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Abstract: With more successful applications of advanced medical imaging technologies in clinical diagnosis,
various analytic discriminant approaches, by seeking the imaging based characteristics of a given disease to achieve
automatic diagnosis, gain greater attention in the medical community. However the existing computer-aided
discriminant procedures for Alzheimer’s disease (AD) are yet to be improved for better identifying patients with
mild cognitive impairment (MCI) from those with AD and those who are cognitively normal. In this work we
present a computer assisted diagnosis approach by first statistically extracting characteristics from whole brain
2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18F-FDG PET) images, and then using support
vector machines for classification. Evaluations of the proposed procedure with patient data exhibit satisfactory
accuracies in distinguishing AD from its early stage MCI, and normal controls.
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0 Introduction

Alzheimer’s disease (AD) is the most common cause
of dementia in elder people, affecting approximately 5.2
million individuals in the United States of America ac-
cording to the Alzheimer’s association latest report[1].
It is predicted that, the total estimated prevalence is
about 13.8 million by 2050, with the growth rate about
a million new cases per year[2]. Besides, those with mild
cognitive impairment (MCI) have an increased risk of
eventually developing Alzheimer’s or another type of
dementia, are very difficult to diagnose due to the lack
of symptoms in this stage[3-4]. Though there is no effec-
tive treatment currently for AD or MCI, early adequate
diagnosis is critically important for possible new drug
development to slow down the progression and for iden-
tification of other causes which might be treatable.

In the last 20 years, with the development of medi-
cal imaging techniques, researchers developed a range
of measurements for the scientific study as well as clin-
ical evaluation of AD by using brain imaging[5-7]. The
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2-deoxy-2-(18F)fluoro-D-glucose positron emission to-
mography (18F-FDG PET) is currently one of the most
characterized brain imaging techniques, information of
which reflects the brain metabolism of glucose, the main
energy for the proper function of human brains[8]. It
has been confirmed that glucose metabolic reduction in
the parietal-temporal, frontal and posterior cingulate
cortices is related to AD[9].

Various AD diagnosis approaches can be found in
the literatures[10-15]. Among these, most methods are
based on the analysis of region of interest (ROI) fol-
lowed by some discriminant functions. Others are us-
ing some statistical analysis tools such as statistical
parametric mapping (SPM) and 3D stereotactic sur-
face projections (3D-SSP)[16-17], to perform voxel-wise
statistical analyses. Meanwhile, dimensionality reduc-
tion and feature selection based methods are gaining
more attention by neuroimaging scientists. Instead of
using the brain voxel-based data directly, these meth-
ods extract typically just handful features from images,
and use these features as inputs to future statistical
discriminant analysis for clinical diagnostic purposes.

In this study, we attempted to distinguish AD pa-
tients from those who are at the early stage of dis-
ease, MCI, and from normal controls by using ROI
based, principal component analysis (PCA) based and
linear discriminant analysis (LDA) based methods for
feature extraction and support vector machine (SVM)
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for classification. Different from traditional ROI based
method, ROIs in our approach could be selected au-
tomatically. We also used an improved PCA method
and an LDA method for feature extractions. The pro-
posed method, tested on 375 Alzheimer’s disease neu-
roimaging initiative (ADNI) positron emission tomog-
raphy (PET) data, has satisfactory accuracy in distin-
guish AD from MCI and normal control (NC) when
comparing with existing methods.

As AD research focuses more and more on early ab-
normality detection and intervention many years before
the onset of the disease, identifying sensitive biomark-
ers becomes critical. As intermediate stage of normal
aging and onset of the disease, proper MCI diagnosis is
the focus of many studies and also very important to
move AD research to preclinical (i.e., before the onset
of the disease) stage. It is with this background, we at-
tempted to evaluate a combination of statistical proce-
dures with the hypothesized statistical power increase.
In this regard, the study is more medical challenge mo-
tivated rather than purely for the development of new
methodologies.

1 Materials and Preprocessing

1.1 Subjects
In this work, we used 18F-FDG PET data acquired

for ADNI (http://adni.loni.usc.edu/) due to the small
size of samples currently available in China with the
standardized protocol. We downloaded data of 375
ADNI1 18F-FDG PET subjects acquired using PET
scanners by various manufactures (such as General
Electric (GE), Philips and Siemens) and categorized
them into three classes shown in Table 1, where Pm is
the percentage of male. The mini-mental state exami-
nation (MMSE) scores and the clinical dementia rating
(CDR) are also listed.

Table 1 Information of the data collected

Subject Pm/% Age MMSE CDR

AD (n = 123) 61 77.3 ± 7.4 20.5 ± 1.5 0.7 ± 0.2

MCI (n = 133) 65 76.5 ± 7.2 24.0 ± 1.7 0.5 ± 0.0

NC (n = 119) 55 75.0 ± 6.7 29.0 ± 1.1 0.0 + 0.0

We performed three binary classification tasks in our
study after grouping these data as follows:

Group 1 Consisting of data of AD subjects and NC
subjects, for the task to distinguish AD from NC, with
AD subjects labeling as positive and normal controls as
negative.

Group 2 Consisting of AD (positive) and MCI
(negative) data, for the task to distinguish AD from
MCI.

Group 3 Consisting of MCI (positive) and NC
(negative) data, for the task to distinguish MCI from
NC.

1.2 Image Preprocessing
All images were normalized to Montreal Neurolog-

ical Institute (MNI) template using SPM8 software
(www.fil.ion.ucl.ac.uk/spm/software/spm8), through a
general affine model with 12 parameters. After the lin-
ear normalization, the intensity normalization was per-
formed to account for the global count variation by nor-
malizing the intensity to the mean intensity value of the
whole brain.

2 Method

2.1 Feature Extractions
After 18F-FDG PET images are preprocessed, dimen-

sionality reduction and feature selection are performed
to lower the complexity and increase the feasibility of
the analysis. In this work we conducted three different
approaches of feature extractions: ROI, LDA and PCA
based. For LDA and PCA approaches, we adopted an
adaptive threshold to choose dominant eigenvalues via
the Fisher discriminant ratio (FDR).
2.1.1 ROI Based Method

We selected on the basis of anatomical automatic
labeling (AAL) brain regions of interest which
are related to AD hypometabolism. The related
brain regions, composed of 22 AAL ROIs in total,
are Frontal Mid L, Frontal Mid R, Frontal Sup L,
Frontal Sup R, Temporal Mid L, Temporal Mid R,
Temporal Inf L, Temporal Inf R, Fusiform L,
Fusiform R, Hippocampus L, Hippocampus R,
Parietal Inf L, Parietal Inf R, Cingulum Post L,
Cingulum Post R, Occipital Sup L, Occipital Sup R,
Occipital Mid L, Occipital Mid R, Occipital Inf L,
Occipital Inf R[18].

Meanwhile, instead of selecting ROIs related to AD
according to literatures, we proposed another ROI se-
lection approach which is based on statistical analysis.
We calculated the mean intensity value of each of the
116 AAL ROIs, and performed t-test for each of the
three tasks described above. To be compatible with
the AAL based ROI approach, we also selected 22 ROIs
using the between-group significance (the first 22 most
significant ROIs).
2.1.2 LDA Based Method

Alternatively, we chose LDA and PCA methods to
select features correlated to AD. LDA is a classic tech-
nique for data classification and dimensionality reduc-
tion which reshapes the scatter in data in order to make
it more reliable for classification. Based on the classic
LDA algorithm, we used an improved method[19] de-
signed for 2D matrices. The method not only solved
the problem of small sample size, but also made the
features typical for discrimination by performing two
projections simultaneously in both vertical and hori-
zontal directions on the matrix.

With the preprocessed images, we first reshaped all
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Mx × My × Mz image volumes to M × M matrices,
where M is the largest previous integer of the square
root of Mx×My×Mz. Then we computed the between-
class scatter matrix (SB) and within-class scatter ma-
trix (SW) of the N matrices for training in a specific
group. In this work, a group contained two classes of
data, for example Group 1 for AD and NC. And we
used 70% data downloaded for training and 30% for
validation. The scatter matrices are defined as follows:

SB1 =
C∑

i=1

Ni(μLDA
i − μLDA)(μLDA

i − μLDA)T, (1)

SW1 =
C∑

i=1

Ni∑

j=1

(xLDA
ij − μLDA

i )(xLDA
ij − μLDA

i )T, (2)

SB2 =
C∑

i=1

Ni(μLDA
i − μLDA)T(μLDA

i − μLDA), (3)

SW2 =
C∑

i=1

Ni∑

j=1

(xLDA
ij − μLDA

i )T(xLDA
ij − μLDA

i ), (4)

where SB and SW represent the between-class and
within-class scatter matrices, and the subscripts 1 and
2 of SB and SW are corresponding to the row-direction
and column-direction of pixel-matrix. As mentioned
above, Ni is the number of training subjects in the ith
class. Parameter μLDA represents the whole mean of
the dataset while μLDA

i is the ith class mean value,
xLDA

ij represents the jth subject in the ith class, and
C is the class number (in our case C = 2). Note both
xLDA

ij and μLDA are matrices now. For each direction,
we can construct a matrix S with the scatter matrixes
SB and SW as:

S = S−1
W SB. (5)

Eigenvectors of S were calculated and then an adap-
tive threshold (see Subsection 2.4 below) was adopted
to choose m leading eigenvectors according to corre-
sponding eigenvalues, where m < M could be different
for different groups. With one set of eigenvectors for
each direction, we constructed two projection matrices
Z and X. Finally we projected the image to:

Pk = ZTxLDA
k X, (6)

where xk (k = 1, 2, · · · , N) represents an Mx × My ×
Mz-dimensional normalized vector of a subject in the
dataset and N is the number of subjects.

Note that in a specific group, the result for each sub-
ject was a matrix of m × m, which not only reduced
the complexity of classifications, but also projected the
scatter in our preprocessed images to a new space for
easy classifications.
2.1.3 PCA Based Method

As PCA is a standard technique for extracting the
most significant features[20], reducing the original data

into a subset of features which contains the largest
amount of variance, we also chose this method to per-
form dimension reduction. Here, we vectorized each
normalized 3D image as a column vector in a high di-
mensional space, then constructed a new matrix which
includes N column vectors:

x = [x1 x2 · · · xN ]. (7)

The covariance matrix MC of the new dataset was
then calculated as:

MC =
1
N

∑
ϕϕT, (8)

ϕ = x − μ, (9)

where μ is the mean value of all samples.
Then, a set of eigenvectors corresponding to the brain

covariance matrix are obtained. With the eigenvectors
we can project image vectors onto a most distinguished
space called eigenbrains space in which classification
can be well performed.
2.1.4 Fisher Discriminant Ratio

The selection of eigenvectors in LDA and PCA
method will influence the final classification accuracy
since discriminatory capacities of eigenvectors in differ-
ent sets are diverse. Most studies tended to select the
first 10 eigenvectors to compute the PCA projection
axis. In this study, we use a criterion to choose m lead-
ing eigenvectors according to their separation ability
measured by FDR. The FDR is denoted as:

FDR =
(μFDR

1 − μFDR
2 )2

σ2
1 + σ2

2

, (10)

where μFDR
i and σi denote the within-class mean value

and variance of the ith class for i = 1 and 2, respec-
tively. With each possible value of m, we calculated the
FDR of the two vectors, one for relative features and
the other for non-relative features. Then the number of
m was chose to be the one that maximized the FDR.
2.2 Classification with SVM

The classification is achieved through SVM, a type of
supervised machine learning, which has been shown to
be of high accuracy with small training-and-testing er-
rors. SVM separates a given set of binary labeled train-
ing data obtained by the aforementioned steps with a
hyperplane (support vector) that is farthest from the
two classes[21]. The hyperplane is defined as:

wTx + w0 = 0, (11)

where w is the weight vector and w0 is the offset which
reflects the distance between the hyperplane and its
nearest weight vector. Once the hyperplane is deter-
mined, new samples with unknown labels can be cate-
gorized according to the sign of the discriminant func-
tion:

g(x) = wTx + w0. (12)
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When training data are too complexed to separate
by a linear separation via SVM, kernel techniques are
usually combined to make SVM work more effectively.
We chose two types of kernels in the classiffier for our
study.

The linear kernel is defined as

k(xi, xj) = xT
i xj . (13)

The decision function of the linear kernel can be ex-
pressed as:

f(x) = sign
{ Ns∑

i=1

αix
T
i xjyi + b

}
, (14)

where Ns is the support vector number, yi is the corre-
sponding label of training data, and αi is the Lagrange
multipliers.

Another type is the radial basis function (RBF):

k(xi, xj) = e−
‖xi−xj‖2

2σ2 , (15)

where σ is used to decide the width of the kernel func-
tion.

The corresponding decision function is:

f(x) = sign
( Ns∑

i=1

αiyie−
‖xi−xj‖2

2σ2 + b
)
. (16)

Note the input to the SVM classifier was the 22 AAL
ROIs, selected either based on previous findings or via
the feature selection process, the first m most signifi-
cant components of LDA or PCA. Here m was different
depending on groups.

3 Results

We performed the final classification via SVM with
two different kernels for PCA and LDA based features,
but for the ROI based features, only linear kernel is used
due to the high dimension of the training features. Ta-
ble 2 shows the final classification results of AD versus
NC (Group 1), AD versus MCI (Group 2), and MCI ver-
sus NC (Group 3), where the accuracy (Acc), sensitiv-
ity (Sen) and specificity (Spe) are a series of statistical
measurements of the performance of a binary classifica-
tion test which are widely used to describe a diagnostic
test, the positive/negative likelihood (PL/NL) is an-
other assessment of the positive and predictive value of
the study, given its prevalence independence and AUC
is the area under the RDC curve. Among these indices,
Acc is the rate of success. Acc, Sen and Spe are defined
as:

Acc = (TP + TN)/(TP + TN + FP + FN), (17)
Sen = TP/(TP + FN), (18)
Spe = TN/(FP + TN), (19)

where TP, meaning true positive, and TN, meaning true
negative, correspond to the numbers of patients and
normal controls respectively which are correctly classi-
fied; FN means false negative and FP means false pos-
itive, refer to the numbers of subjects which fail to be
classified as patients and normal controls respectively.
Then expressions of PL and NL can be calculated as:

PL = Sen/(1 − Spe) = TP/TN, (20)
NL = (1 − Sen)/Spe = FN/TN. (21)

Receiver operating curves (ROCs) of classification
among all three groups are also obtained, as shown in
Fig. 1, where images in the first column are results when

Table 2 Comparison of methods used in our study

Method Acc/% Sen/% Spe/% PL NL AUC

AD versus NL ROI Method 1 89.29 93.33 84.62 6.067 0.079 0.962

Method 2 91.10 96.70 84.60 6.290 0.040 0.987

PCA Linear 91.10 90.00 92.30 11.700 0.110 0.978

RBF 93.00 90.00 96.00 23.000 0.100 0.990

LDA Linear 94.60 96.70 92.30 12.600 0.040 0.992

RBF 92.90 98.90 90.60 10.500 0.010 0.983

AD versus MCI ROI Method 1 79.41 70.00 86.84 5.319 0.346 0.884

Method 2 75.00 70.00 79.00 3.330 0.380 0.843

PCA Linear 80.90 83.30 78.90 3.960 0.210 0.858

RBF 81.00 83.00 79.00 4.000 0.200 0.861

LDA Linear 79.40 76.70 81.60 4.160 0.290 0.860

RBF 77.90 78.90 73.10 2.930 0.290 0.868

MCI versus NL ROI Method1 78.13 81.58 85.84 5.761 0.215 0.864

Method 2 71.90 73.70 69.20 2.390 0.380 0.831

PCA Linear 75.00 71.10 80.80 3.650 0.360 0.860

RBF 77.00 71.00 85.00 4.600 0.300 0.863

LDA Linear 78.10 73.70 84.60 4.790 0.310 0.850

RBF 79.70 76.30 84.60 4.960 0.280 0.850
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PCA based     AUC=0.98974
LDA based     AUC=0.98333

 

ROI method 1
ROI method 2
PCA based
LDA based

PCA based      AUC=0.86140
LDA based      AUC=0.86842

ROI method 1
ROI method 2
PCA based
LDA based

PCA based     AUC=0.86336
LDA based     AUC=0.85020

Group 1 Group 1

Group 2 Group 2

Group 3 Group 3

AUC=0.86437
AUC=0.83097
AUC=0.86032
AUC=0.85020

AUC=0.88421
AUC=0.84298
AUC=0.85789
AUC=0.85965

AUC=0.96923
AUC=0.98718
AUC=0.97821
AUC=0.99231

Fig. 1 ROCs using the linear and RBF kernels

use the linear kernel, while those in the second column
are with the RBF kernel.

Results of our method show that AD subjects can be
distinguished from MCI or NC subjects at high accura-
cies of 81% and 94.6%, respectively. However, related
pixel-based PET image analysis[22-23] achieved accura-
cies up to 74% and 88%, respectively. In addition, when
using the improved LDA and PCA method, the results
of AD versus MCI and MCI versus NC are both im-
proved. The accuracy in distinguishing AD and NC
is fairly high in both approaches, especially when using
the linear kernel in SVM. However, it should be pointed
out that, it is difficult to achieve a high accuracy for
group 3 (MCI versus NC) due to the slight difference of
brain metabolism among MCI and NC subjects. Our
method showed an accuracy of 78.1% while the accu-

racy is up to 74% in the related studies[22-23].

4 Conclusion

With numerous reports in the AD literatures, AD
researchers still feel the challenge not answered with
regard to finding reliable and sensitive ways for early
identification of the disease related abnormalities. We
set up our study attempting to be a part of this big en-
deavor. We offered one approach primarily assembling
various existing tools while in a form different from
what has been reported in the literature, and evaluated
the performance. The proposed approach, based on
ROI, PCA and LDA methods for feature selections and
support vector machines for the classification, demon-
strated the effectiveness of classification with accuracies
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up to 94.6% for AD versus NC, 81% for AD versus MCI
and 78.1% for MCI versus NC.

The whole process consisted of processing images,
selecting features (ROIs), and carrying out the SVM
procedure. The processing of images, including image
alignment, smoothing, and normalization, were con-
ducted in SPM. The feature selection played an im-
portant role in dealing with high dimensional image
data. If no feature selection was applied, the classi-
fication algorithm failed due to the huge computational
load. More comprehensive feature selection methods
are available and we chose the simple ones for the val-
idation of the basic idea. Others could be relatively
easy to examine given the established framework. In
the classification, training with the SVM (without the
construction of the support vector) was the most time
consuming portion in the whole process. Fortunately
the training could be done off-line before the whole pro-
cess. It should also be noted that our current study is
primarily for validating the basic idea and the whole
procedure could be optimized further for future works,
with more innovative methodology developments for
computer-aided diagnosis of Alzheimer’s disease.

Acknowledgement The authors thanks to Drs.
Xiao Shi-fu and Wang Tao for their meticulous guid-
ance and insightful comments.

References

[1] Alzheimer’s Association. 2013 Alzheimer’s disease
facts and figures [J]. Alzheimer’s & Dementia, 2013,
9(2): 208-245.

[2] Hampel H, Prvulovic D, Teipel S, et al. The future
of Alzheimer’s disease: The next 10 years [J]. Progress
in Neurobiology, 2011, 95(4): 718-728.

[3] Reiman E M, Jagust W J. Brain imaging in the
study of Alzheimer’s disease [J]. NeuroImage, 2012,
61(2): 505-516.

[4] Querbes O, Aubry F, Pariente J, et al. Early di-
agnosis of Alzheimer’s disease using cortical thickness:
Impact of cognitive reserve [J]. Brain, 2009, 132(8):
2036-2047.

[5] Duara R, Grady C, Haxby J, et al. Positron emis-
sion tomography in Alzheimer’s disease [J]. Neurology,
1986, 36(7): 879-887.

[6] Norderg A, Rinne J O, Kadir A, et al. The use of
PET in Alzheimer disease [J]. Nature Reviews Neurol-
ogy, 2010, 6(2): 78-87.

[7] Jagust W J, Bandy D, Chen K, et al. The
Alzheimer’s disease neuroimaging initiative positron
emission tomography core [J]. Alzheimer’s & Demen-
tia, 2010, 6(3): 221-229.

[8] Foeter N L, Heidebrink J L, Clark C M, et
al. FDG-PET improves accuracy in distinguishing
frontotemporal dementia and Alzheimer’s disease [J].
Brain, 2007, 130(10): 2616-2635.

[9] Du A-T, Schuff N, Kramer J H, et al. Different
regional patterns of cortical thinning in Alzheimer’s
disease and frontotemporal dementia [J]. Brain, 2007,
130(4): 1159-1166.

[10] Dickerson B C, Feczko E, Augustinack J C, et
al. Differential effects of aging and Alzheimer’s disease
on medial temporal lobe cortical thickness and surface
area [J]. Neurobiology of Aging, 2009, 30(3): 432-440.

[11] Gray K R, Wolz R, Keihaninejad S, et al. Re-
gional analysis of FDG-PET for use in the classifica-
tion of Alzheimer’s disease [C]// 2011 IEEE Interna-
tional Symposium on Biomedical Imaging: From Nano
to Macro. Chicago, USA: IEEE, 2011: 1082-1085.

[12] Gray K R, Woiz R, Heckemann R A, et al. Multi-
region analysis of longitudinal FDG-PET for the clas-
sification of Alzheimer’s disease [J]. NeuroImage, 2012,
60(1): 221-229.

[13] Salmon E, Sadzot B, Maquet P, et al. Differential
diagnosis of Alzheimer’s disease with PET [J]. Journal
of Nuclear Medicine: Official Publication, Society of
Nuclear Medicine, 1994, 35(3): 391-398.

[14] Mosconi L. Glucose metabolism in normal aging and
Alzheimer’s disease: Methodological and physiological
considerations for PET studies [J]. Clinical and Trans-
lational Imaging, 2013, 1(4): 217-233.

[15] Illán I, Gorriz J, Lopez M, et al. Computer
aided diagnosis of Alzheimer’s disease using compo-
nent based SVM [J]. Applied Soft Computing, 2011,
11(2): 2376-2382.

[16] Kim E J, Cho S S, Jeong Y, et al. Glucose
metabolism in early onset versus late onset Alzheimer’s
disease: An SPM analysis of 120 patients [J]. Brain,
2005, 128(8): 1790-1801.

[17] Kono A K, Ishii K, Sofue K, et al. Fully automatic
differential diagnosis system for dementia with Lewy
bodies and Alzheimer’s disease using FDG-PET and
3D-SSP [J]. European Journal of Nuclear Medicine and
Molecular Imaging, 2007, 34(9): 1490-1497.

[18] Reiman E, Chen K, Liu X, et al. Fibrillar amyloid-
β burden in cognitively normal people at 3 levels of
genetic risk for Alzhimer’s disease [J]. Proceedings of
the National Academy of Sciences, 2009, 106: 6820-
6825.

[19] Noushath S, Hemantha K G, Shivakumara P.
(2D)2 LDA: An efficient approach for face recognition
[J]. Pattern Recognition, 2006, 39(7): 1396-1400.

[20] Zoua H, Hastiea T, Tibshirania R, et al. Sparse
principal component analysis [J]. Journal of Computa-
tional and Graphical Statistics, 2006, 15(2): 265-286.

[21] Wang L. Support vector machines: Theory and appli-
cations [M]. Berlin: Springer, 2005.

[22] Lopez M, Ramirez J, Gorriz J, et al. Automatic
tool for Alzheimer’s disease diagnosis using PCA and
Bayesian classification rules [J]. Electronics Letters,
2009, 45(8): 389-391.

[23] Ramirez J, Gorriz J, Segovia F, et al. Com-
puter aided diagnosis system for the Alzheimer’s dis-
ease based on partial least squares and random forest
SPECT image classification [J]. Neuroscience Letters,
2010, 472(2): 99-103.


