
J. Shanghai Jiaotong Univ. (Sci.), 2009, 14(1): 112-116

DOI: 10.1007/s12204-009-0112-5

Batch Secret Sharing for Secure Multi-party Computation in

Asynchronous Network

HUANG Zheng1∗ (黄 征), GONG Zheng2 (龚 征), LI Qiang1 (李 强)
(1. School of Information Security and Engineering, Shanghai Jiaotong University, Shanghai 200030, China;

2. Distributed and Embedded Security Group, Faculty of EEMCS, University of Twente,

7500 AE Enschede, the Netherlands)

Abstract: This paper proposes an efficient batch secret sharing protocol among n players resilient to t < n/4

players in asynchronous network. The construction of our protocol is along the line of Hirt’s protocol which works

in synchronous model. Compared with the method of using secret share protocol m times to share m secrets, our

protocol is quite efficient. The protocol can be used to improve the efficiency of secure multi-party computation

(MPC) greatly in asynchronous network.

Key words: secret share, secure multi-party computation, asynchronous network

CLC number: TP 309 Document code: A

Introduction

Secure multi-party computation (MPC) protocol al-
lows a set of n players to compute an arbitrary agreed
function of their private inputs in a secure way, even if
an adversary may corrupt up to some arbitrary players.
Secret sharing protocol is the basement for many MPC
protocols. The efficiency of MPC protocols depends
mainly on the efficiency of secret sharing protocol.

Players in MPC protocol are connected by a network.
The network could be synchronous or asynchronous. In
a synchronous network, there is a global clock. Message
sent in the synchronous network will be guaranteed to
be received in the next clock tick. While in an asyn-
chronous network, there is no global clock. Message
sent in the asynchronous network could be arbitrar-
ily delayed. Compared with synchronous network, the
asynchronous network is more like the Internet and the
ad hoc networks, where message sent could also be ar-
bitrarily delayed. Therefore, studying the protocols in
the asynchronous network is more practical.

1 Related Works

Secret sharing protocol in synchronous network has
been widely studied. However, there is little study

Received date: 2008-10-30

Foundation item: the National Natural Science Founda-

tion of China (No. 60803146)

∗E-mail: huang-zheng@sjtu.edu.cn

in secret sharing and MPC in the asynchronous net-
work. Canetti[1] studied MPC in asynchronous net-
work. Ben-Or et al[2] showed that perfect asynchronous
secure multiparty computation is possible in the infor-
mation security setting if and only if t < n/4. Al-
though theoretically impressive, these results lack in
the area of practical feasibility, especially in the pro-
tocol shown in Ref. [2]. The complicated exchanges of
message and zero-knowledge proofs might render them
impractical[3]. Srinathan et al[4] provided an more effi-
cient secure multiparty computation protocol in asyn-
chronous model resilient to t < n/4 corrupt players. In
order to share the secrets, it needs communications of
O(mn3 lg |F| + mn3 lg n) bits and broadcasts O(mn2)
bits.

In this paper, we propose a batch secret sharing
protocol in asynchronous model which is resilient to
t < n/4 corrupt players. The adversary in our protocol
is active adversary with unbound computation power.
This paper shows that share secret in batch mode will
be more efficient than that of using secret sharing pro-
tocol several times. The construction of our protocol is
along the line of Hirt’s protocol[5] which works in syn-
chronous model. Our protocol needs to communicate
O(n4 lg |F|+mn2 lg |F|) bits and broadcast O(n2 lg |F|)
bits, where m is the number of the secrets been shared.

2 Protocol Model

The model used in our protocol could be described
as follows. The participants of the protocol are the set

J. Shanghai Jiaotong Univ. (Sci.), 2009, 14(1): 112-116 113

P = {P1, P2, · · · , Pn} of n players, and each player is
associated with a non zero value αi ∈ F . The players
are connected by bilateral asynchronous secure chan-
nels. Broadcast channels are not assumed to be avail-
able. All the computations in the sequel are done in F .
In our model, we consider asynchronous network where
every two parties are connected via a reliable and pri-
vate communication channel. Messages sent on a chan-
nel can be arbitrarily delayed, however, each message
sent is eventually received. Furthermore, the order in
which messages are received in a channel may be dif-
ferent from the order in which they were sent.

3 Primitives

3.1 Agreement on a Common Subset (ACS)
In an asynchronous computation, the players in P

often need to decide on a common subset of players
that satisfy some property. The common set is of size
at least n − t, where n = |P|. We need ACS protocol
to achieve this purpose[1].

Let Q be a predication that assigns a binary value
to each player Pi, denoted Q(i), based on whether Pi

has satisfied the specified property. Note that Q(i) is
dynamic which means that not all the players need to
be assigned at the same time. When a player Pi is
assigned his value, denoted by Q(i), it is guaranteed
that all the players will eventually know this value. Let
P be the set of players and t be the maximum number
of corrupt players in P .

Theorem 1 (protocol ACS[Q,P , t]) Let the players
agree on a common subset of players, denoted by C such
that |C| � (|P| − t). Moreover, Q(j) = 1 for every
Pj ∈ P . The ACS protocol has to do O(|P|) Byzantine
agreement.
3.2 Asynchronous Verifiable Secret Sharing

(AVSS)
Like verifiable secret sharing (VSS) in synchronous

network, AVSS scheme consists of two sub-protocols: a
sharing sub-protocol AV-Share, in which a player acts
as dealer to share a secret among the other players,
and a reconstruction sub-protocol, in which the players
reconstruct the secret from their shares. For the defi-
nition and the implementing of AVSS scheme, we also
adopt directly the scheme presented in Ref. [2] which is
resilient to n/4 corrupt players.

Let P denote the set of all players, P denote the
dealer, t be the maximum number of corrupt players in
P and s be the secret to be shared.

Theorem 2 (AV-Share[P , t, P, s] protocol) Let the
dealer P share the secret s with the following holds.

Termination If P is honest, then every honest

player will eventually complete the AV-share protocol.
If some honest player has completed AV-Share proto-
col, then all the honest players will eventually complete
the AV-Share protocol.

Correctness Once a honest party has completed
AV-Share protocol then there exits a unique value, r,
such that: ① all the honest players output r; ② if P

is honest,then r = s.
Secrecy If P is honest and no honest player has be-

gun reconstruction protocol, then the bad parties have
no information about the shared secret s.

4 Protocol Construction

The goal of the protocol is to generate m t-shared
random triples (a, b, c) with c = ab in such a way that
the adversary obtains no information about a, b, c ex-
cept that c is the product of a and b.

The triples are generated in a block of l = �m/n�
triples. The block is generated in a non-robust manner
and there is a verification step at the end of the gener-
ation. Fault may be found in the verification step. In
case of fault found, a set D of two or three players is
identified in all the honest players. At least one player
in D is the corrupt player. The players in D will be
eliminated from further computation (player elimina-
tion). The triples of the block with fault are discarded.
Player elimination ensures that at most t blocks fail,
and hence in order to generate m random triples, at
most (n + t) blocks must be processed.

There are two steps in the verification. The first ver-
ification step is the verification of the degrees of all
sharing. The second verification step is the verification
that all players share the correct product shares.

Both verification steps use n random triples for blind-
ing purpose. These triples are used to protect the pri-
vacy of the l triples and their privacy is annihilated in
the verification step. Therefore, in each block, l + n

triples are generated. l triples will be used as the out-
put and n triples will be used in the verification steps.

During the generation of blocks, some players may
be eliminated. Let P ′ denote the actual set of players,
n′ denote the actual number of players with n′ = |P ′|,
and t′ denote the maximum number of corrupt players
in P ′. Without loss of generality, we assume that P ′ =
{P1, P2, · · · , Pn′}. In the beginning, P ′ = P , n′ = n,
and t′ = t. The inequality 2t′ < n′ − t′ − t holds in the
beginning. In player elimination, n′ will be decreased
by 3 or 2, and t′ by 1. Clearly, the inequality 2t′ <

n′ − t′ − t still holds. This inequality is needed for
robust computation.

The protocol is processed as follows:

114 J. Shanghai Jiaotong Univ. (Sci.), 2009, 14(1): 112-116

(1) Initial the preparation phase by setting P ′ = P ,
n′ = n, and t′ = t.

(2) Repeat until n blocks are succeeded.
Generate l + n triples (in parallel) in a non-robust

manner.
Do the first Verification.
If no fault is detected in the first verification step, do

the second Verification.
If both verification steps are successful, then the gen-

eration of the block is successful. If either verification
step fails, then all triples of the block are discarded.
4.1 Generating One t-shared Triple (a, b, c)

The generation of t-shared triple is executed in a
batch mode, that means l + n′ triples are generated
in the same run of the protocol.

The generation of one t-shared triple (a, b, c) in non-
robust manner is proceeded as follows:

Step 1 The players jointly generate t′-sharing of
random values a and b.

(1) Select two random t′-degree polynomials f̃i(x)
and g̃i(x) and hand the shares ãij = f̃i(αj) and b̃ij =
g̃i(αj) to player Pj for j = 1, 2, · · · , n′.

(2) Broadcast one bit to indicate that Pi has finished
the sharing.

(3) Execute protocol C = ACS[Q,P ′, t′] with the
Boolean predicate: Q(j) = 1 if Pj has finished the
broadcast and the share that Pj sends has been re-
ceived. Let C1 be the common set outputted by ACS
protocol.

(4) The polynomial of sharing a is f̃(x) =
∑

j∈C1

f̃j(x)

(thus a = f̃(0)), and the polynomial for sharing b is
g̃(x) =

∑

j∈C1

g̃j(x). Calculate his share of a and b as

ãi =
∑

j∈C1

ãji, and b̃i =
∑

j∈C1

b̃ji.

Step 2 The players jointly compute a t′-sharing of
c = ab.

(1) Calculate ẽi = ãib̃i and select random a t′-degree
polynomial h̃i(x) with h̃i(0) = ẽi. Send the shares ẽij =
h̃i(αj) to player Pj for Pj ∈ P ′.

(2) Broadcast one bit to indicate that Pi has finished
the sharing.

(3) Execute protocol C = ACS[Q,P ′, t′] with the
Boolean predicate: Q(j) = 1 if Pj has finished the
broadcast and the share that Pj sends has been re-
ceived. Let C2 be the common set outputted by ACS
protocol.

(4) Compute his share c̃i of c as c̃i =
∑

j∈C2

�iẽji,

where �i =
∏

j∈C2,j �=i

αj

αj − αi
is the Lagrange interpo-

lation factor.

Step 3 The players jointly increase the degree of
the sharing of a, b and c to t (this step is performed
only if t′ < t).

(1) Select three random (t − 1)-degree polynomials
f̄i(x), ḡi(x) and h̄i(x). Hand the shares āij = f̄i(αj),
b̄ij = ḡi(αj), and c̄ij = h̄i(αj) to player Pj for j =
1, 2, · · · , n′.

(2) Broadcast one bit to indicate that Pi has finished
the sharing.

(3) Execute protocol C = ACS[Q,P ′, t′] with the
Boolean predicate: Q(j) = 1 if Pj has finished the
broadcast and the share that Pj sends has been re-
ceived. Let C3 be the common set outputted by ACS
protocol.

(4) Compute his share as ai = ãi + αi

∑

j∈C3

āji, bi =

b̃i + αi

∑

j∈C3

b̄ji, and cj = c̃i + αi

∑

j∈C3

c̄ji.

4.2 Verification of the Degrees of All Sharing
in a Batch Manner

The goal of the verification protocol is to verify the
degree of the sharing of the first l + n triples in a sin-
gle step, using another n triples. The basic idea of
this protocol is to verify the degree of a random liner
combination of the polynomials. More precisely, every
player distributes a random challenge vector of length
l with elements in F . Then, every player constructs
the random polynomial towards every challenge player,
who checks if the constructed polynomial is of appro-
priate degree. In order to preserve the privacy of the
involved polynomials, the other n′ triples in one block
are used. A set D ⊆ P ′ of three players is identified
and eliminated from P ′ when some fault is found.

Code for party Pi ∈ P ′:
(1) Select a random vector [r1, r2, · · · , rl] with ele-

ments in F and send it to each player Pi ∈ P ′.
(2) Upon receiving a random vector from Pv, com-

pute the following corresponding linear combinations

ãΣ
ij =

l∑

k=1

rkã
(k)
ij + ã

(l+v)
ij ,

b̃Σ
ij =

l∑

k=1

rk b̃
(k)
ij + b̃

(l+v)
ij ,

c̃Σ
ij =

l∑

k=1

rk c̃
(k)
ij + c̃

(l+v)
ij ,

ẽΣ
ij =

l∑

k=1

rkẽ
(k)
ij + ẽ

(l+v)
ij ,

āΣ
ij =

l∑

k=1

rkā
(k)
ij + ā

(l+v)
ij ,

J. Shanghai Jiaotong Univ. (Sci.), 2009, 14(1): 112-116 115

b̄Σ
ij =

l∑

k=1

rk b̄
(k)
ij + b̄

(l+v)
ij ,

c̄Σ
ij =

l∑

k=1

rk c̄
(k)
ij + c̄

(l+v)
ij ,

and hands these combinations to Pv.
(3) Wait until received combinations from n′−t′ play-

ers. Without lost of generality, assume that the received
combinations are of the set R = {P1, P2, · · · , Pn̂}. Pi

verifies whether for each j = 1, 2, · · · , n′, the received
combinations ãΣ

j1, ã
Σ
j2, · · · , ãΣ

jn̂ lie on a polynomial of
degree at most t′. The same verification is performed
for the shares b̃Σ

j1, b̃
Σ
j2, · · · , b̃Σ

jn̂ and c̃Σ
j1, c̃

Σ
j2, · · · , c̃Σ

jn̂.
Next, Pi verifies whether the received combinations
āΣ

j1, ā
Σ
j2, · · · , āΣ

jn̂ lie on a polynomial of degree at most
t − 1. The same verification is performed for the com-
binations b̄Σ

j1, b̄Σ
j2, · · · , b̄Σ

jn̂ and c̄Σ
j1, c̄

Σ
j2, · · · , c̄Σ

jn̂. Fur-
thermore, Pi verifies whether the received combinations
ẽΣ

j1, ẽ
Σ
j2, · · · , ẽΣ

jn̂ lie on a polynomial of degree at most
t′.

(4) If all the verifications passed, take no action. If
not, try to localize the fault and identify the set D. To
do this, Pi selects one of the polynomials of too high
degree and broadcast the location of the fault. Without
loss of generality, we assume that the fault was observed
in the combination ãΣ

j1, ã
Σ
j2, · · · , ãΣ

jn̂. Pi calculates the
maximum set H such that for each v ∈ H, ãΣ

jv lies on
a polynomial of degree at most t′. Let �f(x) denote the
polynomial that is determined by the combinations hold
by players in set H. If |H| � n′−2t′, Pi selects a player
Pk as the player whose combination does not lie on �f(x)
and set Di := {Pi, Pj , Pk}. If | H |� n′ − 2t′, Pi selects
a player Pk in P ′ randomly and sets Di := {Pj , Pi, Pk}.
Pi broadcasts the complaint Di.

(5) Execute protocol ACS[Q,P ′, t′] with the Boolean
predicate: Q(j) = 1 if Pj has finished the broadcast.
Players that have complete the broadcast, set C =
ACS(Q,P ′, t′). Pi selects Pj in the C who has the small-
est index number and sets the final D := Dj .

(6) Discard the block and set P ′ := P ′\D, n′ = n′−3,
t′ = t′ − 1.
4.3 Verification of All Players Sharing the

Correct Product Shares
Now, we have to verify that in each triple k =

1, 2, · · · , l, every player Pi shares the correct product
share ẽ

(k)
i = ã

(k)
i b̃

(k)
i . Since in the first verification,

the degrees of all sharing are of degree t′. It is suffi-
cient to verify that the shares ẽ

(k)
1 , ẽ

(k)
2 , · · · , ẽ

(k)
n′ lie on

a polynomial of degree at most 2t′. Note that at least
n′−t′−t′ > 2t′ shares of the honest players uniquely de-
fine this polynomial. The key idea of this verification is

that every player Pi interpolates random combinations
of ẽ

(k)
i and checks if the combinations lie on a polyno-

mial of degree at most 2t′ . If a fault is detected, a set
D of two players will be identified and eliminated from
the player set P ′.

Code for party Pi ∈ P ′:
(1) Interpolate ẽΣ

1 , ẽΣ
2 , · · · , ẽΣ

n′ by using the values
computed in the previous verification protocol ẽΣ

j1,

ẽΣ
j2, · · · , ẽΣ

jn̂, for j = 1, 2, · · · , n′.
(2) Check if ẽΣ

1 , ẽΣ
2 , · · · , ẽΣ

n′ lie on a polynomial of de-
gree at most 2t′. If all the verifications passed, take no
action. Else try to localize the fault and identify the set
D. To do this, Pi calculates the maximum set H such
that for each i ∈ H, ẽΣ

j lies on a polynomial of degree
at most 2t′. Let �f(x) denote the polynomial that is
determined by the combinations hold by players in set
H. Pi selects a player Pk as the player whose combina-
tion does not lie on �f(x) and sets Di := {Pi, Pk}. Pi

broadcasts the complaint Di.
(3) Execute protocol ACS[Q,P ′, t′] with the Boolean

predicate: Q(j) = 1 if Pj has finished the broad-
cast. Players that have complete the broadcast set C =
ACS[Q,P ′, t′]. Pi selects Pj in the C who has the small-
est index number and sets the final D := Dj .

(4) Discard the block and set P ′ := P ′\D, n′ = n′−2,
t′ = t′ − 1.
4.4 Security Analysis

The correctness also follows from simple algebra that
if all players are honest, then the verification will always
pass. However, if one player in the Core-Set C does
not share the correct product share, the interpolation
of combination shares will not lie on a polynomial of
degree at most 2t′. If a fault is detected, Pi may be
corrupt player who has declared the fault intentionally.
Otherwise, Pi is honest, then Pi could interpolate at
least n′− t′ values of ẽΣ

j , among which n′−2t′ are from
honest players. The n′ − 2t′ interpolated values could
determine a polynomial of degree at most 2t′ uniquely.
Thus, the player Pk whose share does not lie on the
polynomial determined by the n′−2t′ honest players is
corrupt. In all the above cases, at least one player in
the set D = {Pi, Pk} is corrupt.

5 Complexity Analysis and Conclusion

Here we give a brief complexity analysis of our pro-
tocol. We use MC to denote the complexity of the mes-
sage that sent via secure channel and use BAC denote
the complexity of the message that sent by using Broad-
cast protocol.

Generation of one block The message complex-
ity of generation m triples is that MC = O((l +

116 J. Shanghai Jiaotong Univ. (Sci.), 2009, 14(1): 112-116

n)n3 lg |F|) and BAC = O(n2). In the worst case in
which t players are found to be corrupt, the message
complexity of generation m triples is also the same:
MC = O((l + n)n3 lg |F|) = O(n4 lg |F| + mn2 lg |F|)
and BAC = O(n2).

First verification step This verification step will
be performed O(n) times, so the whole message com-
plexity of this verification step in the preparation phase
is that: MC = O(n3 lg |F|) and BAC = O(n2 lg |F|).

Second verification step This verification step
will be performed O(n) times, so the whole message
complexity of this verification step in the preparation
phase is that: BAC = O(n2 lg |F|).

The total message of the protocol is that MC =
O(n4 lg |F| + mn2 lg |F|) and BAC = O(n2 lg |F|).

The message complexity of the general purpose MPC
protocol is the bottle neck to its implementation. We
propose an efficient batch secret sharing protocol in
asynchronous network that could improve the efficiency
of MPC greatly.

References

[1] Canetti R. Studies in secure multiparty computation

and applications [D]. Rehovot, Israel: Weizmann In-

stitute of Science, 1995.

[2] Ben-or M, Kelmer B, Rabin T. Asynchro-

mous secure computation with optimal resilience

[C]//Proceedings of 13th ACM PODC. New York:

ACM, 1994: 183-192.

[3] Ashwin K M V N, Srinathan K, Pandu R C. Asyn-

chronous perfectly secure computation tolerating gen-

eralized adversaries [C]//Proceedings of ACISP 2002.

Heidelberg: Springer-Verlag, 2002: 497-511.

[4] Srinathan K, Rangan C. Efficient asyn-

chronous secure multiparty distributed computation

[C]//Proceedings of Progress in Cryptology IN-

DOCRYPT 2000. Heidelberg: Springer-Verlag, 2000:

117-130.

[5] Hirt M, Mauren U. Robustness for free in un-

conditional multiparty computation [C]//Advances

in Cryptology-CRYPTO ’01. Heidelberg: Springer-

Verlag, 2001: 101-118.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

