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Abstract—Biologically related processes operate across
multiple spatiotemporal scales. For computational modeling
methodologies to mimic this biological complexity, individ-
ual scale models must be linked in ways that allow for
dynamic exchange of information across scales. A powerful
methodology is to combine a discrete modeling approach,
agent-based models (ABMs), with continuum models to form
hybrid models. Hybrid multi-scale ABMs have been used to
simulate emergent responses of biological systems. Here, we
review two aspects of hybrid multi-scale ABMs: linking
individual scale models and efficiently solving the resulting
model. We discuss the computational choices associated with
aspects of linking individual scale models while simulta-
neously maintaining model tractability. We demonstrate
implementations of existing numerical methods in the con-
text of hybrid multi-scale ABMs. Using an example model
describing Mycobacterium tuberculosis infection, we show
relative computational speeds of various combinations of
numerical methods. Efficient linking and solution of hybrid
multi-scale ABMs is key to model portability, modularity,
and their use in understanding biological phenomena at a
systems level.

Keywords—Multi-scale modeling, Hybrid modeling, Agent-

based modeling, Numerical implementation, Linking models,

Tuneable resolution.

INTRODUCTION

Computational models are used in systems biology
for understanding, predicting, and translating a wealth
of experimentally generated data into a realization of
systems behavior. Multi-scale computational models in
particular have provided valuable insights for applica-

tion to areas as diverse as infectious disease,18,26,27

inflammation,3 cancer,24,83,90 angiogenesis,67 and dis-
ease treatment.38,44,58,87Adefining feature ofmulti-scale
computational models is a description of biological
mechanisms that operate over different spatiotemporal
scales.4,76,77,87,89 When building multi-scale models four
different areas must be considered (Fig. 1): (1) con-
structing models—how to create a mathematical for-
mulation that is able to recapitulate the dynamics of a
biological system at an individual scale, (2) linking
models—how to join individual scalemodels to allow for
exchange of information, (3) solving models—deter-
mining the most efficient way to solve the underlying
mathematics, and (4) analyzing models—how to cali-
brate and validate the model and then make and
understand model predictions. In this paper, we review
strategies to link individual scale models andmethods to
efficiently solve the resulting multi-scale model.

We typically link descriptions of biological phe-
nomena operating at an individual scale together to
form a multi-scale model.48,87 One approach to linking
individual scale models, referred to as hierarchical
linking, is to solve the lowest scale (i.e., the smallest
length or time scale) model to completion and subse-
quently feed the output, for example in the form of an
initial condition or parameter value, to the model at
the next higher scale.20,48,87 However, this type of
linking methodology is inappropriate when informa-
tion across scales needs to be continually exchanged
and in both directions. For instance, vascular endo-
thelial growth factor (VEGF) can induce an endothe-
lial cell to divide which may elongate a blood vessel in
a new direction. The new endothelial cells will produce
more VEGF, leading to cellular movement and con-
tinued growth of the blood vessel in the new direc-
tion.67,68 Without exchange of information in both
directions (molecular to cellular and cellular to
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molecular), sprouting of new blood vessels would
likely not occur. The nature of biological systems, with
constant exchange of information across scales,
necessitates multi-scale models that mimic this dy-
namic exchange of information. The resulting multi-
scale model is more complex than the individual-scale
parts, making it more difficult to link, solve, and
analyze than traditional mathematical or computa-
tional models. Therefore, efficient strategies and
approaches that balance model complexity, computa-
tional time, and ease of implementation to link and
solve multi-scale models are necessary.

Agent-based models (ABMs, sometimes called
individual based models—IBMs) are stochastic, dis-
crete models that utilize individual entities known as
agents, here representing individual biological cells
(Fig. 2). Each agent is autonomous and behaves based
on decisions from the set of rules, interactions, and
states given to it, leading to heterogeneity between
agents. ABMs can generate complex system-level
emergent behavior from simple rule-based descriptions
of each individual.3,11,71,74,87,89 Agents can receive in-
puts from the environment, influencing their decision
making, and can also have the ability to alter their
environment. Models that combine aspects of both
continuous and discrete model constructs are com-
monly referred to as hybrid models. Hybrid ABMs
arise when continuum models are used to describe
part of the overall system, such as the environment
and parts of the agent decision-making pro-
cesses.4,18,26,38,50,89 A hybrid ABM is also termed
multi-scale when a portion of the model, such as the
continuum models, describes behaviors occurring at a
different spatiotemporal scale than that of the ABM.

We focus this review on providing strategies, guide-
lines, and a general framework for developing hybrid
multi-scaleABMswhere anABM (discrete), is informed
by differential equation models (continuous) operating

at a different scale. This review can function as a guide
for new modeling efforts (e.g., How are individual scale
models be linked? What solution methods should I
consider?) and also as a framework for extending
existing ABMs into hybrid multi-scale ABMs (e.g.,
What needs to be incorporated into the existing model?
What is the easiest way to get it working?).

We focus on the use of continuum models to de-
scribe the dynamics of the environment and agent-
associated reactions that occur at a smaller spatial and
faster time scale and influence agent decision-making
processes (Figs. 2 and 3). These hybrid multi-scale
ABMs use a temporally separated approach in which
the continuum models are solved using conventional
numerical methods on a faster time scale than the
ABM; syncing between scales is required to reconcile
information exchange.22,86 While many platforms
exist for developing ABMs (e.g., NetLogo, Repast,
Swarm, SPARK, CHASTE, MASON, and
FLAME5,8,18,22,29,46,73), we have found the flexibility of
an in-house platform (written in an object-oriented
programming language C++) necessary to link and
solve hybrid multi-scale ABMs. After introducing key
modeling concepts, we review how to link individual
scale ABMs to differential equation models and effi-
cient implementations of numerical solvers that allow
frequent exchange of information across models.
Finally, we present a case study in order to demon-
strate the trade-off between computational speeds and
model complexity using an established hybrid multi-
scale ABM of Mycobacterium tuberculosis infection.

EXAMPLES OF HYBRID MULTI-SCALE ABMS

Hybrid multi-scale ABMs (Fig. 2) are being used to
describe many biological systems. To orient the reader,
we briefly review three such systems: epithelial

FIGURE 1. Considerations for building multi-scale models. (1) Constructing models: how to create mathematical formulations
that accurately represent individual scale dynamics of a biological system, (2) Linking models: how to connect mathematical
formulations of individual scale models to create multi-scale models, (3) Solving models: implementing efficient methods to solve
multi-scale models, and (4) Analyzing models: Understanding and translating model predictions. Model analysis commonly iter-
ates back to model construction in order to include new biological mechanisms of interest/relevance. In this work, we focus on
how to link individual scale models and efficiently solve the resultant multi-scale model.
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restitution, growth of brain tumors, and immune
responses to bacterial pathogens.

Epithelial Restitution

The wound healing response of damaged epithelial
cells involves restitution (resealing the epithelial layer),
proliferation, and differentiation.79 The cytokines
transforming-growth-factor-b (TGF-b) and epidermal
growth factor (EGF) are necessary for beginning resti-
tution processes, diffusing through the extracellular
matrix (Fig. 2c), binding to TGF-b and EGF receptors
on endothelial cells, and signaling through SMAD and
ERK pathways (Fig. 2b).79 In the ABM, endothelial
cells are represented as individual agents (Fig. 2a)
whose behavior, such as migration and adherence,
depends on SMAD and ERK signaling (Fig. 3). At the
tissue scale, the reconnection of damaged epithelium
(restitution) with healthy endothelial is critical to
wound healing and constitutes much of the early wound
healing response to damaged tissue. This hybrid multi-
scale ABM qualitatively matches temporal experimental
data and predicts the importance of environmental
interactions on the dynamics of epithelial restitution.

Growth Patterns of Brain Tumors

The expression of EGF receptors in brain tumors is
associated with rapid growth and invasion. Yet, in
growing tumors, cells only display a single phenotype of
either migration or proliferation. Transforming-
growth-factor-a (TGF-a) diffuses within the extracellu-
lar environment (Fig. 2c) and binds and dimerizes with
EGF receptors, initiating downstream signaling
through PLCc (Fig. 2b). These downstream signaling
processesmediate the phenotype of a tumor cell (Fig. 3).
In the ABM, tumor cells are represented as individual
agents (Fig. 2a) with both proliferative and migratory
potentials determined by levels of PLCc and bound
EGFR (Fig. 3). The proliferative and migratory nature
of tumor cells leads to tumor growth and expansion.6,7,88

These hybrid multi-scale ABMs of tumor growth have
shown that increased EGF receptor density correlates
with tumor expansion based on early phenotypic
switching driven by TGF-a autocrine signaling.6,7,88

Immune Response to Mycobacterium tuberculosis

During M. tuberculosis infection the immune system
relies on a variety of cells and molecules to coordinate
an effective immune response.18,26,28,30,57,71 Two
extracellular diffusing molecules of interest are the pro-
inflammatory cytokine tumor necrosis factor-a (TNF-
a) and the anti-inflammatory cytokine interleukin-10
(IL-10). These cytokines diffuse through the lung tissue

(Fig. 2c), bind to cell-associated receptors (TNFR1,
TNFR2, and IL-10R), and signal through pathways
such as NFjB and STAT3 (Fig. 2b). Macrophages and
T cells are key immune cells, modeled as agents
(Fig. 2a), with many states (e.g., resting, activated,
deactivated) and functions (e.g., bactericidal ability)
driven by levels of NFjB and STAT3 (Fig. 3). Control
of infection relies on the formation of an organized
structure of immune cells, known as a granuloma,
and its function over the long timescale of infection.
Hybrid multi-scale ABMs of M. tuberculosis infection
are able to reproduce the emergent phenomenon of
granuloma formation and demonstrate a critical bal-
ance between TNF-a and IL-10 in controlling granu-
loma function.18,26,28 In addition, the effects of two
first-line antibiotics, rifampicin (RIF) and isoniazid
(INH), on bacterial burden have been simulated in a
hybrid multi-scale ABM.64 Antibiotics diffuse through
the lung environment (Fig. 2c), are taken up by
immune cells (Fig. 2a), and are able to kill bacteria.
We use this hybrid multi-scale ABM describing
M. tuberculosis infection as a case study in a later
section to illustrate the principles and numerical
methods described in this review.

CENTRAL CONCEPTS FOR HYBRID

MULTI-SCALE ABMS

Mathematical Framework and Linking

We describe the elements of a 2-dimensional hybrid
multi-scale ABM (Fig. 2), but the methodology pre-
sented is easily adapted to any dimensionality required.
An ABM describes relevant biological cells (or any unit)
as individual agents. Each agent (A) has an associated
state (V) and position (x, y) that can change with time.
Examples of cell agent states include activated, prolif-
erating, infected, and cancerous. Changes in state are
based on a set of stochastic agent rules and interactions,
and are also influenced by extracellular diffusing mole-
cules in the environment (e.g., ligands that bind to sur-
face receptors on the cell). The construction of an ABM
is beyond the scope of this article but is well-described in
the literature.1,11,17,29,36,68,70,73,74,79 The concept of agents
in an ABM is naturally analogous to objects in an ob-
ject-oriented programming language, and therefore
constructing hybrid multi-scale ABM in a language such
as C++ or Java is a logical choice.

For each individual agent, a set of agent-associated
reactions can occur:

For each A x; y;Vð Þ :
dYr

dt
¼ fr L;Y1;Y2; . . . ;YR; bð Þ

r ¼ 1; 2; . . . ;R

ð1Þ
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Equation (1) represents the agent-associated species
(R total species), where Yr is an agent-associated spe-
cies, and t is time. L is an extracellular diffusing mol-
ecule (e.g., a ligand that binds to a surface receptor)
that is modeled on a continuum scale, and b is a vector
of rate parameters independent of t and Yr. fr is a
function of agent-associated species, diffusing mole-
cules, and rate parameters (e.g., as necessary for zer-
oth, first, or second order reaction kinetics). b is
dependent upon the state of the agent (V), and thus
rate parameters can change when an agent changes
state. Multiple diffusing molecules can be included,
although in our examples we will only include one for
simplicity. The agent-associated reactions describe
reactions occurring in agents, such as cell-cycle pro-
teins controlling proliferation or actin remodeling
controlling cellular movement.2,93 More common is a
description of receptor-ligand binding and trafficking
and ensuing intracellular signaling processes, as in the
three examples given above.10,14,28,49,84 These reactions
are typically based on mass-action kinetics.51 A simple
example of receptor-ligand binding, trafficking, and
intracellular signaling reactions for a single agent is
given in Table 1.

Agent-associated reactions are dependent upon the
local concentration of extracellular diffusing molecules
(L) (Eq. (1)). These molecules diffuse and degrade in

the extracellular environment, and are typically de-
scribed by continuum equations. The linked mathe-
matical representation is a diffusion–reaction equation:

@L x; y; tð Þ
@t

¼ Dr2L x; y; tð Þ � kdegL x; y; tð Þ

þ
X

A x;y;Vð Þ
g L;Y1;Y2; . . . ;YR; bð Þð Þ

ð2Þ

where D is the isotropic diffusion coefficient, kdeg is the
extracellular degradation rate constant, and
g L;Y1;Y2; . . . ;YR;bð Þ is the effect agent-associated
reactions (Eq. (1)) on the concentration of extracellu-
lar diffusing molecules.13,51 For instance, secretion of
extracellular ligand or dissociation of ligand from cell
surface receptors will increase the concentration of
extracellular diffusing molecules, while binding will
decrease it. Conversions to correct units are necessary
as agent-associated quantities are usually given on a
per cell basis (e.g., #/cell), while extracellular diffusing
molecules are typically described by concentration in
the extracellular space (e.g., nM) (see Table 1). This
mathematical formulation allows each agent to inter-
act with extracellular diffusing molecules in the envi-
ronment through agent-associated species unique to
each agent, A(x,y,V). This gives the dynamic exchange
of information between differential equation models

FIGURE 2. Mathematical representations of biological processes acting across different spatiotemporal scales. Individual scale
models are combined with exchange of information across scales. (a) An ABM represents tissue and cellular scales (e.g., cell
activation states). (b) Ordinary differential equation models represent molecular scale behaviors associated with cells (e.g.,
receptor-ligand trafficking and intracellular signaling). (c) Partial differential equation models represent molecular scale behaviors
of the environment (e.g., extracellular molecule diffusion). Together these integrated individual scale models form the basis of a
hybrid multi-scale ABM.
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and the ABM, as Eqs. (1) and (2) are dependent upon
both agents and extracellular diffusing molecules.
Agents are moving, interacting, and changing state in
the ABM with a simultaneous and direct interface with
extracellular diffusing molecules. Changes to concen-
trations of extracellular diffusing molecules in the
environment factor into the agent decision-making
processes, while changes in agent-associated reactions
can influence agent states (Fig. 3).

Operator Splitting

We can use temporal operator splitting to decouple
Eq. (2) into simpler and more tractable systems for
numerical solution.16,38,54,59,80,82 Here, we split Eq. (2)
into three equations: (1) extracellular molecule diffu-
sion (operator H1), (2) agent-associated reactions
(operator H2), and (3) extracellular molecule degra-
dation (operator H3). Therefore, Eq. (2) becomes:

@L x; y; tð Þ
@t

¼ Dr2L x; y; tð Þ ¼ H1 ð3Þ

X

A x;y;Vð Þ

dL x;y;tð Þ
dt ¼ g L;Y1;Y2; . . . ;YR; bð Þ

dYr

dt ¼ fr L;Y1;Y2; . . . ;YR; bð Þ r ¼ 1; 2; . . . ;R

ð4Þ

@L x; y; tð Þ
@t

¼ �kdegL x; y; tð Þ ¼ H3 ð5Þ

The agent-associated reactions, fr, (Eq. (1)) and the
effect of agent-associated reactions, g, (Eq. (2)) on the
extracellular diffusing molecule must be solved
together as the equations depend on quantities from
both equations (Eq. (4)). This reduces the problem to
solving a partial differential equation (PDE) (Eq. (3)),
a set of non-linear ordinary differential equations
(ODEs) for each agent (Eq. (4)), and a simple linear

FIGURE 3. Example of how information is exchanged across scales in a hybrid multi-scale ABM. Extracellular molecules in the
environment (with diffusion and degradation described using partial differential equations) interact with agents through agent-
associated reactions (ordinary differential equations). Based on relative levels of agent-associated species (species A, green and
species B, blue) agents make different decisions: (1) if both species A and B are above specified thresholds the agent will die, (2) if
only species A (green) is above the specified threshold the agent will proliferate, (3) if only species B (blue) is above the specified
threshold the agent will change state, (4) if both species A and B are below specified thresholds the agent will be quiescent. Agent
decision logic using thresholds is only one example of how agent-associated reactions can be linked to various dynamics. Other
examples include Poisson processes based on agent-associated quantities and rate of change of agent-associated species.26,28,89

Figure style partially adapted from Ref. 89.
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first order ODE (Eq. (5)). Equation (5) has an ana-
lytical solution:

L x; y; tð Þ ¼ L x; y; t0ð Þe�kdegt ð6Þ

The remaining equations, Eqs. (3) and (4) (such as
those shown in Table 1), can now be solved using
existing numerical methods and discrete time steps.
The overall numerical approximation to Eq. (2) is then
obtained by mathematically combining the solution to
each individual equation (Eqs. (3), (4), and (5)). The
splitting method determines the accuracy of the overall
solution and also determines relative time steps used
for the individual equations.

Lie splitting (also known as first-order splitting) is
the most commonly used method in multi-scale ABMs.
As shown in Fig. 4, the solution to each individual
equation is estimated in sequence using the same time
step (Dt), with the solution of each operator as the
input to the next operator26,38,59:

H1 Dtð Þ ! H2 Dtð Þ ! H3 Dtð Þ � H Dtð Þ ð7Þ

Lie splitting has first order accuracy with solution
error due to splitting of Eq. (2) being proportional to
the discrete time step O(Dt).26,38,59

A simple improvement over Lie splitting is Strang
splitting (Eqs. (8), (9)), shown in Fig. 4, which is sec-
ond order accurate O(Dt2)80:

H2
Dt
2

� �
! H1 Dtð Þ ! H3 Dtð Þð Þ ! H2

Dt
2

� �
� H Dtð Þ

ð8Þ

H2
Dt
2

� �
! H4 Dtð Þ ! H2

Dt
2

� �
� H Dtð Þ ð9Þ

The most computationally intensive operator is
solved using the full time step (Dt), while the less com-
putationally intensive operator is solved using a half
time step (Dt/2). With three operators, two are grouped

together (in this case H1 and H3) and the splitting
method is used on the combined operator (H1 and H3).
The splitting between the H1 and H3 operators remains
Lie splitting. We group the molecular diffusion opera-
tor (H1) and the molecular degradation operator (H3)
together in all further sections and refer to the combined
operator as H4. We advocate the use of Strang splitting
as the increased accuracy provides increased flexibility
in choosing appropriate time steps. We base all further
analysis on implementation of Strang splitting.

While operator splitting makes Eq. (2) easier to
solve, if too large of a time step (Dt) is chosen, one is
essentially considering the system to be mathematically
decoupled. This can lead to non-phenomenological
behavior of the system. Additional operator splitting
techniques have been developed and include higher
order methods such as Yoshida splitting (fourth and
sixth order), Kahan splitting, and Zassenhaus pro-
ducts.21,34,45,94 Although the accuracy of the splitting
method increases with these methods, additional
function evaluations (some requiring steps backwards
in time) make them more complicated approaches.

Model Layers and Discretization

Hybrid multi-scale ABMs are implemented using
multiple super-imposed layers of information.38 We
follow this methodology and describe two layers: an
environment layer and an agent layer. The environment
layer holds information for each extracellular diffusing
molecule (L) and is discretized into grid points of uni-
form spacing, Dx and Dy (Fig. 5). The discretized grid is
described using lattice parameters; i increases in the
x-dimension and j increases in the y-dimension. Thus the
local concentration of an extracellular molecule is given
by Li,j. The agent layer, also a discretized grid, holds
positional information of the agents, providing a
framework for agent movement, behavior, and inter-
action. Agents in the agent layer interact with the envi-
ronment layer at their corresponding positions. We

TABLE 1. Example of agent-associated reactions: receptor–ligand binding, trafficking, and intracellular signaling.

Description Equation

Diffusing molecule— L½ � (M) d L½ �
dt ¼ ksynth � q=NAVð Þ kf L½ � Y1½ � þ kr Y2½ �ð Þ

Free receptor— Y1½ � (#/cell) d Y1½ �
dt ¼ �kf L½ � Y1½ � þ kr Y2½ � þ krec Y3½ �

Bound receptor— Y2½ � (#/cell) d Y2½ �
dt ¼ kf L½ � Y1½ � � kr Y2½ � � kint Y2½ �

Internalized receptor— Y3½ � (#/cell) d Y3½ �
dt ¼ kint Y2½ � � krec Y3½ �

Signaling molecule—½Y4� (#/cell) d Y4½ �
dt ¼ ksig Y3½ � � kdec Y4½ �

Response factor—½Y5� (#/cell) d Y5½ �
dt ¼ kresp Y4½ � � kd Y5½ �

kf, association rate constant (1/M s); kr, dissociation rate constant (1/s); kint, internalization rate constant (1/s); krec, recycling rate constant (1/

s); ksynth, synthesis rate constant (#/cell s); ksig, signaling rate constant (1/s); kdec, signal decay rate constant (1/s); kresp, signal response rate

constant (1/s); kd, response decay rate constant (1/s); q (cells/L), NAV, Avogadro’s constant (#/mol).
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prefer to maintain the same discretization size for both
agent and environment layer, due to the simplicity in
mapping between the two layers. Different discretiza-
tion sizes of the environment and agent layers (Dx, Dy)
have been used in the context of a hybrid multi-scale
ABM but require interpolation between agent and
environment layers.38

Tuneable Resolution

As more agent-associated reactions and species are
included in Eq. (4) (see Table 1), the computational
cost of solving the equations grows. Each additional
reaction or species must be solved for every agent in
the system; in published models the number of agents
ranges from a few hundred to as many as 100,000.
Tuneable resolution is an approach that advocates
reducing the complexity of a system by ‘coarse-grain-
ing’ a detailed model (or aspects of that model) to save
computational resources while preserving key mecha-
nisms and behaviors.49 For instance, an initial and
fairly simple or ‘coarse-grained’ model is developed
and the computational cost associated with solving the
model is acceptable. Spurred by more biological data
or additional questions, a more detailed or ‘fine-
grained’ model containing many more agent-associ-
ated reactions is formulated, but it requires significant
computational resources to solve. For subsequent
biological questions, however, all of the detail of this
‘fine-grained’ model may not be needed. The goal is to
use the ‘fine-grained’ model to build a better ‘coarse-
grained’ model that estimates key mechanisms and
behaviors from the ‘fine-grained’ model while simul-
taneously alleviating computational burdens (and
facilitating model sharing and analysis). For example,

it may be reasonable to assume pseudo steady-state for
some agent-associated reactions or to use an apparent
or lumped rate constant to approximate a set of reac-
tions; sensitivity analysis and consideration of time
scales may aid in these decisions.35,49,55,64

NUMERICAL METHODS FOR PDE

SUB-MODELS

To solve the two-dimensional form of Eq. (3) in
Cartesian coordinates (Eq. (10)) one can utilize either
explicit (the solution at a later time point can directly
be computed from the current state of the system) or
implicit (the solution at a later time point is calculated
from both the current state of the system and the
solution at the later time point) methods.

@L x; y; tð Þ
@t

¼ D
@2L x; y; tð Þ

@x2
þ @

2L x; y; tð Þ
@y2

� �
ð10Þ

As explicit methods are more straightforward and
also do not require linear algebra solvers, these methods
are relatively easy to incorporate into a hybrid multi-
scale ABM. Thus, we describe the basis and central
features of three explicit methods: Forward-Time Cen-
tral-Space, Alternating-Direction Explicit, and Spectral.

Forward-Time Central-Space Method

The simplest and most frequently used numerical
method for solving diffusion equations in the context of
a hybrid multi-scale ABM is the forward-time central-
space (FTCS) approximation.9,26,38 FTCS is an explicit
method (the concentration at the next time step can be
directly calculated from concentrations at the current

FIGURE 4. Operator splitting algorithms. The top panel represents Lie Splitting, where each operator (H1, H2, and H3) is advanced
in time one after the other. The bottom panel represents Strang splitting, where one operator (H2) is advanced halfway in time,
followed by the other operators being advanced all the way in time (H1 and H3), and then the first operator (H2) is advanced another
half-step in time.
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time step) that uses a first order forward approximation
of the time derivative and a second order central dif-
ference approximation of the spatial derivatives.9,66

FTCS requires the discretized grid concentrations (Li,j)
in the environment layer to be stored for both the cur-
rent time point (t) and the next time point (t + Dt).
Insulating boundary conditions are applied by ensuring
the flux across the boundary is zero, while Dirichlet
boundary conditions are applied by setting the appro-
priate concentration at the boundary.

The FTCS method is O(Dt) accurate in time and
O(Dx2, Dy2) in space, while the computational cost is
O(n2) per time step. The FTCS method is numerically
stable only if the following criterion is met:

DDt
1

Dx2
þ 1

Dy2

� �
� 1

2
ð11Þ

Therefore, the time step is directly dependent upon
the diffusivity of the extracellular molecule in the envi-
ronment (e.g., larger diffusivities mean lower time steps).

Alternating-Direction Explicit Method

The alternating-direction explicit (ADE) numerical
method is an extension of the FTCS method built upon
the Peaceman–Rachford alternating direction con-
cept.9,62 Let both ui,j and vi,j be finite difference
approximations of the extracellular molecule concen-
tration, L(x,y,t).

utþDt
i;j �uti;j

Dt
¼D

utiþ1;j�uti;jþutþDt
i�1;j�utþDt

i;j

Dx2
þ
uti;jþ1�uti;jþutþDt

i;j�1�utþDt
i;j

Dy2

 !

ð12Þ

vtþDt
i;j � vti;j

Dt
¼D

vtþDt
iþ1;j� vtþDt

i;j þþvti�1;j� vti;j

Dx2
þ
vtþDt
i;jþ1� vtþDt

i;j þ vti;j�1� vti;j

Dy2

 !

ð13Þ

In the case of u, iteration proceeds in both the for-
ward i and j directions. Thus, the values in Eq. (12) of
utþDt
i�1;j and utþDt

i;j�1 are known from previous calculations
when iterating forward through the grid. In the case of
v, iteration proceeds in the reverse i and j directions
(i.e., iterating backwards through the grid). Thus, the
values in Eq. (13) at vtþDt

iþ1;j and vtþDt
i;jþ1 are known from

previous calculations when iterating backwards
through the grid. Boundary conditions are set in the
same manner as the FTCS method. The extracellular
molecule concentration at the next time point, LtþDt

i;j , is
calculated by averaging vtþDt

i;j and utþDt
i;j . The ADE

method requires values to be stored for ui,j, vi,j, and Li,j

for both the current time point (t) and the next time
point (t + Dt) in the environment layer.

The ADE method is O(Dt2) accurate in time and
O(Dx2, Dy2) in space, i.e., it is more accurate than the
FTCS method, but the computational cost remains
O(n2) per time step. Furthermore, the ADE method is
an explicit method that is unconditionally numerically
stable (typically seen with implicit methods), which
does not place a restriction on Dt.9 Thus, Dt can be
chosen based solely on the accuracy of the solution
needed. A maximum Dt of approximately 4–6 times the
Dt predicted by the conditional stability criterion of the
FTCS method (Eq. (11)) can be used for the ADE
method while maintaining acceptable accuracy.9,18

Spectral Methods—Discrete Sine and Cosine
Transforms

Spectral methods solve PDEs by assuming the
solution is a sum of basis functions and choosing basis
coefficients in order to best satisfy the solution.19,31,85

Spectral methods reduce PDEs to ODEs, greatly
diminishing the difficulty of computation.60 The

FIGURE 5. Model layers and discretization. Implementation of multiple layers holding different types of information (extracellular
molecule concentration, L) discretized into grid of spacing Dx and Dy represented by i,j coordinates. (a) The environment layer
represents the extracellular space of the hybrid ABM and holds extracellular molecule concentrations. (b) The agent layer holds
positional information of agents. Agents in the agent layer interact with the environment layer at their corresponding positions.
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two-dimensional discrete sine transform (DST) and
discrete cosine transform (DCT) are defined as:

Lt
i;j ¼

XM�1

k¼0

XN�1

l¼0

�Ak;l sin
p

Mþ 1
kþ 1ð Þ iþ 1ð Þ

� �

sin
p

Nþ 1
lþ 1ð Þ jþ 1ð Þ

� � ð14Þ

Lt
i;j ¼

XM�1

k¼0

XN�1

l¼0

�Ak;l cos
p

M� 1
kð Þ ið Þ

� �
cos

p
N� 1

lð Þ jð Þ
� �

ð15Þ

where k and l are the spectrally transformed i and j
discretization, M and N are the lengths of k and l, and
�Ak;l are the spectral coefficients. The DST is an even-
valued function at k = �1, k = M, l = �1, and
l = N which naturally applies a Dirichlet boundary
condition (constant zero concentration). The DCT is
an odd-valued function at k = �1, k = M, l = �1,
and l = N which naturally applies a Neumann
boundary condition (insulating).

The appropriate transform (depending on the
boundary condition for the modeled situation) is
applied to Eq. (10) and the resulting ODE is solved
analytically, given below.19

�AtþDt
k;l ¼ �At

k;le
�Pi;jDt ð16Þ

In the case of the DST (Eq. (17)) and DCT
(Eq. (18)):

Pi;j ¼
2D

DxDy
2� cos

p iþ 1ð Þ
Mþ 1

� �
þ cos

p jþ 1ð Þ
Nþ 1

� �� �� �

ð17Þ

Pi;j ¼
2D

DxDy
2� cos

p ið Þ
M� 1

� �
þ cos

p jð Þ
N� 1

� �� �� �

ð18Þ

Pi,j is invariant and can be calculated from the dis-
cretization of the simulation space and the diffusion
coefficient of the extracellular molecule. The spectral
coefficients �At

k;l can be determined using a Fast Fourier
Transform (FFT) and advanced forward in time using
Eq. (16). The spectral coefficients �AtþDt

k;l can be converted
back intoextracellularmolecule concentrations (Li,j) using
an inverse Fast Fourier Transform (FFT).25 The FFTw
library provides a simple C ++ interface for computing
spectral coefficients and their inverses.19,33 Using FFTw
algorithms the computational cost for the forward and
inverseFFTsareO(n logn), howevermultiplicationof �At

k;l

withPi,j isO(n3) per time step.33Therefore, the overall cost
of the spectral method is dominated by the multiplication
cost of O(n3) per time step.

Spectral methods require the extracellular molecule
concentrations to be stored at (t) and (t + Dt) in the
environment layer. Stability requirements are typically
determined by examining the solution with different
combinations of time step and discretization size.19,31

The accuracy of spectral methods is difficult to relate
to O notation, but numerical errors tend to decay
exponentially leading to much greater accuracy than
purely finite difference methods.19,31,85 However,
spectral methods have difficulty handling discontinu-
ities or shock-like behaviors in input matrices and
produce artifacts (or aliasing) at jump discontinuities,
known as the ‘Gibb’s Phenomenon’.19,37,85 As the in-
put concentration field into spectral methods can be
fairly discontinuous a technique known as smoothing
(or anti-aliasing) is applied to alleviate these issues.43

The most common smoothing method is the ‘2/3’ rule,
yet its computational cost can be large.43 We have
successfully implemented a simple smoothing method
in hybrid multi-scale ABMs by using the FTCS
method presented above.64 We take between 2 and 5
FTCS algorithm steps before solving Eq. (10) using
spectral methods. The number of FTCS steps is esti-
mated by comparing the differences in the concentra-
tion field solution from a different method (e.g., FTCS
or ADE) to the smoothed spectral method concentra-
tion field solution.

Other Available Numerical Methods

Implicit and semi-implicit algorithms (e.g., Crank–
Nicholson) have also been used in hybrid multi-scale
ABMs due to their stability characteristics.32,92,95

While increased stability allows for larger time steps,
the need to assemble and determine a Jacobian matrix
along with incorporating linear algebra solvers for
systems of equations can be a complex task. Many
libraries are available (e.g., LAPACK, LINPACK,
PETSc, and GSL), but adapting existing code to li-
braries can be difficult. In the context of building a new
hybrid multi-scale ABM or extending an existing
ABM, in our experience it is much easier to use explicit
schemas. Other advancements in solving PDEs are the
multigrid and discrete wavelet transform (DWT)
methods. The multigrid method has been demon-
strated in the context of hybrid multi-scale
ABMs.46,91,92 Implementation of the algorithm with-
out libraries could be challenging, and available li-
braries (PETSc, Dune, Trilinos, FETK) may be
difficult to interface with existing code. The DWT
captures information in both the frequency and time
domain, unlike the DCT and DST which capture only
frequency information.23 Thus, the DWT can handle
local discontinuities better than spectral methods
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while still using similar methods to compute wavelet
coefficients at an O (n log n) or even O(n) computational
cost. DWTs are still relatively new and have yet to be
applied in the context of a hybrid multi-scale ABM.
Additionally, only limited libraries exist presenting a
barrier to efficient usage.Weare currently evaluating the
possible benefits of both the multigrid and DWT algo-
rithms in the context of solving extracellular molecule
diffusion in hybrid multi-scale ABMs.

NUMERICAL METHODS FOR ODE

SUB-MODELS

Equation (4) is a description of any agent-associ-
ated reactions and must be solved for each agent in the
simulation. For ease of explanation we present the
numerical methods in the context of a single agent in
vector notation (Eq. (19)):

d~Y

dt
¼ f L; ~Y;b

*
� �

ð19Þ

Forward Euler

The simplest and easiest algorithm to implement is
the forward Euler (FE) method, which uses a forward
finite difference estimation of the first order derivative
in Eq. (19).66 FE is an explicit method and only
requires the concentrations of each species at the cur-
rent time point (t) and an estimate of the derivative at
the current time point. FE is O(Dt) accurate in time
and its computational cost is O(n) per time step. The
FE method is conditionally stable and is numerically
unstable for stiff equations and large time steps. The
criteria for numerical stability of the solution of a set
of linear ODEs is given by:

1þ kDtj j<1 ð20Þ

where k is the set of eigenvalues for the system.72 For
non-linear systems of ODEs (as in Table 1) the equa-
tions can be linearized and the behavior of the linearized
system analyzed for stability, giving an approximate
local stability criteria for the non-linear system.52 In
practice this can be difficult for large systems of ODEs,
and hence the stability limit for a particular set of ODEs
is typically determined by trial-and-error.69 Numerical
stability requirements of the FE method in no way
guarantee accuracy of the solution.

FOURTH ORDER RUNGE–KUTTA

Runge–Kutta methods use higher-order terms from
the Taylor-series expansion of the first derivative. The

higher order terms are evaluated at distinct points and
subsequently combined to give a better approximation
to the first derivative.66,72 Most commonly used is the
fourth order Runge–Kutta (RK4) method that
requires concentrations of each species at the current
time point (t) along with four estimates of the deriva-
tive. The RK4 method is O(Dt4) accurate in time, a
significant improvement on the FE method. The
computational cost of RK4 remains O(n) per time step
and is a conditionally stable method. The criteria for
numerical stability of linear ODEs is shown below,
where k is the set of eigenvalues for the system52:

1þ kDtð Þ þ 1

2
kDtð Þ2þ 1

6
kDtð Þ3þ 1

24
kDtð Þ4<1 ð21Þ

As mentioned above, biological systems are in
general non-linear; therefore in practice the stability
limit is again determined by trial-and-error.69

Other Available Numerical Methods

A simple extension of the RK4 method is an adap-
tive step size Runge–Kutta method, known as
RK4-5.66,77,78,96 This method determines the necessary
time step for a given accuracy on-the-fly based on esti-
mates of local error by calculating both the fourth order
and fifth order Runge–Kutta solutions. The additional
computational cost in calculating both fourth and fifth
order solutions, estimating error, and determining the
correct time step could be outweighed by significantly
larger time steps. Implicit algorithms for solving ODEs
can also be used.16,32,41,58,59,61,92 Similar to PDE algo-
rithms, implicit algorithms require determining a Jaco-
bian matrix and implementation of linear algebra
solvers. Considering the large number of agents per
simulation (anywhere from 100 to 100,000 s), assembly
and solution of the Jacobian matrix can be an over-
whelming task. Recently, some have suggested the use
of in situ adaptive tabulation (ISAT) to minimize the
number of numerical method calls.15,22,39,40,65,75 ISAT
functions by tabulating existing solutions and deter-
mining appropriate regions of solution space where use
of existing solutions or simple interpolation can accu-
rately represent the solution without ever calling the
numerical method.65,75 ISAT has not been demon-
strated in the context of hybrid multi-scale ABMs but
the theoretical reduction in computational cost is
enticing. Lastly, many external programs and frame-
works for solving systems of ODEs, such as MATLAB,
COPASI, and CVODE,1,22,42,81,87 exist and could be
linked to a hybrid multi-scale ABM. In our experience
linking external programs to existing code can be diffi-
cult and may confer a large computational cost associ-
ated with module communication.

CILFONE et al.128



SYNCING NUMERICAL METHODS IN HYBRID

MULTI-SCALE ABMS

It is critical to maintain sync points where differing
time steps used to solve the PDEs, ODEs, and ABM
are reconciled, thus linking the mathematics,
exchanging information across scales, and allowing the
model to correctly proceed forward in time. A chal-
lenge of hybrid multi-scale ABMs is to determine the
largest time step for each numerical method that
maintains easily identifiable sync points. For instance,
a numerical method that solves extracellular molecule
diffusion with a large time step requires fewer sync
points with the agent-associated reactions (Fig. 6a)
than a numerical method that solves extracellular
molecule diffusion with a smaller time steps (Fig. 6b).
A simple procedure for determining time steps that
maintain sync points is given below. We assume Strang
splitting and a previously determined time step for the
ABM, Dtagent:

1. Estimate the maximum time step to solve the
extracellular molecule diffusion and degradation
(H4) for the chosen numerical method. A good
starting point for all numerical methods is Eq. (11).
Reduce the estimated time step to a number divis-
ible by Dtagent for syncing and set this value as Dtpde.

2. Estimate the maximum time step, Dtode, to solve the
ODE model of agent-associated reactions (H2) for
the chosen numerical method. This can be accom-
plished by linearizing the equations and using
Eq. (20) or Eq. (21) or by using trial-and-error in a
‘test-bed’ environment such as a standalone imple-
mentation of the numerical method in C++ or
MATLAB (The Mathworks Inc.—Natick, MA).
Frequently, the maximal time step for numerical
accuracy and stability will be significantly smaller
than Dtpde/2. Choose Dtode such that stability and
accuracy requirements are satisfied. Additionally
reduce Dtode to a number that is evenly divisible by
Dtpde/2 for syncing.

3. Using the estimated time steps (Dtagent, Dtpde, and
Dtode) solve the hybrid ABM.

4. Reduce all time steps by a factor of 2 and re-solve
the system.

5. Compare the model solutions. If the solutions are
inconsistent the time steps are too large. Reduce all
time steps (Dtpde and Dtode) and re-verify that each
is able to ‘sync’. Repeat steps 3–5 until the model
solutions are within the desired tolerance.

A full hybrid multi-scale ABM algorithm is shown
in Fig. 7 and includes: the agent time step, Dtagent
(agents move, change state, etc.), the ODE time step,
Dtode (agent-associated reactions), and the PDE time
step, Dtpde (diffusion and degradation). Although not

the focus of this review, we note that successfully
linking and solving a hybrid multi-scale ABM does not
of course guarantee fidelity to data or its usefulness.
Extensive model validation and testing are necessary
using methods such as uncertainty and sensitivity
analysis or non-linear least squares56; individual scale
models may function differently in the context of the
integrated model. Examples of model validation can be
found in particular applications8,18,44 and a broader
discussion of some points can be found in Refs. 44,49.

CASE STUDY: AN EXAMPLE HYBRID

MULTI-SCALE ABM

Choosing numerical methods that maintain com-
putational tractability of a hybrid multi-scale ABM is
essential. Considerations affecting the choice of
numerical methods include: number of agents, number
of agent-associated reactions, and model dimension-
ality (i.e., 2D or 3D). In addition, uncertainty and
sensitivity analysis is commonly used to understand
how variations in parameter values affect model results
and necessitates large numbers of model simulations
(~103).56 In practice, hybrid multi-scale ABMs that
require over a day to run severely limit model useful-
ness.

As a case study of the application of numerical
methods described above, we ran comparison simula-
tions with a hybrid multi-scale ABM ofM. tuberculosis
infection discussed earlier18,26,28,64 (Tables 2 and 3).
Depending on the computational environment (i.e.,
computing cluster vs. laptop) and the processes mod-
eled (e.g., number of extracellular diffusing molecules
modeled on a continuum scale) the computational cost
will vary greatly. However, this case study functions to
illustrate the principles presented above and demon-
strate the trade-offs between complexity of numerical
algorithms (and implementation) and computational
cost. The hybrid multi-scale ABM is constructed using
the C++ programming language, Boost libraries
(distributed under the Boost Software License—
www.boost.org), FFTw libraries (distributed under
GPL—www.fftw.org), and the Qt framework for
visualization (distributed under GPL—www.qt.
digia.com). The ABM is cross-platform (Macintosh,
Windows, Unix) and can be run with or without our
visualization software. Simulations were performed on
the Flux high performance computing cluster, pro-
vided by Advanced Research Computing at the
University of Michigan (http://goo.gl/WQIyCX).
Computational accuracy was assessed by comparing
output generated with different numerical methods,
different platforms, and over different model resolu-
tions. We also test individual sub-models for numerical
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convergence outside of the multi-scale model (e.g.,
solving the ODEs or PDEs in MATLAB). However,
methods to validate numerical convergence inside hy-
brid multi-scale ABMs need to be developed.

In Case Study 1 (see Table 2), we simulate 100 days
of the immune response following an initial infection
with M. tuberculosis. Diffusion and degradation of
three extracellular molecules (two cytokines and one
chemokine) are tracked, and thirteen agent-associated
differential equations describe receptor-ligand binding,
trafficking and signaling of TNF and IL-10.18 Extra-
cellular molecule diffusivities are ~10�8 cm2/sec for
cytokines and chemokines. In Case Study 2 (see Ta-
ble 3), we simulate 50 days of the immune response
following an initial infection with M. tuberculosis plus
an additional 50 days of antibiotic treatment.64 Dif-
fusion and degradation of five extracellular molecules
(two cytokines, one chemokine, and two antibiotics)
are tracked, and thirteen agent-associated differential
equations describe receptor-ligand binding, trafficking
and signaling of TNF and IL-10. In addition, the
model in Case Study 2 tracks the effects of antibiotics
against bacteria. Extracellular molecule diffusivities for
these antibiotics are ~10�7–10�6 cm2/s. As antibiotics
diffuse much faster through tissue than cytokines and

chemokines (they are much smaller molecules), smaller
time steps must be used in the numerical methods.

We show relative computational speeds for both a
100 9 100 (4 mm2) and 200 9 200 (16 mm2) simula-
tion grid. Model discretization length (Dx, Dy) of the
environment and agent layers is 20 lm. For the larger
grid, the number of calculations is increased due to
~2-fold more agents (the number of agents present is
not an input to the simulations but rather is generated
from the stochastic nature of the simulations) and
4-fold more simulation space. Additionally, we
employed a tuneable resolution approach (assuming a
pseudo steady state for multiple reactions and using
apparent rate constants) to reduce the thirteen agent-
associated differential equations to two agent-associ-
ated differential equations.64 For both Case Studies 1
and 2, we show the mean computational time from 3
simulations for each of the 38 different combinations
of numerical methods (including tuneable resolution).
Tables 2 and 3 depict fold-changes in computational
speed normalized to the slowest value for the specific
grid size (i.e., higher values indicate shorter computa-
tion times). The standard deviations for simulations
range from ±1 to 30% of the mean computational
time.

FIGURE 6. Syncing time steps across hybrid multi-scale ABMs. Example of two different combinations of time steps for extra-
cellular molecule diffusion and agent-associated reactions. (a) A large time step for extracellular molecule diffusion requires few
sync points with the agent-associated reactions. (b) A small time step for extracellular molecule diffusion requires many sync
points with the agent-associated reactions.
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Our results in Tables 2 and 3 demonstrate that
implementation of appropriate numerical methods and
time steps can dramatically improve overall computa-
tional speed in hybrid multi-scale ABMs. Moving to
more sophisticated numerical methods for solution
both ODEs and PDEs increases computational speed
by up to 5-fold in Case Study 1 or 25-fold in Case
Study 2 (Tables 2 and 3). The benefits of a tuneable

resolution approach are easily observed, with an
additional 2-fold to 5-fold increase in the computa-
tional speed beyond increases due to choice of
numerical method (Tables 2 and 3). Although Case
Study 1 does benefit from spectral methods, the dif-
fusion time step cannot be increased (beyond ~ 120 s)
as the mathematics begin to decouple at larger time
steps (see ‘‘Operator Splitting’’ section). The diffusion
time steps used in Case Study 2 are restricted to smaller
values as antibiotics diffuse much faster than cytokines
and chemokines in the environment. With these
restrictions on diffusion time steps, decoupling is less
of a concern in Case Study 2 and spectral methods are
more advantageous than in Case Study 1. In both Case
Studies a combination of tuneable resolution and
spectral methods increases computational speeds more
than 20-fold.

There are caveats to implementation of faster and
more efficient numerical algorithms in the context of
hybrid multi-scale ABMs. Increasing the efficiency of
solving one operator (Eqs. (3)–(5)) is eventually limited
by the efficiency of solving a different operator. For
instance, implementing a spectral-based algorithm for
solving the diffusion operator is of limited benefit if the
agent-associated reactions (ODEs) are solved using a
Forward Euler-based methodology (Table 2). Thus,
improvements in one operator must also be thought of
in the context of another operator, leading to a con-
stant cycle of re-evaluation and implementation of
numerical solvers.

Another critical aspect of solving hybrid multi-scale
ABMs is the importance of correctly choosing algo-
rithms with compatible time steps. The benefit of
implementing a different numerical algorithm can be
reduced if the algorithm cannot take sufficiently large
time steps due to limitations of another numerical
algorithm. For instance, in Case Study 2 using the
RK4 algorithm to solve the agent-associated reactions
could theoretically allow time steps upwards of 5-10 s.
However, due to faster tissue diffusivity values of
antibiotics (~10-fold higher than cytokines and che-
mokines) if we use the FTCS algorithm to solve
extracellular molecule diffusion, it limits use of larger
time steps in the RK4 algorithm (Table 3).

Lastly, it is important to understand the computa-
tional costs associated with expanding the size of a
model. In our Case Study, transitioning from a
100 9 100 to a 200 9 200 simulation grid reduces the
computational speed ~7-fold. We have also expanded
the example hybrid multi-scale ABM to 3-dimensions
(100 9 100 grid to 100 9 100 9 100 grid), which re-
duced the computational speed ~42-fold. Without a
priori knowledge of the factors that contribute to
computational costs, hybrid multi-scale ABMs may
become too bulky or inefficient to provide novel

FIGURE 7. Diagram of a solution algorithm for a hybrid
multi-scale agent-based. (1) Update agents (movement,
states, proliferation, etc.). (2) Solve a single time step (Dtode)
for agent-associated reactions (H2). Increment a counter N. (3)
If the total time step (N 3 Dtode) is equal to (Dtpde/2) then move
on to extracellular molecule diffusion and degradation. If not,
take another single time step for agent-associated reactions
(H2) and check again. (4) Solve a single time step (Dtpde) for
extracellular molecule diffusion and degradation. Increment a
counter M. (5) Solve a single time step (Dtode) for agent-
associated reactions (H2). Increment a counter N. (6) If the
total time step (N 3 Dtode) is equal to (Dtpde/2) move on to the
final check. If not, take another single time step for agent-
associated reactions (H2) and check again. (7) If the total time
step (M 3 Dtpde) is equal to (Dtagent) then a full time step has
been completed. Continue by updating agents as indicated in
(1). If not, continue solving with step (2).
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insights into the complex biological systems they
represent.

DISCUSSION

Multi-scale models aim to replicate fundamental
behaviors of biological systems, with constant
exchange of information across scales, in order to
better understand and predict system behavior as a
whole. Coupling individual scale models, such as an
ABM and differential equation models, to allow for the
exchange of information, is typically accomplished by
linking mathematical formulations across each scale.
Thus, tools to link individual scale models and efficient
methods of solving the subsequent linked models are
important to advance the use of hybrid multi-scale
ABMs in generating new biological knowledge from
the wealth of available data.

Here, we describe the general framework for linking
ABMs and differential equation models and solving
the resulting hybrid multi-scale model, including lay-
ers, discretization, and operator splitting. The frame-
work is extendable to different levels of model detail
and adaptable to the focus and needs of the problem

(e.g., inclusion of antibiotic treatment in an infection
model, or moving from two to three dimensions). We
review three numerical algorithms for solving
extracellular molecule diffusion and two numerical
algorithms for solving individual agent-associated
reactions. Additionally, we demonstrate the merits of a
tuneable resolution approach to reduce the complexity
of a system and limit computational cost.49 We show
how an appropriate choice of numerical algorithms
and time steps can improve the computational tracta-
bility and efficiency of a hybrid multi-scale ABM. The
most important factors in choosing these algorithms
are: (1) familiarity with the underlying mathematics,
(2) an understanding of relative process rates, and (3)
computational resources such as time and power that
are available. If unfamiliar with numerical methods, it
is easier to implement an algorithm built around sim-
ple mathematical concepts, such as FTCS for solving
extracellular molecule diffusion, than to start with a
more mathematically sophisticated algorithm. As the
user becomes comfortable with simpler implementa-
tions, more complex algorithms tend to build on sim-
pler concepts in an incremental fashion. Second, it is
necessary to have a basic understanding of relative
rates (e.g., rates of diffusion compared to rates of

TABLE 3. Relative computational speeds for Case Study 2.

PDE numerical method

100 9 100 simulation grid~5000 agents 200 9 200 simulation grid~10,000 agents

ODE numerical method ODE numerical method

FE RK4 TR FE RK4 TR

FTCS (0.6/0.6) 1.4 (0.6/0.6) 1.0 (0.6/0.6) 1.5* (0.6/0.6) 1.4 (0.6/0.6) 1.0 (0.6/0.6) 1.2

ADE (3.0/0.6) 2.8* (3.0/3.0) 3.2* (3.0/3.0) 3.6* (3.0/0.6) 3.1* (3.0/3.0) 4.0* (3.0/3.0) 4.9*

SM (60/0.6) 6.8* (60/6.0) 15.8* (60/6.0) 43.8* (60/0.6) 8.3* (60/6.0) 26.3* (60/6.0) 63.5*

(xx/xx) fi (Soluble molecule diffusion time step/agent-associated reactions time step).

FTCS, forward time central space; ADE, alternating direction explicit; SM, spectral method; FE, forward Euler; RK4, Runge-Kutta fourth

Order; TR, tuneable resolution.

N = 3 for all simulations. * indicates p < 0.05 based on students t test. SD is ±1–35% of mean computational time.

100 9 100—Relative Speed of 1.0 corresponds to 26,968 s of simulation time.

200 9 200—Relative Speed of 1.0 corresponds to 259,150 s of simulation time.

TABLE 2. Relative computational speeds for Case Study 1.

PDE numerical method

100 9 100 simulation grid~5000 agents 200 9 200 simulation grid~10,000 agents

ODE numerical method ODE numerical method

FE (Dt = 0.6 s) RK4 (Dt = 6 s) TR (Dt = 6 s) FE (Dt = 0.6 s) RK4 (Dt = 6 s) TR (Dt = 6 s)

FTCS (Dt = 6 s) 1.0 2.3 4.6* 1.0 2.6* 5.4*

ADE (Dt = 30 s) 1.8 4.3* 12.8* 1.2 3.9* 7.7*

SM (Dt = 120 s) 1.8 5.5* 22.7* 1.2 5.2* 23.6*

FTCS, forward time central space; ADE, alternating direction explicit; SM, spectral method; FE, forward Euler; RK4, Runge–Kutta fourth

Order; TR, tuneable resolution.

N = 3 for all simulations. * indicates p < 0.05 based on students t test. SD is ±1–35% of mean computational time.

100 9 100—Relative Speed of 1.0 corresponds to 7589 s of simulation time.

200 9 200—Relative Speed of 1.0 corresponds to 46,907 s of simulation time.
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agent-associated reactions) in order to determine
whether solution of a hybrid multi-scale ABM will
benefit from a particular numerical algorithm. For
instance, a small molecule drug diffuses through tissue
much faster than a extracellular protein molecule (such
as a cytokine) so implementing a method that solves
the agent-associated reactions with a time step larger
than the time step required for solving diffusion of the
drug through tissue has limited benefits as the diffusive
rate restricts the overall time step (Table 3). Lastly, it is
important to note that the extent of computational
resources available such as power and computational
time needed for each model, as new numerical methods
can have diminishing returns. For instance, running a
sensitivity analysis requires a large number of model
simulations (e.g., thousands of simulations). Therefore,
implementing a new numerical method for aspects of a
model will have more benefits in this case as compared
to single simulations.

At present, ABM platforms and languages such as
NetLogo or SPARK do not accommodate the frame-
work described in this manuscript to develop a hybrid
multi-scale ABM. While in principle one can link those
platforms with other platforms, e.g., MATLAB for
solving ODEs, in practice we have found this difficult,
if not impossible, for our models. This is largely due to
communication between software packages slowing
down the models to the point of uselessness. Platforms
such as CHASTE are making advances towards
re-usable and non-specific hybrid multi-scale ABMs
(e.g., the code is able to model both cardiac tissue and
crypt formation); however, there is no ‘one-size fits all’
platform that is flexible enough for a user to easily
develop a hybrid multi-scale ABM.29,83 Therefore, a
short-term solution may be stripping away the bio-
logical system/disease state-specific portions of models
and publishing a baseline mathematical framework for
a hybrid multi-scale ABM that can be modified by the
user to suit a particular application. Although not ideal
this would speed up development of hybrid multi-scale
ABMs and also lower the barrier to creation of new
models by inexperienced users. Issues of model mod-
ularity and reproducibility are of great interest to the
multi-scale biological modeling community (see the
Interagency Modeling and Analysis Group website at
http://www.imagwiki.nibib.nih.gov) and may spur the
development of more user-friendly packages.63

Multi-scale models are becoming a more prevalent
tool to understand systems-level biological phenom-
ena. Modeling efforts are driving biological research
from a descriptive field to a predictive field, especially
in the context of pharmaceutical research. The ability
to unify genomic, proteomic, metabolomics data using
modeling constructs is an emerging technique to
facilitate new drug-development and discovery along

with new ways to re-purpose old drugs.12,47,53,58

Modeling approaches can predict new therapeutic
targets by identifying key mechanisms of disease
pathology, rapidly assess efficacy and toxicity of new
drugs, or rapidly optimize drug concentrations and
dosing schedules. We are only beginning to develop
computational models capable of performing these
studies. As more biological data are integrated into
models and their complexity grows, efficient imple-
mentation of hybrid multi-scale ABMs becoming
increasingly important. In this work, we demonstrate a
framework and suggest tools that allow for efficient
implementation of hybrid multi-scale ABMs to help
guide the choice and development of both new model
creation and existing platforms.
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