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Abstract In this paper we introduce “safety factor” in transportation problem. Here we
solve Multi Item Interval Valued Solid Transportation Problem (MIIVSTP) with safety
factor under Desire Safety Measure (DSM) fuzzy-stochastic and stochastic. When items
are transported from origins to destinations through different conveyances, there are
some difficulties/risks to transport the items due to bad road, insurgency etc. in some
routes specially in developing countries. Due to this reason desired total safety factor is
being introduced. Also our goal is to evaluate the solution of MIIVSTP using Global
Criteria Method. Here we developed five model with taking DSM as fuzzy-stochastic
and stochastic and safety factor as crisp, fuzzy, interval, stochastic, fuzzy-stochastic.
Here the transportation costs are intervals, the corresponding multi-objective transpor-
tation problem is formulated using “mean and width” technique. Then the problem is
converted to a single objective transportation problem taking convex combination of the
objectives according to their weights. Finally all the models are solved by Generalized
Reduced Gradient (GRG) method using LINGO software. Numerical examples are used
to illustrate the model and methodologies.
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Introduction

As a generalization of traditional Transportation Problem, the Solid Transportation
Problem (STP) was stated by Shell in 1955, which he considered the three item
properties in the constraint set instead of two items namely source and destination. He
also suggested the situations where the STP would arise, and four cases of STP were
discussed according to the data given on the item properties and developed its
solution procedure. Basu et al. (1994) developed an algorithm for finding the
optimum solution for the solid fixed charge linear transportation problem. Although
STP was forgotten for long time, because of existing advanced solution methodolo-
gies, recently it is receiving the attention of many researchers of this field. Models
and algorithms have been developed by many authors (Bit et al. 1993; Gen et al.
1995; Jimenez and Verdegay 1998, 1999; Li et al. 1997a, b; Yang and Liu 2007). The
fuzzy set theory concept was first introduced by Zadeh (1965). Linear programming
problems with several objective functions was solved by using fuzzy membership
functions by Zimmerman (1978) and he showed that the results obtained from fuzzy
are always efficient. A special type of non-linear membership function was used for
the vector maximum linear programming problem (Liberling 1981).

In the real world, sometimes data cannot be measured/ collected precisely. This
impreciseness may occur in stochastic or non — stochastic (i.e., fuzzy) sense or both
stochastic and fuzzy sense together i.e., fuzzy — stochastic sense. In some real — life
transportation problems, it is difficult to obtain in advance the exact value amounts of
resources, demands, direct unit costs and fixed charges for transportation for tradi-
tional (2-dimentional) TP and transportation capacities and transportation times for
transport conveyances in addition to the above mentioned parameters in the case STP
(3-dimentional TP). These parameters are sometimes treated as random variables
according to the statistical experience when enough sample data are available.

Stochastic programming deals with situations where the input data are imprecise in
stochastic sense and described by random variables with known probability distribu-
tion. Probability theory provides the theoretical foundation for stochastic program-
ming models. The probability and mathematical expectation have often been used
during the formulation of stochastic models to deal quantitatively with random data.

Again, data/ parameters imprecise in both fuzzy and stochastic senses are called
fuzzy — random or hybrid parameters. The concept of fuzzy — random variable was
introduced by Kwakernaak (1978, 1979) and Puri and Ralescu(1986). The occurrence
of fuzzy — random variable/ parameter makes the combination of randomness and
fuzziness more persuasive. Though in the literature, these are some decision making
problems formulated and solved with fuzzy — random parameters/ variables, till now,
to the best of our knowledge, no T.P. has been formulated and solved with fuzzy —
random costs/ resources.

Scope of an interval objective function in the light of maximization/minimization
problem

The objective of a conventional linear programming problem (LPP) is to maximize or
minimize the value of its (one only, single-valued) objective function satisfying a
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given set of restriction. However, a single-objective interval linear programming
problem (ILPP) contains an interval-valued objective function (IOF). Let us consider
the following problem:

Maximize/Minimize Z = ZJN:1 [Cuj, Cri] % (1)
Subject to, {Set of feasibility constraints}
As an interval can be represented by any two of its four attributes(viz., left limit,

right limit, mid-value and width), then by using attributes mid-value and width(say),
the ILPP(1) can be reduced into a bi-objective LPP as follows:

Max /Min{mid—value of the IOF} (2.1)
Min{Width of the IOF} (2.2)
Subject to{Set of feasible Constraints } (2.3)

From this problem, naturally one may get two conflicting optimal solutions:

X = {x_}}, from(2.1)and(2.3),
X'= {x;}, from(2.2)and(2.3)

and hence we get two optimal values Z' and Z" of Z respectively.

If x" = x" then there does not exists any conflict and x’ is the solution of the problem.
But if x' # x", for the maximization problem, m(Z") > m(Z") and w(Z") > w(Z"), (because,
Z' is obtained through maximizing m(Z) and Z” is obtain through another goal, by
minimizing w(Z)).

Similarly, for minimization problem, if x' # x" then m(Z") < m(Z") and w(Z') > w(Z"),
(because, Z' here is obtained by minimizing m(Z) and Z” by minimizing w(Z2)).
Therefore, if x’ # x”, then Z' and Z"” become the non-dominated extreme
alternative(Sengupta and Pal 2000).

On the other hand, the principle of A -index indicates that for the maximization
(minimization) problem, an interval with a higher mid-value is superior (inferior) to
an interval with a lower mid-value. Therefore, though Z' and Z" are two non-
dominated alternative extremes from the viewpoint of a bi-objective problem, they
can ranked though A -index.

Hence, in order to obtain maximum/minimum of the interval objective function,
considering the mid-value of an interval-valued objective function is our primary
concern. Therefore, if we reduce the interval objective function in its central value
and use conventional LP technique for its solution, the solution will give the best-
expected optimum for the problem concerned. Further, we also need to consider the
width but as a secondary attribute, only to determine best reachable certainty level
and to confirm whether the best-expected optimum is within the acceptable limit of
the DM for the problem concerned. If it is not, one has to go for smaller extend of
width (uncertainty) according to his satisfaction and thus to obtain a less wide interval
from among the non-dominated alternative accordingly (Sengupta and Pal 2004).
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Henceforth we develop a composite goal to define the IOF as follows:
For the maximization problem:

Maximize A * m(Z) — (1 — L) * w(Z) (3)

wrt (2.1, 2.2, 23)and 0 <A < 1 (4)
For minimization problem:

Minimize ZZ = L * m(Z) + (1 — 1) x w(Z) (5)

wrt (2.1, 2.2, 23)and 0 <A < 1 (6)

The lemda (1) factor defines the DM’s pessimistic or optimistic bias. If A=1, (3)
and (5) show DM’s absolute optimistic bias and if A=0, (3) and (5) indicate, on the
contrary, the pessimistic DM’s attitude (Sengupta and Pal 2000). With A=0.5 or with
similar other value, a similar proportional balance between DM’s optimistic and
pessimistic preference may be thought of.

Order relations between intervals

Here, the order relations which represent the decision-makers preference be-
tween interval costs are defined for minimization problems. Let the uncertainty
costs for two alternatives be represented by interval A and B respectively. It is
assumed that the cost of each alternative is known only to lie to the corre-
sponding interval. The order relation by the left and right limits of interval is
defined in definition below.

Definition

The order relation <;, between 4 = [a;, ag] and B = [b;, bg] is defined as

ASLRB lff ag, S bL and ar S bR (f)

A<irB lffASLRB and ag 7é br

The order relation <;  represents the DM’s performance for the alternative with the
lower minimum cost, that is, if 4 <;p B, then A preferred to B.

Note If X;,i=1,2,....,m are random variables and a;’s are all constants then
>, aix; is also random.

Note If §,~, i=1,2,....,m are fuzzy-random variables and a;’s are all constants then

Sty aix; is also fuzzy-random.
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Approximate value of Triangular Fuzzy Number (TFN)

According to Kaufmann and Gupta (1991), the approximate value of TFN TFN a =

(ar,a,23) is given by g = 4t2eta

Chance constraint programming

As the name indicates, the chance-constrained programming technique can be used to
solve problems involving chance constraints, i.c., constraints having finite probability
of being violated. This technique was originally developed by Charnes and Cooper.

1. If € are the probabilities of non-violation of the constraint a > b then the
constraint can be written as

Prob [a > E} >e

At first defuzzify the expectation and variance as:

A

my :E(Z) — = (51,50 )

by + by +b;

Or, m, = 3

Similarly, o7 = var (b) =0t = (0, 03y, %)

2 2 2
2 _ Oty toy,
Or, oy = 3

Then the constraint reduces to a standard chance constraint as:

Prob {h > 8] > e

o~

Where, d = b;;”” are the standard normal variate and h = “—3*
b

b

Or, a > my + Ao? .
Where A be the real number such that Prob [X > 8] =c.
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2. 1If ¢ are the probabilities of non-violation of the constraint a > b then the
constraint can be written as

Prob {5 > E] >e

Or, Prob {a b >0 ]
r, Prob[R > 0] > ¢
R-ER) - -E(R
Or, Prob{var( R > (R)} > €.

At first defuzzify the expectation and variance as:

mR:E(R):E(a—Z> :E(&)-E(i) —Ga—b—a—m

Then the constraint reduces to standard chance constraint as:

Prob [? > fK} > ¢

Or, Prob [T < K} > ¢

Where, T = 22 qre the standard normal variate and K = "% .
0%1 TR

mp > ka,ze

Where A is the real number such that Prob [? > k} =

3. If ¢ are the probabilities of non-violation of the constraint a > b then the
constraint can be written as

Prob F > i)} > €

Or, Prob[ﬁ—g>0] >

Or, Prob 6 0}
Q

Or, Prob
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At first defuzzify the expectation and variance as:

mo = E(@) —£(a) —E@)

Or, mQ:@:a—B
Where, Q) =a; — by,0, =a, — by, 05 = a3 — b3
or, mQ:Ql‘ng‘FQs

~

Similarly, 02Q = var (Q) = 5%2 = (Uél , O'ZQZ, O'ZQ})

2
:0Q1+0-2Qz+0-23

Or, O’2Q 3

Then the constraint reduces to standard chance constraint as:

Prob P" > —K} > €

Or, Prob {T < K] > €

~

Where, T = Q;Zm 2 are the standard normal variate and K = 'g—f
0 0

mo Z 7\.0’2Q

Where A be the real number such that Prob {/T\ > k} =£.

4. If € are the probabilities of non-violation of the constraint a > b/\l then the
constraint can be written as

Prob {a > bAl} > e.

Or, Prob a_E@) >E_E(El) > e
var(b1> - var(bl) -

Or, Prob {h > &] > e,

Where, d="2 o_zmb' are the standard normal variate and h = £
by by

Or, a>my, + ;‘Uil'
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5. If e are the probabilities of non-violation of the constraint a > bAl then the

constraint can be written as

Prob[a > bAl} > ¢

Or, Prob 3
Or, Prob[__a >
Or, Prob a-5() > -£(a)

Or, Prob T > —-K
Or, Prob _T < K}

~

Where, T =13 are the standard normal variate and K = ¢
q q

my > ?»05

Where A be the real number such that Prob {/T\ > k} =£.

Formulation of the solid transportation problem
Notation and assumptions

) M : number of origins/sources of the transportation problem.
(i1) N : number of destinations/demands of the transportation problem.

(i) K : number of conveyances i.e. different modes of transporting units from

sources to destinations.
(iv)  Ej: amount of product which can be carried by the k-th conveyance.
) O? : amount of homogeneous product available at the i-th origin.
(vi) Dj‘? : demand at the j-th destination.

(vii)  C}, : per unit transportation cost from i-th origin to j-th destination by k-th

i
conveyance of g-th item.

(viii) x?, : the amount transported from i-th origin to j-th destination by k-th conveyance.
(ix) Siik - the safety factor when an item is transformed from i-th origin to j-th
destination by k-th conveyance of g-th item. If g-th item is transported from
source i to destination j by conveyance k, then the safety factor Sg'k is
considered. This implies that if xg.k > 0, then we consider the safety factor

for this route as a part of the safety constraint. Thus for the convenience of
modeling, the following notation is introduced:

= 1 for xg.k>0
ik 0 otherwise
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Model formulation

According to the above assumptions and notations, in a solid transportation problem we
formulate the interval valued Solid Transportation Problem to evaluate the Optimized
solution (Minimized) of the Total Transportation Cost. Here goal of a decision maker is
to optimize these objective functions under Interval availability, Interval requirement
and Interval conveyance capacities. So mathematically problem can be expressed as:

Model 1: Formulation of MIIVSTP without safety factor

L 0 M N K S N
Minimize Z = E =1 E i g i1 E 1 [Cijkuciij Xijk

Subject to
S Yk X =0li=1,2,...... M
S S =Dl =12, N} -
O S SN X =Bk =1,2 K
Zq:l D Zj:lxijk_ ko= Ry &yeeee J

xjy > 0foralli, j, k, q
The problem is feasible if and only if ONDNE # ¢, where

O=Z Z 510 {Z Z 1Oq Z Z 1012}
:zqzlzjzlnfz{z VN AT N ] E = = [ e, D e

Model 2: Formulation of MIIVSTP with safety factor

Model 2a: Formulation of MIIVSTP with safety factor as a crisp number

Minimize Z = Z Zl IZJ 1Zk 1 { ijkL> Eku]XE}k (8)

Subject to the constraints (7b) — (7¢) }

§= ZqQ:I Zi\il ZjN:l Zle Sy > B (8a)

Where sg.k are crisp numbers, B is the desired safety measure for the whole
transportation system.

Model 2b: Formulation of MIIVSTP with safety factor as a crisp number and Desired
Safety Measure (DSM) as a fuzzy-random number It is same as problem (7) and
safety constraint (8a) is replaced by,

S = Zf:l Zil ZJN:1 Zszl Sg'ky?/k =z
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Model 2¢: Formulation of MIIVSTP with safety factor as a fuzzy number and Desired
Safety Measure (DSM) as a fuzzy-random number It is same as problem (7) and
safety constraint (8a) is replaced by,

O M N K _ ~
S=2_ 2.2 2 Sz

g=1 i=1 j=1 k=1

Model 2d: Formulation of MIIVSTP with safety factor as a random number and
Desired Safety Measure (DSM) as a fuzzy-random number 1t is same as problem (7)
and safety constraint (8a) is replaced by,

§= Zf:l Zj\il Zj\’:l Zf:l §Zkyg'k 2 E

Model 2e: Formulation of MIIVSTP with safety factor as a interval number and
Desired Safety Measure (DSM) as a fuzzy-random number It is same as problem (7)
and safety constraint (8a) is replaced by,

§= Zle > Zszl > {Sgkusgkle} Vi 2 B

Model 2f: Formulation of MIIVSTP with safety factor as a fuzzy-random number and
Desired Safety Measure (DSM) as a fuzzy-random number 1t is same as problem (7)
and safety constraint (8a) is replaced by,

§= Zq 12: 1Zj IZk 1 l/kytjk

Particular case
Model 3a: Formulation of MIIVSTP with safety factor as a crisp number and Desired

Safety Measure (DSM) as a random number It is same as problem (7) and safety
constraint (8a) is replaced by,

S= quzl ZZI ZJN:1 Zf:l Sg‘kyg'k = B

Model 3b: Formulation of MIIVSTP with safety factor as a fuzzy number and Desired
Safety Measure (DSM) as a random number It is same as problem (7) and safety
constraint (8a) is replaced by,

S= ZqQ:I ZZl Zj\/:l Zszl §§kY§§k >B
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Model 3c: Formulation of MIIVSTP with safety factor as a random number and
Desired Safety Measure (DSM) as a random number 1t is same as problem (7) and
safety constraint (8a) is replaced by,

S= Zf:l Zj\il Zjvzl Zszl §Zkyg'k 2 B.

Model 3d: Formulation of MIIVSTP with safety factor as an interval number And
Desired Safety Measure (DSM) as a random number It is same as problem (7) and
safety constraint (8a) is replaced by,

§= ZqQ:l ZZI Z/]il Zf:l {Sg’kL’SZkR]ygk > B.

Model 3e: Formulation of MIIVSTP with safety factor as a fuzzy-random number and
Desired Safety Measure (DSM) as a random number It is same as problem (7) and
safety constraint (8a) is replaced by,

=Y L L S 2B

Global criteria method

The Multi — objective Non — Linear Programming (MONLP) problems may be solved
by Global Criteria Method converting it to a single objective optimization problem.
The solution procedure is as follows:

Step— 1:  Solve the multi — objective programming problem (8) as a single objective
problem using one objective at a time ignoring the others.
Step — 2:  From the results of Step — 1, determine the ideal objective vector, say

(fymin, fomin, fomin ") and the corresponding values of
(e, fymax fmax J") . Here the ideal objective vector is used
as a reference point. The problem is then to solve the following auxiliary
problem:
Find x = (x1,x2,,...... ,xn)T
Which minimizes GC
Subject to
gx) <0,=1,2,3,...... ,m
x; >0, i=1,2,...... N

. _ fmin\ P 1
where GC = Minimize{zk (M) }

i=1 \ fmax_fmin
i i

3 _ fmin\ P 1

Or, GC = Minimize{Z%;, (f'(xf)ima:? ) }p,
Where 1 < p < . An usual value of p is 2. This method is also

sometimes called Compromise Programming.
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Step — 3:  Now, solve the above single objective problem described in Step — 2 by
GRG method to obtain the compromise solution.

Numerical example and discussion

Input data

A marketing company procures two types of items as rice and wheat from the
three production sources and supply to two different destinations through the
two different types of conveyances where availabilities, demands and convey-
ances capacity are interval in nature. i.e., we consider the following (3x2x2)

MIIVSTP:

Supplies

0} = [10,22],0; = [12,24], 0} = [20, 53], 07 = [20,31],05 = [12,26],05 = [4, 17].

Demands

D} = [16,25],D) = [19,32],D? = [26,36], D3 = [17,23].

Conveyances capacities

E; = [29,44],E, = [19,45].

Desired minimum total safety measure for the system (=B) =5 (Tables 1, 2, 3 and 4)

Input for safety constraints with stochastic safety factors
Input for safety constraints with fuzzy-random safety factors

This problem is feasible since ONDNE = [78,173]1N[78,116]N[48,89] =
[78,89] # ¢ (is non-empty).

Model 1

This interval valued solid transportation problem without safety factors with the
above data is reduced to

2 3 2 2
S . q q q
Minimize ZZ = E o= E . g i1 E k:1 [CijkL,Ciij}xijk

@ Springer



163

Multi-item interval valued solid transportation problem

[167]
[sL7s97]
[s67s87]

(1°666")
(SL°L°59")
($676°°58")

I
L0
60

[28 “sL]
[st ‘el
[86 “z6l

4

[167]
[szest]
[s8<sL7]

(1°566")
(sTTes1)
($8786L")

S6°0
0
80

[8¢ “zel
loL “1L]
[L6 “z6l
I
4

[se*sT]
[z°1]
[sL7s97]

(seg“sT)
(Ts1°1)
(SLL*59")

€0
S1'0
L0

[o1 “z1]
[vT ‘12l
[8z ‘o7l

4

[sssp]
[s150]
[s9s57]

($57“6*st)
(ST1°°50")
(§99¢¢")

S0
1o
90

[81 “p1]
[88 ‘18]
[98 “s.]
I

I
-

[9°“¢7]
[sTesT]
[sL597]

(97°667¢")
(ST*T*s1)
(SL°L°59")

SS0
(4
L0

[oL “09]
[8t ‘ov]
[66 ‘06l

4

[syse]
[T6°]
[L97]

(St v s¢)
(1°666")
(L°699")

0
I

$9°0
[st ‘op]
[29 “09]
[08 “zL]

I
4

[v¢]
[1 671
[syse’]

(Fsee)
(1°666")
(St v s¢7)

SE0
$6°0
¥'0

[oz “p1]
[z€ ‘o€l
[z8 ‘oLl

4

[se*sT] €
[s8sL] 4
[ssst] I
$10J08] K)9JeS [eAIU]
(seesT) €
(68787*6L") 4
(557°s7*s¥") I
s10)08] Kjoyes Azzn,|
§T0 €
80 4
S0 I
s10308] Kj958s dSu)
[o1 “o1] €
[06 “v8] 4
[o “zr] I
I b !
I [

-

1500 uoneyodsuer) [eAIOIU]

1500 uonepodsuen [ealu] | dqe],

pringer

AN



164

A. Baidya et al.

Table 2 Input for safety constraints with stochastic safety factors

Assumed values of il.’/.k

q
Assumed values of (Uf/k)

Item-1 Item-2 Item-1 Item-2
] 1 2 1 2 1 2 1 2
i k 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 15 18 21 10 12 11 18 17 13 5 21 5 11 18 15
2 15 17 7 9 22 14 12 13 8 15 7 7 8 12 13
3 9 16 15 18 9 5 7 16 10 11 15 1 13 7 17
Subject to
2 2 2 2 | 2 2 |
> Ex,k = [10,22],3° Z'xZJk = [12,24],3° Zx3jk = [20,53],
j=1k=1 j=1k=1 j=1k=1
2 2 2 2 2 2
>0 >0 = [20,31], 57 37 gy = [12,26], 37 37 a3 = [4,17]
j=1k=1 j=1k=1 j=1k=1
3 2 3 2 3 2
> xllk = (16,25, > Z X = [19,32], 37 37 xzzlk = [26,36]
i=1 k=1 i=1 k=1 i=1 k=1
3 2 2 3 2 2 3 2
Z Z ilk — [17323]7 Z Z ng‘l = [29744]7 Z Z xgz - [19 45]
i=1 k=1 g=1i=1j=1 g=1i=1j=1

x>0 foralli,j, k, q.
In a Transportation problem, the feasibility constraints are always equality
constraints. So if demand, supply and conveyances capacities are all interval
numbers, an equality constraint with decision variables in the left side can be
written as a deterministic set of constraints as follows:

Table 3 Input for safety constraints with fuzzy-random safety factors

Item-1 Item-2
] 1 2 1 2
i k1 2 1 2 1 2 1 2
Assumed values of E (§Zk)
1 (14,15,16) (17,18,19) (20,21,22) (9,10,11)  (11,12,13) (10,11,12) (17,18,19) (16,17,18)
2 (14,15,16) (16,17,18) (6,7,8) (8,9,10) (21,22,23) (13,14,15) (11,12,13) (12,13,14)
3 (8,9,10) (15,16,17) (14,15,16) (17,18,19) (8,9,10) (4,5,6) (6,7,8) (15,16,17)
Assumed values ofVar (%;k>
1 (12,13,14) (4,5,6) (20,21,22) (4,5,6) (1,2,3) (10,11,12) (17,18,19) (14,15,16)
2 (789 (14,15,16) (6,7.8) (6,7,8) (5,6,7) (7,8,9) (11,12,13)  (12,13,14)
3 9,10,11)  (10,11,12) (14,15,16) (1,2,3) (1,2,3) (12,13,14) (6,7,8) (16,17,18)
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Table 4 Other assumed

parametric values Other assumed parametric values

Model Data

Model —2a §>5

Model — 2b,2¢,2d,2f, 2e r=1.5, mp=(1, 2, 3), 0% = (2,3,4)
Model - 3a, 3b, 3¢, 3e,3d  A=2, mp=1, 05 =3

The composite Objective Function is in its final form,
Min ZZ = AMin(m(Z)) + (1 — A)Min(w(Z)),0 <X < 1.

Now, with A=0.5, we have

Min ZZ = 0.5[Min(m(Z)) + Min(w(Z))]
= 23x)y, + 41x) ), + 40x]y, +49.5x],, +45xy,, + 1635, + 313y, + 24x)y, + 83, + 10x3,
+22.5xky, 4 35xy, +43x3), + 14x3 ), + 48.5x3,, + 49x3,, + 44k, 4 1203, + 38x3,, + 22.5x3,,

+9x3), + 813, + 18.5x3,, + 41y,

Subject to
10 < oxpyy 4 X1y, +Xjp; + Xy <22 (10a)
12 < xél] erélz +xézl erézz <24 (10b)
20 < x.lsll er;lz +xé21 er;zz <53 (10c)
20 < xj)) + X4y + Xy + X7y, <31 (10d)
2 2 2 2
12 <x3py + X595 + 335 + x5y, <26 (10e)
4 < x%]l +x§12 +x§21 +x§22 <17 (10f)
16 < X1y +Xj15 +Xypy + Xypp + X3 + X3, < 25 (10g)
19 < xjy) 4 X15y +Xgp) + Xyy + X3y + X395 < 32 (10h)
26 < x%ll +x%12 +x%ll +x§12 +x§ll "‘x%lz <36 (10i)
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17 < iy 4 Xy + X551 + X5py + X3y + X359 <23 (105)

i ! i i ! ! 2 2 2 2 2
29 <xpyy Xy + X0+ Xy X3+ Xagy TGy + Xy X5y Xy, X5y, x5y <44
(10k)

| 1 | 1 1 | 2 2 2 2
19 < xj1p +Xlgy + X315 + Xapp + X310 + X3pp + X115 + Xioy + X515 + X5py 33, + X322 < 45
(101

xi > 0foralli, j, k, q. 10m
k » ) K

Model 2a, 2b, 2¢, 2d, 2e, 2f, 3a, 3b, 3c, 3d, 3e

Formulations of these models are same as (10a)—(10m) along with additional con-
straint(s) due to safety constraint which differs for different models.

For Model — 2a Crisp Safety constraint:

§= iiZZsiikm

g=1 i=1 j=1 k=1
is reduced to
S = 0.5y} + 0.4y}, +0.65y]y; +0.7y]5, + 0.8y}, + 0.95y3;, + 1yl + 0.2y3, +0.25y5;,

+0.35yk, + 0.4y +0.5590) 0652, + 07215 + 0813, + 0.9, + 0.1y, + 0.15)2,5
+0.2y3; + 0793, + 0.5, + 0.3y, +0.95%,; + 1y, > 5.

For Model — 2b

0 M N K ~
DD DD S =B

g=1 i=1 j=1 k=1

= prob [Zq Dy ZJ DI Sty > B] Z€

= 05}’111 + 0.4y”2 + 0.65y12, + 0-7)’122 + 0~8J’211 + 095}/%12 + 1)’%21 + 0-2)’%22 + 025)’%11
+0~35)’§12 + 0-4Y§21 + 055)’%22 + 0.6yf“ + 0-7)/%12 + 08}’%21 + 09)’%22 + O~1J’%11 + 0.15y%12
+0.2y55, 4 0.7y3; + 0.5)3); + 0.33); + 0.953, + 13, > 21.

For Model — 2¢

2>B
‘=
Z 2112 IZkl ljkyljk

= Prob [Zq 1 Zl 1 Z_] 1 Zk 1 Sl_]kyuk ] 2 €

= 0.5ym + 0.4y“2 + O.65y121 + O.7y122 + 0.8y§” + 0.95y§12 + O.95y§21 + 0.2y§22 + 0.25y§11
+0.35y§12 + 04}’%21 + 055)%22 + 0-6)’%11 + 0'7)’%12 + 08}’%21 + 09)’%22 + 0.1y§1] + 0'15)’%12
+0.2y%,, + 0.733,, + 0.5)%,, + 033}, + 0.95)3,, + 0.95)3,, > 21
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For Model — 2d

= Prob {Z(?:l Zi\il Zszl Zlil §;}kygk 2 E} > e

= (15y1y; + 18y}, + 15y3y; + 17yy1, + 93y, + 16y35, 4+ 12y7), + Llyfy, +22y3;,

+ 14y31, + 931, + 5Y315 + 21y1y + 10y15 + Tyay; + 9y, + 15y3y, + 18y,

+18y75) + 17y, + 12y5y; + 13y35, + Ty3y + 163y, — 9) > 1.5(13y,, 45y
+8ybyy 4 15y515 + 10y3y, + 1ydy, +2y7 + 11yT, + 6y, + 831, + 1y3,,

+ 13y3,, + 21y15; + 5Y10s + Tyaon + T¥am + 15¥50; + 1y3n + 18y1y, + 15y1,
+12y5; + 13y, + Ty + 17y35, — 8

For Model — 2e

0 M
2.2
g=1 i=1

K
Z|: ijkL> ykR]yyk 2 B

1 k=1

M=

~.
Il

= 055}’%11 + 0-45)’{12 + 07)’%21 + 0~7SY}22 + 0-853’%11 + 1)’%12 + IYézl + 0'253’%22 + 03)’%11
+0.4y;12 + 0.45)/;2] + 0.6y§22 + 0.65y%1] + 0.75y%]2 + 0.85y%21 + 0.95y%22 + O.lSy%“ +0 Zy%12
+0.2513,; + 0.7513,, + 0.5513,; 4+ 0.35)3, + 133, + 15y, > 19

For Model — 2f

N K < ~
S > Sz

1 j=1 k=1

ﬁprob{z flzn 1ZJ | Lak= 1S'Jkyuk } Z €

= ( 15)’111 + 18)’%12 + 15)’;11 + 17)’%12 + 9}%11 + 16)’%12 + 12)’%11 + 11)’%12 +22J’§11

-

>

qg=1 i

+ 14)’%12 + 9)%11 + Syglz + 21)’%21 + 10}’%22 + 7)’521 + 9y§22 + 15)’%21 + 18)’%22
+18yTy 4 1Ty + 120551 + 1395y, + Ty + 16135 — 9) > 1.5(13y),+501,
+ 8)’%11 + 15)’%12 + IOY§11 + 11)’;12 + 2)’%11 + 11)’%12 + 6)’%11 + 8)’%12 + 2)%11

+ 13)’%12 + 21)’%21 + 5)’}22 + 7)’%21 + 7)’;22 + 15)’;21 + 2)%22 + 18)’%21 + 15)’%22
+ 12555, + 13355, + T3y + 1733 — 8)
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For Model — 3a

Mw

>

1 j=1

Ma

>

q=1 i

Sz/ky t/k

=
Il

1

K
= Prob [Zq 1 Zl 1 ZJ 1 Zk 1 Sljkyljk :| > €.
= 0.591), + 0.4y} 1, +0.65p15, + 0.7y15 + 0.8y}, + 0.95p3, + 1355, + 0.23,, +0.25y3,
+0.35yé12 + 0.4y§21 + 0.55)/%22 + 0.6y%” + 0.7)%12 + 0.8y%21 + 0.9y%22 + O.Iy%H + 0‘15)/%12
+0.20%,, + 0.7v%,, +0.5)%,, +0.33%,, +0.95%,; + 1%, > 17.

For Model — 3b

0 M N K % 4
Do it Dt D S = B
1 1 1
= Prob [Z S S Stk 2 B 2 e= 0.5, + 04y, + 06501,
+ 0.7y 5 + 0.893,; + 0.959) 5 + 0.95y5,, + 0.233,, + 02593, 4+0.35y3,, + 0.4y3,,
0.55)! 0.6)%,, +0.72,, + 0.8, + 0.95%,, + 0.132,, + 0.15)2,,40.2)2
+ 0.55y39, +0.6y71 + 0.7y715 + 0.8y15; +0.9y75, + 0.1y5,, +0.15)5,+0.2y5;,

40713y, +0.503,, + 0.3y3,, +0.95y%,, +0.95y3,, > 17.

For Model — 3¢

O M N K =R =N
DD DD S =B

g=1 i=1 j=1 k=1

= Prob [Z =1 Z] 1 ZJ 1 Zk 1 S‘Jklek } Z2€

= l5)/}11 + 18)’%12 + 15)’%11 + 17}’%12 + 9)%11 + 16J’§12 + 12}’%11 + 11)’%12 + 22)’%11
+14y5, + 931, + 50300 + 2111 + 10015, + Tyagy + 9om + 1593y, + 183,
18V + 1701y + 12 + 1313, + Ty + 1633, — 7) > 2(13p1y; + Sy1p
+ 8)’511 + 15)’%12 + 10}’%11 + 11)’%12 + 2)’%11 + 11)’%12 + 6)%11 + 8)’%12 + 1)’%11
+ 131315 4 2101y) + 5Vin + TVagy + Ty + 15051 + yigy + 18375, + 15y,

+ 1235, 4 13135, + Ty + 1733, — 5)
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For Model — 3d

™=

Q
2
qg=1 i

N K .
D> Sha Stia i 2 B

1 j=1 k=1

= PrOb[Zq 121 IZJ IZk 1 [ ijkL? l_]kR:|yl_|k 2 B] g2

= 0.55p],, 4+ 0.4501, + 0.7y}, +0.75p1,, + 0.85y3,, + 1ph 1, + 1yl + 0.25%,, + 0.3},
104y}, 4+ 045y, + 0.6y, +0.652,, +0.753,, + 08517, +0.95)2,, + 0.153,, +0.2)3,,
+0.25)3y; + 0.75y%, + 0.553,, + 03503, + L3y + L3y = 10.

For Model — 3e
O M N K _ R
NN IAES

g=1 i=1 j=1 k=1

éPrOb[Z Zl 1ZJ IZk 1 ukyuk } Z &

= 15y1;; + 18y1y, + 150 + 1701 + Wiy, + 16341, + 127, + 117y, + 2233,
P P ! 1 1 1 1 1

+ 14331, + 931, + 59310 + 21005 + 10v]5 + Ty + 93y + 154, + 1833,

+ 18y, + 17v75 4 1203,) + 13355, + T3y + 1635, — 7) > 2(13p1,, 4511,
+ 83y, + 15y, + 10p3y, + 115, + 201y, + 17y, + 603, + 831, + 203,

+ 13031, 4+ 2115y + SVias + TVaa1 + Taas + 150351 + 2045, + 1837, + 15070,

+ 1255, + 1355, + Tvayy + 1733, — 5)

Results

Solution by GRG The above constrained optimization problems are executed using
LINGO 12.0 and the results of Models — 1, 2a, 2b, 2c, 2d, 2e¢, 2f,3a, 3b,3c, 3d, 3e are
as follows: (Table 5)

Optimal result by global criteria method The above problem is solved by the LINGO
12.0 package for obtaining the optimal compromise solution of the problem. We get
GC = 0.4558780 and optimal compromise solution as, x};; = 10, x},, = 12, x};, =
1, xb =19, x},, = 17.6, x3,, =2.37, x5, = 8.37, x5, =3.63, x3,; =11 and
rest all are zero.
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The optimal value of each objective functions i.e., m(z) and w(z) are
2997.39 and 222.53 respectively.

Discussion

The result of the following models is to be expected. The optimal value of model-1 is
minimum than any other model because we solve model-1 without adding the safety
constraint but in the remaining models i.e., model 2a, 2b,2c, 2d, 2e, 2f, 3a, 3b, 3¢, 3d,
3e we introduce the Safety constraints. In this Multi item interval valued solid
transportation problem we consider desire safety measure as a fuzzy-stochastic
variable and in this numerical illustration we consider desire safety measure is 5. In
other models decision maker wants to have more total safety measure for the system
i.e., 5. For this reason the transportation routes are rearranged so that total safety
measure is greater or equal to 5. Thus, as a result, total mean cost is increased. These
additional costs are incurred against the increased total safety measure.

Conclusion

The main goal is to represent the solution procedure of the Multi Item Interval Valued
Solid Transportation Problem (MIIVSTP) with safety factor under Desire Safety Mea-
sure (DSM) fuzzy-stochastic and stochastic. To prepare this we proposed five models as
Multi-itemSolid Transportation Problem. In this paper we solve all mathematical prob-
lems by using LINGO 12.0 Software. In our approach, we have presented two types of
constraints one deterministic, another uncertain both fuzzy and stochastic senses. Since
transportation problem play an important role in our daily life so our technique is highly
fruitful. Practical numerical examples are provided to demonstrate the feasibility of all
decision variables of the proposed methods.
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