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Abstract—Cell motility is a fundamental physiological pro-
cess that regulates cellular fate in healthy and diseased
systems. Cells cultured in 3D environments often exhibit
biphasic dependence of migration speed with cell adhesion.
Much is not understood about this very common behavior. A
phenomenological model for 3D single-cell migration that
exhibits biphasic behavior and highlights the important role
of steric hindrance is developed and studied analytically.
Changes in the biphasic behavior in the presence of prote-
olytic enzymes are investigated. Our methods produce a
framework to determine analytic formulae for the mean cell
speed, allowing general statements in terms of parameters to
be explored, which will be useful when interpreting future
experimental results. Our formula for mean cell speed as a
function of ligand concentration generalizes and extends
previous computational models that have shown good
agreement with in vitro experiments.
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INTRODUCTION

Cell migration is a fundamental physiological pro-
cess exhibited by nearly all cells in vitro and in vivo. Cell
migration plays an important role in many biological
processes and none more so than during tumour
metastasis where single cells and clusters of cells
undergo epithelial mesenchymal transition (EMT) and
move away from the main tumour to establish sec-
ondary tumours in other parts of the body.28 There-
fore, understanding single-cell and collective cell
migration is an important area of study.

Early experiments andmodels have focused on single
cell migration in vitro in 2D environments.8,9,16,19,20,23

More recent work, and perhaps more relevant, has been

on understanding cellmigration in vitro in 3Dand in vivo
environments.6,12,22,25,27,37,38 Migration of a cell in vivo
(3Dmigration) requires the cell not just tomove across a
substratum (2D migration), but to navigate its way
through extracellular matrix (ECM) which can have
pore sizes comparable to or smaller than the diameter of
a cell. Therefore the issue of steric hindrance seems to be
important in any model of three-dimensional cell
motility in vivo.

The most commonly used metric to quantify cellular
motion is the speed of a cell tracked over time. The
speed of a cell migrating through a complex environ-
ment is highly dependent on how the cell adapts to and
interacts with its complex surroundings. Key factors
involved in in vivo migration include interactions
between a cell and the matrix (through receptors called
integrins) and the ability of cells to overcome steric
resistance using proteolytic enzymes (the largest class
of which is the matrix metalloproteases (MMPs)).10,21

Cell speed, as a function of density of available
ligands or cell adhesion receptors, often exhibits a
biphasic behavior:22,27,38 cells cultured across different
adhesive environments display speeds that are low for
low adhesion (ligand concentration), increase as
adhesion increases, attain a maximum, and then
decrease as adhesion increases further. While experi-
mental and computational studies have addressed
some key aspects of cellular motion in 2D and 3D
environments,7,12,20,22,27,37,38 a number of fundamental
questions remain unanswered. How do MMPs and
steric hindrances affect the ability of a cell to achieve
biphasic speed? Is cell migration inherently biphasic? Is
the maximum cell speed higher if the cell can produce
MMPs or is the maximum speed achieved at lower or
higher ligand concentrations?

We present a phenomenological model of a cell
moving through a 3D environment, over a single time-
averaged cell motility cycle involving protrusion,
adhesion and detachment. Although the model is
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phenomenological, it represents key physical mecha-
nisms in a quantifiable way. The model can be inves-
tigated analytically, in the sense that its predictions can
be extracted without recourse to simulation. Further-
more, as relevant future experimental evidence emer-
ges, it will be possible to adjust the simple but natural
functional relationships on which the model is based to
match more closely biological data.

By considering the force balance over the
cycle,5,12,33,34,37 we determine the velocity of a cell as a
function of the ECM ligand density, consistent with
experimental data.22,27,38 To study our model system-
atically, MMP activity is at first ignored; an extended
version of the model then includes MMP activity and
its effect on the forces on the cell. Changes in the
nature of the biphasic behavior of the cell are investi-
gated in the presence of MMPs. Our methods produce
a framework for deriving an analytic formula for the
mean cell speed, allowing general statements in terms
of parameters to be explored and assisting in the
interpreting of future experimental results.

In contrast, previous work5,12,33,34,37 was confined
to numerical simulations, for specific parameter values.
We compare our analytical model to the results of
simulation methods where cell migration speed is
tracked over time in a degrading environment, where
the ECM properties are given as functions of time. We
show that our analytical formulae for mean cell speed
as a function of ligand concentration matches the re-
sults of the simulated data from this computational
model. Consequently, our analytic approach general-
izes and extends previous computational models that
have shown good agreement with in vitro experiments,
enables all parameter regimes to be explored, and al-
lows general conclusions to be drawn.

MODEL FORMULATION FOR SINGLE CELL

MOTILITY

A phenomenological model of a cell moving
through a 3D environment, over a single time-averaged
cell motility cycle involving protrusion, adhesion and
detachment is considered here. The environment is
made up of ECM, which contains binding ligands. A
cell moving in such an environment has cell receptors
(integrins) on the cell membrane, which allow the
receptor and ligand to bind, allowing the cell to move
in the 3D environment (Fig. 1).

We assume that a cell migrating in an ECM with a
concentration L of binding ligands, is in mechanical
equilibrium and the forces acting on a cell during one
protrusion, adhesion and detachment cycle determine
the cell’s velocity v(L) during that cycle and are gov-
erned by the force balance equation

Ftotal ¼ Fprot þ Ftrac þ Fdrag ¼ 0: ð1Þ

During the cycle, none of the three forces that con-
tribute to the total force will be precisely constant and
the equation of motion is interpreted here as having
been averaged over the cycle.

We assume that the cell has a fixed number of
receptors N = nf + nb and that the cell is polarized,
so that its surface receptors are asymmetrically dis-
tributed between front (nf) and the back (nb) of the cell,
where by definition nf>nb. Starting from a random
direction, the cell randomly chooses a direction to
protrude, in the absence of a chemical gradient. The
force Fprot arises from actin polymerization at the
position of lamellipod extension, and as noted above,
in our modeling approach its magnitude Fprot ¼ jFprotj
is taken to be the time-averaged value over the whole
cell motility cycle.

We assume that the drag force is proportional to the
velocity, but the effective drag coefficient is affected
both by normal fluid mechanical considerations and by
structural properties of the ECM. We write

Fdrag ¼ �cHðLÞvðLÞ; ð2Þ

where vðLÞ is the velocity of a migrating cell, which
depends on ECM ligand concentration L. The
dimensioned factor c is intended to represent the
constitutive response of the extracellular fluid. For
comparison with previous simulation results in Fig. 5,
we have assigned a value to c using the Stokes drag
coefficient for a sphere of radius a in a Newtonian fluid
of viscosity g, so that c = 6pga, but neither this
identification of the nature of the constitutive response
nor the assumption of spherical geometry is a neces-
sary physical assumption in the model.

The dimensionless factor H(L), which we take to be
an increasing function of ligand concentration L, will

FIGURE 1. Schematic representation of the cell showing li-
gands, receptors, forces and coordinate system.
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be referred to as steric hindrance.12 This factor is in-
cluded in the model to account for the increasing
resistance to motion that arises as an increasing ligand
density reduces gap size in the ECM. Clearly, if ligand
density becomes too large (the threshold may perhaps
exceed densities ever realised in tissue), normal cell
motion must cease. We set the threshold ligand con-
centration, Lmax, to be the concentration of binding
ligands where the cell is no longer able to migrate
through the matrix. As L approaches Lmax, the steric
hindrance function diverges so that

lim
L!Lmax

HðLÞ ¼ 1; lim
L!Lmax

vðLÞ ¼ 0:

If L>Lmax, we set vðLÞ ¼ 0. We discuss later how the
model could be modified if future experiments were to
show that motility persists at the largest possible ligand
densities.

The traction force Ftrac at the cell-matrix interface is
made up of opposing forward and backward compo-
nents,

Ftrac�f ¼ FR�LknfL; Ftrac�b ¼ FR�LknbL; ð3Þ

where FR�L is the force per ligand–integrin receptor
complex and k is a binding constant. The magnitude of
the traction force Ftrac ¼ Ftrac�f � Ftrac�b simplifies to

Ftrac ¼ jFtracj ¼ FR�LkN 2q� 1ð ÞL; ð4Þ

where q = nf/N is the (constant) proportion of
receptors on the front of the cell.

Substitution of Eq. (2) into Eq. (1) determines the
cell speed v(L) for a given cycle as

vðLÞ ¼ jvðLÞj ¼ Ftrac þ Fprot

�
�

�
�=ðcHðLÞÞ: ð5Þ

In general, the alignment of the protrusion force Fprot

to the traction force Ftrac will vary from cycle to cycle
in a random manner, so that the time-averaged
velocity for a single cell, or the average velocity of an
ensemble of cells moving in identical environments,
must be computed by appropriate averaging of Eq. (5),
as shown in ‘‘Appendix 1’’.

In Table 1 we give representative values of model
parameters; Lmax is the maximum ligand density in the
absence of matrix degrading MMP activity, N0 denotes
the number of receptors in the absence of receptor
increase due to MMP activity, and the parameterMmax

is discussed later. We write

F0
trac ¼ FR�LkN0Lmaxð2q� 1Þ; ð6Þ

and define a dimensionless parameter e by

e ¼ Fprot

F0
trac

; ð7Þ

and so

Fprot

Ftrac
¼ �N0

N
: ð8Þ

From the values given in Table 1, it is clear that �� 1
[the value of � ranges from 10�10 to 10�5]. Unless the
polarization of the cell is negligible (that is, q� 0.5) or
the number N of integrin receptors on the cell is
drastically reduced, the smallness of � enables the effect
of the protrusive force to be neglected and neither
simulation nor careful mathematical averaging of the
governing equations is required to predict mean cell
speed over a cycle. We proceed for the moment on this
assumption and speak of the cell speed rather than the
mean cell speed in this case. ‘‘Appendix 1’’ details how
slightly more complicated but still compact analytical
results for the mean cell speed remain available even if
the system parameters can be sufficiently changed that
� is no longer very small and averaging over the
direction of the protrusion force is required.

We non-dimensionalize the model using

‘ ¼ L

Lmax
; hð‘Þ ¼ HðLÞ

H0
; uð‘Þ ¼ cH0vðLÞ

F0
trac

; ð9Þ

where H0 = H(0)> 0 is the value of steric hindrance
when no ligands are present. This gives the dimen-
sionless cell speed as

uð‘Þ ¼ Ftrac

hð‘ÞF0
trac

¼ ‘N

hð‘ÞN0
: ð10Þ

No MMP Activity

We address first the case without MMP activity, so

uð‘Þ ¼ ‘=hð‘Þ: ð11Þ

Since 0 £ ‘ £ 1 and h(‘) is an increasing function of ‘
which diverges to infinity as ‘ fi 1, we have u(‘) fi 0 as
‘ fi 1 while as h(0) = 1 we have u(‘) fi 0 as ‘ fi 0.
Thus u(‘) must always attain a maximum in the interior
of the interval 0< ‘< 1. Thus biphasic behavior is the
normwhenMMPs are absent, a prediction that is robust
so long as �� 1. Specific illustrations will be found be-
low in the ‘‘Results’’ section.

Modeling MMP Activity

We now consider matrix degradation by proteolytic
MMP activity, with particular reference to how this
affects the cell speed, especially the magnitude and
position of its local maximum. The MMP enzymes
typically act to degrade the ECM at the front of the
cell,31 which may reduce both traction and steric hin-
drance. There is also a complex relationship between
cell integrin receptor concentration and MMP
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concentration.3,24 We explore these issues in our
modeling approach by including three effects now to
be described that will be reflected in appropriate
changes to quantities appearing in the right-hand side
of the key Eq. (10) for the scaled cell speed u(‘). We
shall study the individual consequences of each of these
effects, and also their interplay.

We assume the concentration M of MMPs is
dependent on the global ligand density, and we write

M ¼MmaxmðL=LmaxÞ ¼Mmaxmð‘Þ: ð12Þ

We make this assumption because it seems reasonable
that an ECM with a higher global ligand density will
promote MMP activity more so than an ECM with a
lower ligand density. Furthermore, it is unclear whe-
ther MMPs used by migrating cells are produced by
these cells themselves or recruited from surrounding
cells. Therefore rather than having MMP concentra-
tion depend on the local density of ligands surrounding
the migrating cell, we choose to have it depend on the
global density of ligands. Similarly, there is good evi-
dence that the ligands of proteolytically generated
ECM fragments regulate MMP production.29,32 In
their review on adhesion receptors and cell invasion,
Ivaska and Heino17 argue that ‘‘Metalloproteinase
expression in cells may change in response to altered
integrin expression or altered ligand concentration’’ .
The production of ECM fragments must necessarily
depend on the density of the ECM and thus there is a
relationship between global ECM ligand density and
MMP production. Defining m(‘) makes the compari-
son between the cases with and without MMPs
straightforward. Moreover, all extant experimental
information on ligand concentration appears to be
global, and the assumption of uniform ligand density is
in accord with previous relevant studies.12

(a) Traction may be decreased by a reduction in local
ligand concentration (that is, the scaled ligand
concentration ‘ decreases), acting to reduce cell
speed. We preserve the meaning of ‘ as the scaled
ligand density in the matrix globally, and write the

local ligand density in the vicinity of the cell as
‘/[m(‘)] in the numerator of Eq. (10).

(b) Traction may be increased by MMPs promoting
an increase in the integrin receptor density (that is,
N/N0 increases), acting to increase cell speed. We
assume an increase in receptor density propor-
tional to MMP concentration, that is,

N ¼ N0 þ rM ¼ N0 þ rMmaxmð‘Þ; ð13Þ

where r is a positive constant, giving

N

N0
¼ 1þ dmð‘Þ; d ¼ rMmax

N0
: ð14Þ

Experimental evidence3,24 suggests that r> 0, cor-
responding to an increase in the total number of
receptors whenMMPs are present and a decrease in
the total number of receptors when MMPs are
inhibited. We have also assumed that q, the pro-
portion of receptors at the front of the cell, is unal-
tered as the receptor density changes (as inHarjanto
and Zaman12). If one wished to allow for changes in
this proportion, the right-hand side of Eq. (15)
would acquire the extra factor (2q0 � 1)/(2q � 1),
where q0 is the fraction of integrin receptors on the
front of the cell in the absence ofMMPs, and q is the
corresponding fraction when MMPs are present.

(c) At a given ligand density, the presence of MMPs
may affect the structural integrity of the matrix,
reducing the steric hindrance (that is, h(‘) is
changed), acting to increase cell speed. We replace
h(‘) in the denominator of Eq. (10) by h(‘)w[m(‘)].

Hence, in the presence of MMPs, our model gives for
the scaled cell speed

uð‘Þ ¼ ‘/½mðlÞ�f1þ dmð‘Þg
hð‘Þw½mð‘Þ� : ð15Þ

The three functions /, w and m are dimensionless
functions of dimensionless arguments, and the
parameter d is also dimensionless. The MMP-free case
is obtained by setting d = 0 and /(m)”w(m)” 1.

TABLE 1. Order of magnitude estimates of model parameters.

Parameter Value Units Source

Mmax 10�6 M Homandberg et al.,14 Yebra et al. 36

Lmax 10�5 M Berry and Larreta-Garde4

k 108 M�1 Akiyama and Yamada,1 Akiyama et al.2

N0 105 to 107 Akiyama and Yamada,1 Akiyama et al.,2 Goodman et al.,11

FR-L 10�12 N DiMilla et al.7

Fprot 10�12 to 10�9 N Harris et al.,13 James and Taylor18

g 102 Nsm�2 Akiyama and Yamada,1 Akiyama et al.,2 Goodman et al.,11

2q � 1 0.9 Schmidt et al.26

a 10�5 m Trinkaus30
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RESULTS FOR SINGLE CELL MOTILITY

Consistent with the algorithms used in Harjanto
and Zaman,12 the functional forms chosen in our
examples are given by

hð‘Þ ¼ ð1� ‘Þ�1; mð‘Þ ¼ a‘;

/ðmÞ ¼ e�bm; wðmÞ ¼ e�cm;
ð16Þ

where a, b and c are non-negative constants. However
we note that as quantitative experimental evidence of
MMP effects accumulates, if alternative functional
forms are identified, they will be easy to insert into the
general analysis that we have laid out. Note that the
steric hindrance function h(‘) diverges at ‘ = 1.

No MMP Activity

When there is no MMP action, then from Eq. (11)
we have

uð‘Þ ¼ ‘ð1� ‘Þ: ð17Þ

This relation between cell speed and ligand density is
shown as the solid blue curve in Fig. 2. The maximum
speed is attained at ligand density ‘* = 1/2, and
u(‘*) = 1/4.

With MMP Activity

We consider each of the three effects of MMPS
incorporated in the model on their own, and then
consider when they act in conjunction. A few mathe-
matical details are contained in ‘‘Appendix 2’’, where it
is proved that for the choice (16) there is always pre-
cisely one local maximum of u(‘) at a scaled ligand
density ‘*, where 0< ‘* < 1. All predictions of the
model are summarized in Table 2. We always take
a > 0 so that MMPs are present and parameters b, c
and d only ever appear in the combinations ab, ac and
ad. To examine each effect of MMP activity in isola-
tion, we set two of these parameter combinations to
zero and vary the other. In Fig. 2 the nonzero com-
bination is assigned the value unity in each case, but
the formulae and inset figures in Table 2 cover general
values. The MMP-free case a = 0 (so that ab = ac =
ad = 0) is included for reference in Fig. 2 (solid blue
curve), while in all other cases, a > 0.

(a) Local ligand density reduction only: b > 0,
c = d = 0. In this case the speed is always maxi-
mized at a smaller ligand concentration when this
effect of MMPs is present alone [see Table 2(a)],
and the maximum speed is reduced. The case
ab = 1 is shown as the broken black curve in
Fig. 2.

(b) Steric hindrance reduction only: c > 0, b = d = 0.
In this case the speed is alwaysmaximized at a higher
ligand concentration when this effect of MMPs is
present alone [see Table 2(b)], and the maximum
speed is increased. The case ac = 1 is shown as the
broken purple curve in Fig. 2.

(c) Integrin receptor increase only: d > 0, b = c = 0.
In this case the speed is always maximized at a
higher ligand concentration when this effect of
MMPs is present alone [see Table 2(c)], and the
maximum speed is increased. The case ad = 1 is
shown as the broken green curve in Fig. 2.

We now consider the interplay between the three
effects of MMP action incorporated in our model.

(d) When both local ligand density reduction and
steric hindrance reduction occur, we have com-
peting opposite effects. For our illustrative choices
of the functions /(m) and w(m), this competition is
captured in the single parameter n = a(b � c).
When n > 0, the net effect is similar to local ligand
density reduction alone, while if n < 0, the net
effect is similar to steric hindrance reduction alone.
The effect of the three mechanisms on the ligand
concentration at which the cell speed is maximized
is summarized in Table 2(d). In particular, we note
that the curve n = 2ad/(2 + ad) separates the
parameter region where MMPs increase the ligand
density ‘* at which maximal speed is attained
above 1/2 from the region where ‘* is decreased.

When multiple MMP effects are present, the effect on
the value of the maximum cell speed u(‘*), as well as the
ligand density ‘* at which the maximum speed occurs, is
of interest. Since u(‘*) depends on both ad and
n = a(b � c), in Fig. 3 we show u(‘*) when one of ad or
n = a(b � c) is held constant while the other is varied.

FIGURE 2. Dimensionless cell speed u(‘) as a function of
dimensionless ligand concentration ‘ without MMPs (solid
blue line) and with MMPs at scaled concentration m(‘) = a‘
when they act to: modify ligand concentration/ECM (dashed
black line, with /(m) = e2bm); reduce steric hindrance (dashed
purple line, with w(m) = e2cm); increase receptor number (da-
shed green line). The figure corresponds to the parameter
values ab = 1, ac = 1 and ad = 1 in the limit �! 0, but there is
no visible difference over the range 0 � �<0:01 and the quali-
tative picture is the same for all positive values of a, b, c and d.
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Noting that in the MMP-free case where ‘* = 1/2
and u(‘*) = 1/4, we are able to summarize the effect of
changing any of the parameters a, b, c and d concisely
in Fig. 4. There are three scenarios: ‘* moves left and
u(‘*) decreases; ‘* moves left and u(‘*) increases (cor-
responding to the red shading); and ‘* moves right and
u(‘*) increases. In no case do we have ‘* moving right
and u(‘*) decreasing.

Although we have reported results for the case � ¼ 0
and taken the MMP response to global ligand density
to be given by m(‘) = a‘, the picture is very similar at
least up to � � 0:1, a value much higher than we are
ever likely to encounter. Also, there is little sensitivity
to changes in the functional form of m(‘) that preserve

its qualitative features (e.g., replacing m(‘) = a‘ with
m(‘) = ea‘ � 1 where 0< a < 2, although in this case
there are four parameters that need to be considered
rather than the two convenient combinations ad and
n = a(b � c), and a brief graphical summary such as
Fig. 4 is no longer available.

Non-diverging Steric Hindrance

We have assumed above that steric hindrance, the
resistance to cell movement through a 3D ECM matrix
diverges to infinity as the ligand density increases to a
critical value (Lmax), so that the cell is no longer able to
move under these circumstances (v ¼ 0). This is a

TABLE 2. The dimensionless ligand density ‘* at which the cell speed is maximal, illustrated for the steric hindrance function
h(‘) = (1 2 ‘)21.

MMP related functions

Exact formula for ‘* or equation

for ‘* and limiting values Plot of position of maximum ‘*

(a) Only local ligand density reduction

‘� ¼
2þ ab�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðabÞ2 þ 4

q

2ab

αβ
0 2 4 6 8 10

0

0.5

1 l*

/ = e�bm

w = 1, d = 0
‘� <

1

2
lim
b!0

‘� ¼ 1

2
lim

b!1
‘� ¼ 0

(b) Only steric hindrance reduction

‘� ¼
ac� 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðacÞ2 þ 4

q

2ac

αγ
0 2 4 6 8 10

0

0.5

1 l*

w = e�cm

/ = 1,d = 0
‘� >

1

2
lim
c!0

‘� ¼ 1

2
lim
c!1

‘� ¼ 1

(c) Only receptor density increase

‘� ¼
ad� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ adþ ðadÞ2
q

3ad

αδ
0 2 4 6 8 10

0

0.5

1 l*

/ = 1

w = 1

d > 0

‘� >
1

2
lim
d!0

‘� ¼ 1

2
lim

d!1
‘� ¼ 2

3

(d) All three MMP effects are present adn ‘3 + (n � adn � 3ad) ‘2

+(2ad � 2 � n)‘ + 1 = 0

n <
2ad

2þ ad
) ‘� >

1

2

αδ
2 4 6 8 10

−6

−4

−2

0

2

4

6

8
ξ=α(β−γ)

l* =1/2

l* = 1/6

l* = 1/3

l* = 2/3

l* = 5/6

/ = e�bm

w = e�cm

n = a(b � c)

d > 0

n >
2ad

2þ ad
) ‘� <

1

2

lim
d!0

‘� ¼ 2þ n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ n2
p

2n

lim
d!1

‘� ¼ 3þ n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 2nþ n2
p

2n

When no MMP effects are present, ‘* = 1/2. For MMP activity, a and at least one b, c and d are positive, but the other parameters may be

zero. In parts (a)–(c) of the table, only a single MMP effect is present. In part (d) all three effects are present, but the parameters describing

two of the effects can be combined under the single composite parameter n = a(b � c). For this case, we show curves along which ‘* takes a

constant value in parameter space.
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reasonable assumption for cell migration through liv-
ing tissue,6,38 but we consider briefly what the conse-
quences of a bounded steric hindrance would be. At
maximum ligand density the mean cell speed remains
finite, but will it be biphasic? We continue to assume
that the force ratio parameter � is small enough to be
taken as zero, although the formulae developed in
‘‘Appendix 1’’ enable the analysis to be extended to
general values of � if desired.

For the MMP-free case we see from Eq. (11) that
the function ‘/h(‘) must be non-monotonic in the re-
gion 0< ‘< 1 in order for the mean cell speed to ex-
hibit biphasic behavior. This places a restriction on the
growth rate of h(‘). For example, if h(‘) = ej‘, where
j > 0, then the mean cell speed is biphasic if and only
if j > 1.

The MMP case is similar but a more complex
restriction is placed on h(‘). If we use the bounded steric
hindrance function h(‘) = ej‘ with our previous model
(m(‘) = a‘, /(m) = e�bm, w(m) = e�cm, and d as de-
fined previously), and write n = a(b � c) as before,
then if the velocity is to be biphasic, we need to be able to
satisfy the equation (n + j)‘(1 + ad‘) = 1 + 2ad‘
for ‘ = ‘*, where 0< ‘* < 1. It is easy to show that no
such solution is possible if n + j < (1 + 2ad)/
(1 + ad). This suggests that a sufficiently rapid increase
in steric hindrance as ligand density increases is impor-
tant if biphasic cell speed behavior is to arise.

Time Dependent Model

Our approach has determined an analytical formula
for the mean cell speed as a function of ligand con-
centration, which exhibits biphasic behavior and is
particularly simple in the case when the parameter �
defined in Eq. (7) is small. Zaman et al.37 and Harjanto
and Zaman12 determined mean cell speeds using a
numerical approach. However, their approach is con-
ceptually different to ours. Rather than considering the

speed v(L) of a cell migrating through ECMs with
different ligand concentrations L, they consider the
speed of a cell migrating through one ECM that is
degrading with time t. We compare our analytic for-
mulae with the numerical work for the time-dependent
description.

In the time-dependent formulation used for the
previous simulations,12,37 Eqs (1)–(5) are used to
determine the speed over a single time step and the
protrusion direction is varied at random from step to
step. The steric hindrance effect embodied in H(L)
(and h(‘) in the scaled model) was used in the simula-
tions but this was not made clear in those papers. At
the end of each time step in the simulation, the ligand
density is changed and the simulation can be inter-
preted in two ways. If the physical circumstances cor-
respond to a matrix whose global properties change
with time—for example, if the motile cell concentra-
tion is appreciable and if MMPs diffuse significantly
through the matrix, then the simulation corresponds to
the history of a cell moving through an evolving ma-
trix. Alternatively, time can be viewed simply as an
artificial parameter that enables curves in physical
parameter space to be varied.

It has been noted above that unless the force ratio
parameter � defined by Eq. (7) is allowed to be some-
what larger than is usually biologically relevant (for
example by making the cell polarity very small), or the
ligand density becomes many orders of magnitude
smaller than its maximum value, the effects of the
random direction changes on speed are small. How-
ever, in the time-dependent simulations, the ligand
density used is L(t) = Lmax � C1t and the simulation
is run for 0 £ t<Lmax/C1, so that in the late stages of
the simulation, the approximation based on setting
� ¼ 0 becomes inappropriate. In that case, the full
analysis outlined in ‘‘Appendix 1’’ becomes necessary
and we have used that in comparing analytical results
from our approach with simulations in the manner of

a b c

FIGURE 3. Maximum cell speed u(‘*) when MMPs are present, for h(‘) = (1 2 ‘)21, m(‘) = a‘, /(m) = e2bm, w(m) = e2cm, and d ‡ 0.
(a) Varying the effect on receptor density (0 < ad < 10) for a fixed level of local ligand density reduction (ab = 1, c = 0); (b) The
competition between local ligand density reduction (b > 0) and steric hindrance reduction (c > 0) with no receptor density increase
d = 0); (c) All three effects of MMPs present simultaneously: we show u(‘*) as a function of n = a(b 2 c) for the cases d = 0 (purple
line), ad = 1 (blue line), ad = 5 (green line), ad = 100 (black line). A plot of the solution when ad = 2n/(2 2 n) and ‘* = 1/2 is also shown
(dashed green line).
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the earlier work. The steric hindrance function used is
H(t) = C2/|Lmax � L(t)|.

A comparison of simulations and analytical results
(with and without MMP activity) is shown in Fig. 5.
The simulations were rerun to produce this figure using
MATLAB code from the earlier studies.12,37 Cell speed is
plotted as a function of the instantaneous ligand den-
sity L(t), so that all curves touch the axis on the right at
maximal ligand concentration, corresponding to time
t = 0, and on the left at a much reduced ligand con-
centration, corresponding to the end of the simulation
run. At any instant, of course, the results of the time-
dependent model simulations should match exactly
with the analytical approach with all system attributes
assigned their instantaneous values. For the case
without MMP activity, setting up the exact corre-
spondence between the analytic and simulation
parameters is straightforward and results are shown in
Fig. 5 (red curve—analytic results, blue stars—average
over 100 simulations). Our analytical results are an
excellent match for the simulation-based data. We
explored other parameter values, and similar quality
agreement is obtained.

MMPs are introduced into a time dependent
model12 using the same framework as in Zaman
et al.,37 using an MMP concentration M(t) that is a
prescribed function of t. Harjanto and Zaman12

assume that MMPs act to increase the number of cell
receptors and increase the rate of decay of ligand
concentration. This corresponds with our previous
model where / < 1, d > 0 and w = 1. They use a
different increasing relationship between the number

of cell receptors and the MMP concentration from our
Eq. (13), namely

NðtÞ ¼ N� sMðtÞ ¼ nfðtÞ þ nbðtÞ: ð18Þ

Ligand density reduction is incorporated by writing

F ¼ FR�Lk 2q� 1ð ÞNðtÞ/½MðtÞ�LðtÞ; ð19Þ

where /[M(t)] is a decreasing function of time. To
compare the numerical results in Harjanto and
Zaman12 with our analytic formulation, we need to
recalculate the mean cell speed for a cell migrating in a
degrading ECM using Eq. (20) from ‘‘Appendix 1’’,
and insert the functions

LðtÞ ¼ Lmax � C1t; HðtÞ ¼ C2=jLmax � LðtÞj;
MðtÞ ¼ C3 þ C4t; /½MðtÞ� ¼ exp½�C5MðtÞ�;

with appropriate values of the constants C1; . . . ;C5.
These values, and the values of other parameters used
are given in the caption to Fig. 5. Two different values
of the parameter s defined by Eq. (18) are used and in
each case we see biphasic cell speed behavior and the
match between simulation and analytically derived
results is excellent. The magnitude of the maximum
speed and the position it is attained depends on the
value of s, as one would expect from our previous
analysis. When s = 106 M�1, the maximum value
achieved is lower and when s = 2 9 106 M�1, the
maximum value achieved is higher. In the latter case,

FIGURE 5. Comparison of averages over 100 simulations
(shown as stars) and analytical results (shown as solid curves)
for the mean cell speed with MMPs (green line and yellow stars,
black line and green stars) and without MMPs (red line and blue
stars) when ligand concentration is varied three orders of
magnitude from 1025 to 1028 M. In this figure, as in Harjanto and
Zaman,12 the constant c in Eq. (2) is assigned a value by
assuming low-Reynolds number viscous flow about a spherical
cell (c = 6pga). Parameter values: Fprot = 1029 N, FR-L = 10212 N,
N = 107, k = 108 M21, g = 100 Ns m22, a = 1026 m, Lmax = 1025

M, q = 0.95, C1 = 0.999/91 3 1025 M , C2 = 103 M; when no
MMPs are present, C3 = 1 M and C4 = 0; when MMPs act,
C3 = 1027 M, C4 = 9/91 3 1027 M, C5 = 102 M21, and s = 106 M21

(green line and yellow stars), s = 2 3 106 M21 (black line and
green stars), 0 £ t £ 91.
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FIGURE 4. Consequences of all three MMP effects, for all
parameters a, b, c, d varying, writing n = a(b 2 c). The red re-
gion corresponds to the case when the maximum speed u(‘*)
increases over the MMP-free case [u(‘*) > 1/4] , and is achieved
at at a lower ligand density (‘* < 1/2). The left boundary of the
red region is given by n = 2ad/(2 + ad). To the left of the red
region, ‘* > 1/2 and u(‘*) > 1/4, while to the right of the red
region, ‘* < 1/2 and u(‘*) < 1/4.
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receptor increase is sufficiently larger than traction
reduction so that the maximum value of the mean cell
speed is higher than the case without MMPs. When
this is not the case (s = 106 M�1) then traction
reduction causes the maximum value of the mean cell
speed to drop compared to the case without MMPs.

DISCUSSION

We have presented a simple force balance model of a
single cell in a single time-averaged cell motility cycle
involving protrusion, adhesion and detachment,
assuming that cell speed is a function of ECM ligand
density. We were able to determine analytically the ex-
pected value of cell speed which is biphasic in ligand
concentration and have shown that our model predicts
the numerical results of previous computational mod-
els12,37 that have shown good agreement with in vitro
experiments.8,19,23,35,38 Our model takes into account
the cell’s attachment to ligands in the ECM through
receptors, the force generated from extending a protru-
sion into the ECM and the drag experienced by the cell.
We also incorporated the resistance to cell movement
due to the physical barrier of ligands, the steric hin-
drance, into the drag term so that the cell was unable to
move once a threshold ligand concentration was
obtained. We did not include signalling in our model,
cell shape changes or the redistribution of receptors on
the cell surface, and one could develop more complex
models that incorporate these factors. However, by
simply considering three biologically relevant effects of
MMPs, we were able to reproduce the bimodal rela-
tionship of cell speed to ligand concentration and show
thatMMPs affect the value of themaximum in themean
cell speed and the optimal concentration of ligands.

We have determined analytical formulae for the
expected value of cell speed when both MMPs are and
are not present. This allows general statements in terms
of parameters to be explored. In contrast, previous
work was confined to numerical simulations, for spe-
cific parameter values. Our analytic approach gener-
alizes and extends previous computational models that
have shown good agreement with in vitro experiments.
Our analysis has shown that when MMPs are present,
the maximum mean cell speed will increase, compared
to the case without MMPs, if MMPs act to increase
cell receptors and or decrease steric hindrance. If
MMPs act to reduce traction, then in combination
with these other two mechanisms, the maximum value
of the mean cell speed could decrease. If MMPs act
solely to reduce traction then this will always be the
case. Also we have shown that the value of ligand
concentration where the maximum value of the mean
cell speed can also change when MMPs are present.

Experiments in 3D where MMPs are inhibited38

show a decrease in cell speed compared to the case
when MMPs are not inhibited. It would be interesting
to see whether the maximum of the mean cell speed
shifts to higher or lower ligand concentrations when
MMPs are inhibited. This could provide an opportu-
nity to validate our model.

Our model makes use of the current state of
knowledge for single cell migration and provides a
convenient framework to analyse cell speed in complex
environments. With recent developments in tissue
engineering, novel biomaterial development and a
multi-scale perspective of chronic wounds and cancer
metastasis, understanding how cells operate in native-
like environments is of paramount importance. For
example, with our phenomenological model we can
explore analytically the parameter regions where the
effect of MMPs on cell speed bifurcates. This knowl-
edge can be used in conjunction with future experi-
mental results as a guide to gain some insight into the
possible mechanisms which control proteolytic migra-
tion. An ability to characterize cellular migratory
behavior through a rigorous analytic approach there-
fore has significant implications not only in
understanding cellular function but also in creating
tools to control and optimize cellular function and
performance in vitro and in vivo.

APPENDIX 1

We show here how the computational models of
previous studies12,37 can be given a precise mathe-
matical formulation that enables the mean cell speed as
a function of system parameters such as ligand density
to be computed in terms of simple known functions,
circumventing the need for simulation. The analytical
formulae obtained require no restriction on the value
of the force ratio parameter � and the nature of the
approximation in which the protrusion force is ne-
glected is clearly revealed, demonstrating its innocence
in the usual biologically relevant parameter regime.

In three-dimensions, we introduce Cartesian basis
vectors bi;bj and bk, with bk in the direction of Ftrac, so
Ftrac ¼ Ftrac

bk and with 0 £ h £ p and 0 £ / £ 2p,

Fprot ¼ Fprot sin hðcos/biþ sin/bjÞ þ Fprot cos hbk:

Since the integration element for isotropic random an-
gles is ð4pÞ�1 sin hdhd/, the calculation of Efjvjg as a
double integral is straightforward and the final answer is

Efjvjg ¼
F2
tracþ3F2

prot

3HðLÞcFprot
if Fprot>Ftrac;

F2
protþ3F2

trac

3HðLÞcFtrac
if Ftrac>Fprot:

8

<

:
ð20Þ
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It may be noted that if we desired the probability
density functions for jvj rather than just their expected
values, the problem is equivalent to a two-step Ray-
leigh random flight with unequal step lengths (see
Hughes15 for details).

Any modeling of MMP activity that alters the val-
ues of one or more of Ftrac, Fprot, or H(L) can easily be
accommodated in Eq. (20). As it will almost always be
the case that Ftrac >Fprot, we will usually have

Efjvjg ¼
F2
prot þ 3F2

trac

3HðLÞcFtrac
¼ Ftrac

HðLÞc 1þ 1

3

Fprot

Ftrac

� �2
" #

ð21Þ

and often (as in case studies in the ‘‘Results’’ section),
we have Fprot/Ftrac� 1, leading to a further simplifi-
cation. However, in our discussion of a time-evolving
simulation approach12,37 in which the ligand density is
very greatly reduced towards the end of the simulation
time interval, we have used Eq. (20).

APPENDIX 2

We sketch the analysis of the location of the velocity
maximum in Eq. (15) for the prescription (16) of the
effects of MMPs. We have

uð‘Þ ¼ ‘ð1� ‘Þð1þ ad‘Þ exp½aðc� bÞ‘�;

so u(0) = u(1) = 0 and u(‘)> 0 for 0< ‘< 1,
ensuring that the continuous function u(‘) attains at
least one local maximum inside the interval. Taking the
natural logarithm and differentiating twice, we find
that

u0ð‘Þ
uð‘Þ ¼

1

‘
þ 1

‘� 1
þ ad
1þ ad‘

þ aðc� bÞ

and

u00ð‘Þ
uð‘Þ �

u0ð‘Þ2

uð‘Þ2
¼ � 1

‘2
� 1

ð‘� 1Þ2
� ðadÞ2

ð1þ ad‘Þ2
:

We see that at relevant stationary points [i.e.,
0< ‘* < 1 and u¢(‘*) = 0] we have u¢¢(‘*)< 0, so there
is always exactly one such stationary point, which is a
both a local maximum and the global maximum of u(‘)
for 0 £ ‘ £ 1. Its location is the unique solution in
0< ‘< 1 of the algebraic equation

1

‘
þ 1

‘� 1
þ ad
1þ ad‘

þ aðc� bÞ ¼ 0: ð22Þ

If ad = 0 or if a(b � c) = 0 the equation is quadratic
and ‘* can be exhibited in simple form. In all other
cases ‘ is given by solving a cubic equation, though we
refrain from writing out the solution here. The limiting

behavior of the solution in any of the limits d!1,
a(b � c) fi 0 and aðb� cÞ ! �1 can easily be ex-
tracted from Eq. (22). Details will be found in Table 2.

Although for biological relevance one needs all of
a, b, c and d to be non-negative, the conclusions we
have just drawn concerning the maximum are true on
the weaker assumption that ad > � 1 (which is nee-
ded to ensure that receptor density remains positive),
with no restriction on the signs or magnitudes of
a, b, c or d. Setting a = 0 completely removes the ef-
fects of MMPs and leaves the speed maximal at ‘ = 1/
2, so in the analysis summarized in Table 2 we assume
that a > 0 and in some cases for brevity we write
n = a(b � c).
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