, it is conve-
nient to define a single function φ(p, t) for the crack tip
level set representation by

φ(p, t) = max φi(p, t). (12)

The function φ allows us to define the location of the
crack using only one function whether a crack has one
or two tips. In other words, a crack is defined as the
set

{p : ϕ(p, t) = 0 and φ(p, t) � 0} . (13)

1.4.2 Level Sets Update for Cracks
Crack growth is modelled by appropriately updating

the φi and ϕ functions, then reconstructing the updated
φ function[13]. The evolution of φi and ϕ is determined
by the crack growth direction θc. In each step, the crack
tip displacement vector is given as F = (Fx, Fy) and the
current crack tip is given by the coordinates (xi, yi).
The following steps describe the simple procedure of
evolution of the level set functions φ

(n)
i and ϕ(n) at the

step n:
(1) F is not necessarily orthogonal to the zero level

set of φ
(n)
i . For this reason, we must first rotate φ

(n)
i

so that F is orthogonal. Here, φ
(n)
i after rotation is

referred to as φ̂i and given by

φ̂i =
(x − xi)Fx

‖F ‖ +
(y − yi)Fy

‖F ‖ . (14)

(2) The crack is extended by computing new values
of ϕ(n+1):

ϕ(n+1) =
⎧
⎨

⎩

ϕ(n), φ̂i < 0

±
∣∣∣∣
(x − xi)Fy

‖F ‖ − (y − yi)Fx

‖F ‖
∣∣∣∣ , φ̂i � 0

. (15)

(3) The updated location of the crack tip can be com-
puted by

φ
(n+1)
i = φ̂i − Δt‖F ‖, (16)

where Δt is the elapsed time between φ
(n)
i and φ

(n+1)
i .

(4) Once all φ
(n+1)
i corresponding to a crack are up-

dated, φ
(n+1)
i is updated using Eq. (12).

The location of the new crack tip i can now be de-
termined by finding the intersection of the zero level
sets of φ

(n+1)
i and ϕ(n+1). The sketch map of level set

function update is illustrated in Fig. 5.

F

Tip 2Tip 1
ϕ<0

ϕ>0

φi>0
φi<0

φi=0 φi=0
n

φi    =0n+1

Fig. 5 Level set function update

1.4.3 Level Sets for Circular Holes
For our purposes, the interface is static, so we only

use the level set theory for representing circular holes
which can be written as

ϕ(p, 0) = min
p

(i)
c ∈Ω

(i)
c

{‖p − p(i)
c ‖ − r(i)

c

}
, (17)

i = 1, 2, · · · , nc,

where Ω
(i)
c is the domain of the ith hole; nc is the num-

ber of circular holes; p
(i)
c and r

(i)
c are the center location

and radius of the ith hole. The level set function is pos-
itive or negative as illustrated in Fig. 6.
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ϕ>0

ϕ<0

ϕ=0

Fig. 6 Hole described by the level set method

1.4.4 Definition and Selection of the Enriched Nodes
Level sets contain all the necessary information for

modeling crack, and allow crack grow over a fixed mesh.
Further, they facilitate selection of nodes for enrich-
ment. The selection of enriched nodes can be simpli-
fied by the use of the level set functions φ and ϕ. Let,
φmax and φmin (correspondingly ϕmax and ϕmin) be the
maximum and minimum values of φ (correspondingly
ϕ) at the nodes of a given element. Then an element is
enriched with the Heaviside enrichment when φmax < 0
and ϕmaxϕmin � 0, and with the crack tip enrichment
when φmaxφmin � 0 and ϕmaxϕmin � 0.

2 Crack Growth and Stress Intensity
Factor Evaluation

2.1 Crack Growth
There are several criteria for predicting crack growth

direction in homogeneous materials. The maximum
circumferential stress criterion[6] which is a commonly
used criterion is adopted herein. According to this cri-
terion, the crack growth occurs in a direction perpen-
dicular to the maximum principal stress. Thus, at each
crack tip, the angle of crack growth θc is given by

θc = 2 arctan
1
4

(
KI

KII
±
√( KI

KII

)2

+ 8

)
, (18)

where KI and KII are the mixed-mode stress intensity
factors (SIFs).

According to this criterion, the equivalent mode-I SIF
is obtained as

Keq
I =

1
2

cos
(

θc

2

)
[KI(1 + cos θc) − 3KII sin θc]. (19)

2.2 Evaluation of SIFs
2.2.1 Obtaining SIFs from Interaction Integral

An interaction integral approach is used to evaluate
the SIF at the tip of the crack. The coordinates are
taken to be the local crack tip coordinates with the
x1-axis parallel to the crack faces. The modified inter-
action integral for XFEM can be written in the domain

form as[14]

I(1,2) =
∫

A

[
σ

(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
− W (1,2)δ1j

] ∂q

∂xj
dA, (20)

where, I(1,2) is called the interaction integral for states
1 and 2; σij represents stress component; ui denotes
displacement component; δ1j is the Kronecker delta; A
is an area surrounding the crack tip and q is a weight-
ing function; W (1,2) represents the strain energy density
for states 1 and 2. The states 1 and 2 depict the actual
state and the auxiliary state, respectively. Field vari-
ables for the actual state are obtained by the XFEM
solution and those for auxiliary state are chosen as the
crack tip asymptotic fields[11]. Strain energy density
W (1,2) is given as

W (1,2) =
1
2
(σ(1)

ij ε
(2)
ij + σ

(2)
ij ε

(1)
ij ), (21)

where εij represents strain component.
Expanding and rearranging terms from Eq. (20) gives

I(1,aux) =
∫

A

[(
σx

∂uaux
x

∂x
+ τxy

∂uaux
y

∂x
+ σaux

x

∂ux

∂x
+

τaux
xy

∂uy

∂x
− σijε

aux
ij

) ∂q

∂x
+
(
τxy

∂uaux
x

∂x
+

σy

∂uaux
y

∂x
+ τaux

xy

∂ux

∂x
+ σaux

y

∂uy

∂x

)∂q

∂y

]
dA, (22)

where, superscript “aux” denotes auxiliary fields; σx

and σy represent stress components on the x and y axes,
respectively; τxy is the shear stress.

The interaction energy integral is related to the SIFs
as follows[15]:

I(1,2) =
2

E∗ (K(1)
I K

(2)
I + K

(1)
II K

(2)
II ), (23)

where E∗ is defined in terms of material parameters E
(elastic modulus) and ν (Poisson’s ratio) as

E∗ =

⎧
⎪⎨

⎪⎩

E, plane stress

E

1 − ν2
, plane strain

. (24)

To obtain mode-I SIF for state 1, the auxiliary state
(state 2) is chosen to be the pure mode-I condition.
Substituting K

(2)
I = 1 and K

(2)
II = 0 into Eq. (23) gives

K
(1)
I =

E∗

2
I(1,mode-I), (25)

where I(1,mode-I) is the interaction integral for K
(2)
I = 1

and K
(2)
II = 0.
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A similar procedure can also be followed such that
K

(1)
II is given by

K
(1)
II =

E∗

2
I(1,mode-II), (26)

where I(1,model-II) is the interaction integral for K
(2)
I =

0 and K
(2)
II = 1. Once SIFs are obtained, fracture pa-

rameters θc can be easily computed.
2.2.2 Integral Domain Selection

For the numerical evaluation of the interaction inte-
gral, the domain A is set to be all elements which have
a node within a ball of radius r about the crack tip (see
Fig. 7). The integral domain A may be written as

R = Rkhlocal, (27)

where, hlocal is designated as the characteristic length
of an element touched by the crack tip and it is calcu-
lated as the square root of the element area for two-
dimensional analysis; Rk is the integral domain factor
and it can regulate integral domain size. We study
about the effect of integral domain factor on SIF.

R

Fig. 7 Elements selected about the crack tip for calculation
of the interaction integral

3 Reanalysis Method

Reanalysis method is intended to accurately evaluate
the structural responses for successive modifications in
design or optimization, without repeatedly solving the
complete system of modified analysis equations so that
the computational cost can be significantly reduced[15].
A reanalysis method for the XFEM is introduced here.

Recall that the approximation of the displacement
for cracks in XFEM takes the form

u =
∑

i∈Ω

Ni(p)

⎡

⎢⎢⎢⎢⎣
ui + H(p)ai︸ ︷︷ ︸

i∈ΩΓ

+
4∑

l=1

Fl(p)b(l)
i

︸ ︷︷ ︸
i∈ΩΛ

⎤

⎥⎥⎥⎥⎦
, (28)

and the corresponding finite element stiffness matrix

takes the form

K =

⎡

⎢⎢⎣

Kuu Kua Kub

KT
ua Kaa Kab

KT
ub KT

ab Kbb

⎤

⎥⎥⎦ . (29)

It can be noticed from Eqs. (28) and (29) that the
stiffness component associated with the traditional fi-
nite element approximation is not a function of the
crack location, so it implies that the Kuu component
of the stiffness matrix will be constant at each itera-
tion of crack growth. This implies that the changing
portion of the stiffness matrix is limited to the enriched
portion, which will be small compared with the unen-
riched portion[16]. Furthermore, it can also be noticed
that the Heaviside enrichment term Kaa is a function of
the crack location within an element; once an element
has been enriched with the Heaviside enrichment, its
stiffness value will not change in any future iterations.
The stiffness components containing subscript a will be
constant for future iterations of crack growth. Figure
8 illustrates the portion of stiffness matrix that is kept
constant from the previous iteration and the other por-
tions that have to be modified due to crack growth.
So we can use this property to maximize the recycling
computational resources during crack growth simula-
tion. For the first iteration of the quasi-static solution
procedure, the full XFEM stiffness matrix is calculated.
In subsequent iterations, only the changed portion of
the XFEM stiffness matrix is calculated (i.e. the new
Heaviside and crack tip enrichment components). This
solution procedure significantly reduces the computa-
tional time required for the simulation of crack growth
in the XFEM environment.

Kuu

K=

Kua

Kua Kaa

Kub

Kab
T

Unchanged
portion

Changed
portion

Kub Kab Kbb
T T

Fig. 8 Reanalysis of XFEM stiffness matrix due to crack
growth

4 Numerical Examples

In this section, we present several numerical exam-
ples of cracks and crack growth under the assumptions
of plane strain (two-dimensional) elasticity. The calcu-
lation of the stress intensity factors is performed with
the domain form of the interaction integral as detailed
in the previous section. The direction of crack growth
is determined from the maximum circumferential stress
criterion.
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4.1 Center Crack in a Finite Plate
To illustrate the versatility and effectiveness of this

method, SIFs are calculated for a finite plate with a
center crack under uniaxial tension. The geometry
and specifications for center crack numerical model are
shown in Fig. 9. The material properties used in the
analysis are chosen to be elastic modulus E = 20MPa
and Poisson’s ratio ν = 0.3. The full domain is a plate
with height h = 8 m, width w = 4m and a center crack
of length 2c = 1m. The applied stress is σ = 1Pa.
Square plane strain quadrilateral elements with a struc-
tured mesh are used.

2c

w

h

σ=1Pa

σ=1Pa

(a) Model geometry
     of center crack

(b) Meshes for center
     crack

Fig. 9 Center crack numerical model

The theoretical SIF for a center crack in a finite plate
under tension is

Kexac
I =

[
1 + 0.128

(2c

w

)
− 0.288

(2c

w

)2

+

1.525
(2c

w

)3]
σ
√
πc. (30)

The theoretical mode-I SIF can be calculated by
Eq. (30) of 1.300 4. The normalized SIF is defined as

Kn
I =

KXFEM
I

Kexac
I

, (31)

where Kexac
I is given by Eq. (30), and KXFEM

I is the
value calculated by the XFEM analysis using the do-
main form of the interaction integral. The normalized
results for the various mesh densities and integral do-
main factors are given in Tables 1 and 2.

Figure 10 shows the effect of mesh density on SIF
with the integral domain factor of 3. It can be noticed
from Fig. 10 that the good accuracy of computational
results can be obtained in the case of coarse mesh and

the error decreases with the increase of element num-
ber. The mesh density has no more influence on the
SIF when the element number around 5 000. The effect
of integral domain factor on SIF is shown in Fig. 11

Table 1 Normalized SIF values for various mesh
densities

Mesh density Kn
I

128 0.936 6

800 0.962 1

2592 0.978 9

5 408 0.985 7

7 200 0.987 9

11 552 0.990 8

Table 2 Normalized SIF values for various integral
domain factors

Rk Kn
I

1.5 0.992 2

2.0 0.989 6

2.5 0.986 9

3.0 0.985 8

3.5 0.985 4

4.0 0.985 4

4.5 0.985 9

5.0 0.985 9

20 4 6 8

Rk=3

10 12
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Mesh density×10−3

K
In

Fig. 10 The effect of mesh density on SIF

21 3
Rk

K
I

4 5 6
0.985

0.986

0.987

0.988

0.989

0.990

0.991

0.992

0.993

n

5408 elements in refined domain

Fig. 11 The effect of integration factor on SIF
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with a uniform mesh consisting of 5 408 elements in the
numerical model. It can be noticed from Fig. 11 that
the calculation result is not stable when the integral do-
main factor is less than 3 and the calculation result is
stable when the integral domain factor is more than 3.
Therefore, we suggest that the value of integral domain
factor should be 3.

Figure 12 shows the SIFs for various crack lengths
with the integral domain factor of 3 and elements of
5 408 in the full domain. It can be noticed from Fig. 12
that the SIF results obtained by XFEM agree well with
the exact solution for the entire crack length of 2c/w.
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Fig. 12 The SIFs for various crack lengths

4.2 Edge Crack in a Finite Plate with a Hole
An example is provided here where an XFEM anal-

ysis is performed on a plate with a hole as shown in
Fig. 13(a). The chosen plate dimensions are a width
of 4m and a height of 4m with a hole of 0.5m radius,
and the distances between center and crack surface is
taken as d = 1m. The edge crack has an initial length
of 1m. The material properties for the plate are cho-
sen as E = 20GPa, ν = 0.3 and the plane fracture
toughness KIc = 280kN/m3/2. The applied stress is
σ = 0.1MPa.

In the numerical model, a uniform mesh consisting of
60 element × 60 element is considered and quasi-static
crack growth is governed by the maximum circumferen-
tial stress criterion. In the initial study, the change in
crack length for each iteration is taken to be a constant
crack growth increment Δc = 0.2m, and the cracks are
grown for twelve steps. Table 3 gives the position and
SIFs of the top crack tip at each stage of the simulation.
In Fig. 13(b), a representative crack growth simulation
(60 mesh × 60 mesh) for 12 steps is shown. It can be
seen from Fig. 13(b) that the crack grows close to the
hole, and then deviates from it. The reason may be
that the proximity of stress field created by the hole is
able to deflect the crack path from a straight direction.
Our results are similar to those in Ref. [17].

Figure 14 shows the relationship between the SIF at
the crack tip and the crack growth length during the

crack propagation. It can be seen from Fig. 14 that the
mode-I SIF at the crack tip increases with the increase

d

R

c

h

w

σ

σ

(a) Geometry

(b) Crack propagation path

Fig. 13 Numerical model

Table 3 Position and SIFs for crack tip

Step xi/m yi/m
KI/

(N · m−3/2)

KII/

(N · m−3/2)

Initial 1.000 0 2.000 0 3.442 1 × 105 3.228 5 × 103

1 1.200 0 1.996 2 4.263 2 × 105 −1.139 2 × 104

2 1.399 8 2.003 2 5.202 4 × 105 −1.438 5 × 104

3 1.599 0 2.021 1 6.259 9 × 105 −2.269 8 × 104

4 1.796 4 2.053 4 7.439 1 × 105 −3.363 7 × 104

5 1.990 1 2.103 3 8.768 1 × 105 −4.492 5 × 104

6 2.177 7 2.172 6 1.015 3 × 106 −5.018 3 × 104

7 2.357 6 2.260 0 1.160 8 × 106 −2.976 8 × 104

8 2.532 8 2.356 5 1.331 2 × 106 4.013 6 × 104

9 2.713 4 2.442 3 1.621 9 × 106 1.383 8 × 105

10 2.905 9 2.496 7 2.166 6 × 106 1.609 5 × 105

11 3.104 2 2.522 3 3.069 4 × 106 1.067 6 × 105

12 3.303 9 2.534 2 4.702 8 × 106 8.117 2 × 104
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of crack growth length and the mode-II SIF is much
smaller than the mode-I SIF. The results show that
the crack propagation is non-steady propagation and
mode-I crack propagation is the main form of crack
propagation.

The purpose of this study is to attempt to assess
the effect of the mesh density and crack growth in-
crements Δc on the predicted crack path in a finite
plate with a hole, as shown in Fig. 15. All the cracks
are grown to 2.4m from the initial crack tip in this
example. Three different meshes and three different
crack growth increment sizes are used. In Fig. 15(a),
crack growth simulations for three different meshes are
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Fig. 14 Relationship between the SIF at the crack tip and
the crack propagation length
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(a) Effect of mesh density

(b) Effect of crack growth increment Δc

Δc=0.2 m

60 mesh×60 mesh

Fig. 15 Parametric effect of simulated crack paths in
a finite plate with a hole

presented (Δc = 0.2 m); it is observed that under the
given simulation conditions, the crack path is not mesh-
sensitive. The influence of the crack growth increment
Δc on the simulation is depicted in Fig. 15(b). The re-
sults clearly indicate that Δc has the most pronounced
effect on crack growth.
4.3 Analysis of Reanalysis Method

By the above analysis, mesh density and crack growth
increments Δc have an impact on accuracy of XFEM
analysis results. If large value of Δc is selected, it
may not accurately predict crack path. On the other
hand, very small value of Δc and fine mesh will greatly
increase computational burden. A reanalysis method
for the XFEM is used here for modeling quasi-static
growth. The reanalysis method allows for one to con-
sider a smaller crack growth increment, which should
lead to a better prediction of the crack growth path
within a comparable computational budget. The first
step in evaluating the proposed reanalysis method is
to consider an edge crack in a finite plate with a hole
that will allow us to assess the savings from the re-
analysis method. An edge crack in a finite plate with
a hole under uniaxial tension is shown in Fig. 13(a).
All the parameters including geometry and material
properties for the simulation are the same as the above
example.

The test is to perform 12 iterations of crack growth
with a constant crack growth increment Δc = 0.2 m
and a uniform mesh consists of 160 element × 160 ele-
ment in the numerical model. The total computational
time for the case without reanalysis is 61 s, while the
total time with reanalysis is 38 s. Figure 16 shows the
comparison of computational time with and without re-
analysis in each iteration. It is observed from Fig. 16
that the computational time for each iteration of crack
growth is drastically decreased by using the reanalysis
method.
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Fig. 16 Comparison of computational time with and
without reanalysis

The second consideration is to study the effect of
the mesh density and crack growth increments Δc on
the reanalysis method. All the cracks are grown to
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2.4m from the initial crack tip in this example. Fig-
ure 17 shows the effect of the mesh density on the
reanalysis method. There are several observations
which one can make from Fig. 17. The computational
time for initial iteration increases as the number of
element increases. The reanalysis is a bit more ex-
pensive as the number of element increases, but still
nearly linear and still much less expensive than the
initial iteration. When the mesh density has an in-
creased level of refinement, the largest savings can be
achieved.

Figure 18 shows the effect of the crack growth in-
crement size on the reanalysis method. Several ob-
servations can be obtained from Fig. 18. The com-
putational time for initial iteration is unchanged as
the value of crack growth increment size increases.
The reanalysis is a bit more expensive as the value
of crack growth increment size decreases, but still
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Fig. 17 Comparison of mesh density to cost of reanalysis
for constant Δc = 0.2 m
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Fig. 18 Comparison of crack growth increment to cost of
reanalysis for 160 × 160 elements

much less expensive than the initial iteration. When
the value of crack growth increment size has a de-
creased level of refinement, the largest savings can be
achieved.

5 Conclusion

The XFEM allows for discontinuities to be repre-
sented independent of the finite element mesh by in-
corporating enrichment functions into the displacement
approximation through the partition of unity finite
element method. Thus crack growth problems can
be solved with minimal remeshing, and crack model-
ing can be carried out without the need to mesh the
crack surface. We have presented numerical applica-
tions of the XFEM to demonstrate the efficacy of our
implementation and to show the capabilities of solv-
ing the challenging problems in computational fracture
mechanics.

Our focus in this study is on computational frac-
ture applications in isotropic homogeneous materials.
Accurate stress intensity factors are calculated by the
XFEM analysis using the domain form of the interac-
tion integral for a finite plate with a center crack under
uniaxial tension. In addition, a preliminary parame-
ter study on the influence of the integral domain fac-
tor and mesh density used for stress intensity computa-
tion is performed. The study reveals that mesh density
does not significantly affect the accuracy of SIFs when
the element number reaches a certain quality (such as
5 000) and the integral domain factor has a great im-
pact on the accuracy of SIFs. Therefore, we suggest
that the value of integral domain factor should be 3.

The crack growth capabilities of the XFEM are
demonstrated through growth simulations in a finite
plate with a hole. The effects of mesh density and crack
growth increment size are considered with respect to
the convergence of the crack propagation path. The
numerical results reveal that the crack path is the most
sensitive to the crack growth increment size and the
crack path is not mesh-sensitive.

A reanalysis method for the XFEM has been intro-
duced. There is a significantly reduced computational
cost for each iteration of crack growth achieved by using
the reanalysis method. The effect of mesh density and
crack growth increment size on the reanalysis method
is studied and it is found that the largest savings are
achieved when the mesh has an increased level of refine-
ment or the value of crack growth increment size has a
decreased level of refinement.
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