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Abstract—Emergent behaviors of multi-cellular biological
systems (MCBS) result from the behaviors of each individual
cells and their interactions with other cells and with the
environment. Modeling MCBS requires incorporating these
complex interactions among the individual cells and the
environment. Modeling approaches for MCBS can be
grouped into two categories: continuum models and cell-
based models. Continuum models usually take the form of
partial differential equations, and the model equations
provide insight into the relationship among the components
in the system. Cell-based models simulate each individual cell
behavior and interactions among them enabling the obser-
vation of the emergent system behavior. This review focuses
on the cell-based models of MCBS, and especially, the
technical aspect of the rule-based simulation method for
MCBS is reviewed. How to implement the cell behaviors and
the interactions with other cells and with the environment
into the computational domain is discussed. The cell behav-
iors reviewed in this paper are division, migration, apoptosis/
necrosis, and differentiation. The environmental factors such
as extracellular matrix, chemicals, microvasculature, and
forces are also discussed. Application examples of these cell
behaviors and interactions are presented.

Keywords—Cellular automata, Agent-based modeling,

Individual-based modeling.

INTRODUCTION

Modeling multi-cellular biological systems (MCBS)
poses challenges in that the global system behaviors
result from individual cell behavior and the interac-
tions among the cells. Cells are live creatures which
differentiate, proliferate, move, and die, and these
behaviors of living cells constitute the dynamics of
MCBS. Moreover, these cell behaviors are influenced
by the environmental factors such as extracellular

matrix, chemicals, and forces. Modeling MCBS
requires incorporating these complex interactions
among the individual cells and the environment
(Fig. 1).

Modeling approaches for MCBS can be grouped
into two categories: continuum models and cell-based
models.7 Continuum models usually take the form of
partial differential equations (PDE). One of the
advantages of the PDE models is that the model
equations provide insight into the relationship among
the components in the system (Fig. 2). PDE can be
used for modeling all levels of biological systems.38

However, the continuum models do not catch the
discrete nature of MCBS consisting of individual cells,
and become cumbersome when modeling complex
process involving many variables. On the other hand,
the cell-based models such as cellular automata (CA)
and agent-based (or individual-based) models (ABM)
simulate each individual cell behavior and interactions
among them enabling the observation of the emergent
system behavior (Fig. 3). Hybrid models combine
these two approaches taking the advantages of each
method.24,30

CA and ABM are based on the local interactions
of the members of a population. These individuals
might represent plants and animals in ecosystems,21,48

vehicles in traffic, people in crowds, or autonomous
characters in animation and games.13,29,31 Complex
adaptive systems (CAS) are often simulated by ABM.
CAS may include (i) reactive units, i.e., units capable
of exhibiting systematically different attributes in
reaction to changed environmental conditions, (ii)
goal-oriented units, i.e., units that are reactive and
that direct at least some of their reactions towards
the achievement of built-in (or evolved) goals, and
(iii) planner units, i.e., units that are goal-directed and
that attempt to exert some degree of control over
their environment to facilitate achievement of these
goals.
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CA and ABM belong to bottom up approach. The
individual cells are represented explicitly and local
rules of behavior are given to them. Historically,
Conway’s Game of Life22 is one of the most famous
examples of CA. One of the most successful applica-
tions of CA is the work of Pomeau and coworkers17

that computed the Navier–Stokes equations on hex-
agonal lattice. However, one of the big differences
between biological systems and physical systems such
as gas or flow of particles is that each element in bio-
logical systems is a living entity that can have a fairly
complex system of rules, and may depend not only on
local environment but also on global factors.

This review focuses on the cell-based models of
MCBS, and especially, the technical aspect of the rule-
based simulation method for MCBS is reviewed. How

to implement the cell behaviors and their interactions
with other cells and with the environment into the
computational domain is discussed, and application
examples from recent publications are introduced.

CELLULAR AUTOMATA AND AGENT-BASED

MODELING

CA and ABM are two of the widely used methodol-
ogies for rule-based simulation of MCBS.1,8,11,15,49,50

FIGURE 2. Mathematical model of vein graft remodeling induced by shear stress. (a) Intimal thickness as a function of shear
stress and time. (b) Rate of intimal thickening as a function of shear stress and time. Taken from Tran-Son-Tay et al.51

FIGURE 3. Schematic of cell behavior implementation on the
lattice. Black and grey elements represent cells. White ele-
ments represent empty spaces. (a) When a cell divides, a new
cell is created. (b) When a cell migrates, the location of the cell
changes. (c) When a cell dies, the cell disappears from the
lattice. (d) When a cell differentiates, the cell becomes a dif-
ferent cell.

FIGURE 1. Schematic of computational domain of rule-
based simulation for MCBS. The cell behaviors include pro-
liferation, migration, apoptosis/necrosis, differentiation. The
environmental factors include extracellular matrix, chemicals,
microvasculature, and forces.

HWANG et al.286



Both methods are believed to have originated from an
idea by John vonNeumann in the 1940s.26,53 Later, John
von Neumann with the help of Stanislaw Ulam intro-
duced the concept of CA,11,39,53 and ABM also started
to be established by other researchers thereafter.26

Traditional CA is defined by the following components:
a regular discrete lattice, a finite set of cell states, a finite
set of neighboring cells, and rules for the transition of
cell states.11 In real-life application of CA, the tradi-
tional definition is considered too restrictive, and there
have been many relaxations such as non-uniform grid,
asynchronous update of the cell states, and extension of
the cell neighborhood.40 ABM is defined in a similar
way. ABM is a computational method in which deci-
sion-making agents interact with the environment fol-
lowing a set of rules.6,26 CA andABMare similar in that
the behaviors of cells or agents are governed by the rules
in their neighborhood or environment, and generate
global behavior of the system emergent from the local
interactions. CA, however, seems more mathematical in
its formulation. Mathematical rigorousness of the CA
can be seen in the graph-CAproposed byO’Sullivan,40 a
new CA introduced to accommodate non-uniform grid
whereas the traditional CA is defined on uniform grid.
Although the relationship between CA and ABM is not
obvious, some researchers think of ABM encompassing
CA18,55 possibly due to the more general definition of
ABM.6 Both CA andABMhave been widely used in the
modeling of a variety of systems such as social, eco-
nomic, and biological systems.6,26,53 Detailed modeling
techniques of these methods applied to MCBS are dis-
cussed in the following sections.

LATTICE

Rule-based simulations are usually performed on a
lattice system. Cells and other components occupy
some of the grid elements and can move from one
element to another (Fig. 3). Regular, irregular, or lat-
tice-free approach can be used, and each of these grid
systems is discussed in this section.

Regular and Irregular Lattice

In case of regular lattice, the distance between two
adjacent elements remain constant over the entire
simulation domain, and hence the grid-dependency of
the simulation results can be minimized. The lattice
can be triangular, square, or hexagonal.11 Engelberg
et al.14 report that, in their simulation of tumor
spheroid growth, square grid required a higher order
implementation of discrete diffusion compared with
hexagonal grid, and generated artifacts that are not
present with the hexagonal grid. The size of individual
lattice element can be made to be comparable to that

of the biological cell,23,35 or can be any value.28,47 One
biological cell10,47 or multiple cells16,33,43 can occupy
one lattice element. Piotrowska and Angus43 report
that assigning many biological cells to one lattice site
can reduce the total number of lattice sites for a given
number of biological cells, and hence the computa-
tional time, and provides the flexibility in positioning
the newly created cells from cell divisions (Fig. 4).

Cellular Potts model is a type of CA in which one
biological cell occupies more than one lattice sites.1

This model enables the incorporation of the shape
change of each cell into the simulation. Jiang et al.32

simulated an avascular tumor growth using an
extended large-Q Potts model. ‘‘Large-Q’’ means that
the number of possible cell states is comparable to that
of the connected subdomains of different cell types.1

Robertson et al.45 segmented one biological cell into
nine sub-compartments enabling different portions of
a cell to respond to different stimuli. These sub-com-
partments can also incorporate cell polarity and sense
the spatial gradient of the environment across the cell.

Kansal et al.33 used an irregular lattice for CA
simulation of brain tumor growth. They used Voronoi
tessellation to generate the lattice, and each resulting
automaton cell takes the form of polyhedra in three-
dimensional space. They also used varying lattice
density with higher density at the center to allow the
tumor to grow to a large size during the simulation.
Due to their varying size of the elements, the number
of real cells contained in the automaton cells ranged
from roughly 100 to 106 depending on the size of the
automaton cell.33 Gevertz and Torquato25 adopted a
similar irregular lattice to investigate the effects of
vasculature on early brain tumor growth (Fig. 5).

Lattice-Free Models

In case of lattice-free models, cells can be at any
location in the computational domain. The positions
of the cells are usually determined by solving equations
of motion incorporating the forces acting on the
cells.18,19,46 Rheological properties of the cells also can
be included in the simulation.41 Galle et al.18,19 simu-
lated multi-cellular systems using lattice-free models
incorporating contact-dependent regulation mecha-
nisms (Fig. 6). Schaller and Meyer-Hermann46 simu-
lated steady-state flow equilibrium of skin using an
off-lattice agent-based model.

BIOLOGICAL APPLICATIONS OF CA AND ABM

Three of the biologically relevant areas that use CA
and ABM frequently for modeling methodology are
tissue engineering, tumor growth, and wound healing.

Rule-Based Simulation of Multi-Cellular Systems 287



In utilizing CA and ABM in tissue engineering, the
emphasis is on the controlled production of tissue and
elucidating mechanism for differentiation and spatial
pattern formation. One of the main targets of using
cell-based model is to control the process of tissue
growth under the limitation of the reactor.56 In case of
tumor growth simulation, the goal is to understand the
mechanism of tumor growth in its different stages, and
potentially monitor the effect of medication (drug
delivery versus spatial properties and radiotherapy
versus cell cycle).12 For wound healing simulation, CA
and ABM are used mainly for understating the roll of
vasculature and cell migration in the process, and the
mechanism of plaque building.4,37

CELL BEHAVIOR

Division, migration, apoptosis, necrosis, and dif-
ferentiation are among the cell behaviors that are

commonly modeled in the rule-based simulations of
MCBS. Figure 3 shows an example of how these cell
behaviors can actually be implemented on a lattice.
Cells are created, moved, removed, or replaced by
different cells according to the corresponding cell
behaviors. More behaviors can be added (e.g., cell
growth) or only some of these behaviors can be chosen
to be implemented. Depending on specific biologic
applications, these behaviors can be implemented dif-
ferently (e.g., an empty space can be placed between
the two daughter cells after cell division). More
detailed information needed for the actual implemen-
tation (e.g., probability of cell division) is discussed in
this section. By implementing these local cell behav-
iors, a global behavior of cell population can be
observed. As an example, in case of tumor growth
simulations, two of the commonly simulated cell
behaviors are cell division and cell death. New cells are
created mostly at the periphery of the tumor through
the cell division which is dependent on nutrient

FIGURE 4. Simulation of in vitro multicellular spheroid tumor growth. Each lattice site contains 400 biological cells. Cells in
aerobic proliferation (black), anaerobic proliferation (red), aerobic quiescence (orange), and anaerobic quiescence (yellow) are
shown. Taken from Piotrowska and Angus.43
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concentrations. As the tumor grows, nutrient concen-
trations inside the tumor become lower due to the
increasing size of the tumor. When the nutrient con-
centrations become lower than threshold values, the
cells located in the regions of low nutrient concentra-
tion are made to die and are added to the necrotic core.
In this way, tumor growth simulations usually show
the increasing size of the tumor as well as the distinct
layers inside the tumor such as necrotic core and
proliferating rim.

The rules for the cell behaviors are dependent upon
specific biologic applications. Some of the rules found
in recent publications are discussed in this section.

Division

Two of the important decisions regarding the cell
division are determination of the division probability
and where to position the two daughter cells. For the

FIGURE 5. Simulation of brain tumor growth under the effects of vasculature. Straight lines are microvascular network. (a) Day
40, (b) day 70, (c) day 100, and (d) day 130. Proliferative cells (blue), hypoxic cells (yellow), necrotic cells (black), and apoptotic cells
(green) are shown. Taken from Gevertz and Torquato.25

FIGURE 6. Simulation of the growth of epithelial cell popu-
lations in vitro for cell substrate anchorage of (a) 600 lN/m
and (b) 200 lN/m. [III]: contact inhibition, anchorage-depen-
dent growth, and anoikis present. [II0]: contact inhibition and
anchorage-dependent. [I00]: contact inhibition. Taken from
Galle et al.19
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cell division probability, cells can be programmed to
divide after cell cycle time.10,27,43 Experimentally
obtained cell cycle time can be applied.10,43,52 Each cell
can be assigned different cell cycle time based on a
normal distribution,10,43 and in that case, the daughter
cells can inherit the cell cycle time of the parent cell.43

When incremental time step Dt is used for time
dependent simulation, the probability of cell division
can be applied such that Pd = Dt/tc where Pd is the cell
division probability at the time step and tc is the cell
cycle time.47 The cell division probability can also be
calculated based on other parameters such as local
nutrient concentration.16

Cell cycle can also be modeled. In their model for
the epidermis, Schaller and Meyer-Hermann46 incor-
porated a cell cycle in which cells can enter different
phases depending on the local environment. Walker
et al.52 modeled a cell cycle in their simulation of epi-
thelial cells. Jiang et al.32 used a simplified protein
regulatory network to model the transition between
different phases of the cell cycle in their simulation of
avascular tumor growth.

Regarding where to position the two daughter cells,
one of the common rules is to position them randomly
at the adjacent vacant sites.9,10,23 Contact inhibition is
a commonly used rule which prevents cell division
when all the adjacent sites are already filled.5,9,43

Depending on specific application, the daughter cells
can be placed away from each other with a site between
them47 or always adjacent to each other.42 Pérez and
Prendergast42 assigned different probabilities at dif-
ferent available sites in their anisotropic mitosis model.
Piotrowska and Angus43 applied a probabilistic over-
lay to determine the location for the daughter cells to
avoid morphological artifact in their simulation of
in vitro multicellular spheroid tumor growth. In their
simulation of three-dimensional brain tumor growth,
Kansal et al.33 used the intercellular mechanical stress
algorithm in which a daughter cell pushes an adjacent
cell outward until the cell at the tumor edge fills the
adjacent empty space. Ferreira et al.16 enabled the
cancer cells to pile up in a given lattice site in their
simulation of avascular tumor growth. If the dividing
cancer cell was inside the tumor, the daughter cell piled
up at the site, and if the cell is on the tumor border, the
daughter cell replaces the normal or necrotic cell at the
nearest neighboring site.16

In case of cellular Potts model in which one bio-
logical cell occupies more than one lattice sites, half
of the lattice sites in the parent cell can become a new
cell.1,32 In case of lattice-free models, the orientation
of cell division can be determined by the direction of
the total force the dividing cell experiences.19 Galle
et al.19 included the effect of the substrate in the
determination of the cell division orientation in their

simulation of the growth of epithelial cell populations
in vitro.

Cell growth can be modeled between the cell divi-
sions in the models such as cellular Potts model or
lattice-free model both of which can accommodate cell
shape change. In their Potts model of avascular tumor
growth, Jiang et al.32 set a target volume which each
cell tries to reach, and reaching the target volume is a
condition for cell division. Galle et al.19 modeled the
cell growth such that the cell doubles its mass and
volume during the interphase in their simulation of the
growth of epithelial cell populations. When a cell is
compressed by its neighbor cells and the resulting cell
volume is less than a threshold value, the growth is
inhibited.19

Migration

For random movement of cell, new location of the
cell can be selected randomly from one of the neigh-
boring sites.9,23,42 The migration, however, can occur
several times for each proliferation step because the
time scales of the migration and the proliferation are
different.9,42 Contact inhibition is commonly used as in
the case of cell division such that the cell cannot move
if all the neighboring sites are occupied.9,23,42 Cheng
et al.10 developed a tissue growth model in which cell
migration is modeled as a persistent random walk.
Each cell moves in one direction for a certain period of
time until it changes its direction and continues to
move. After the cell cycle time, the cell stops to divide.
The two daughter cells resume their persistent random
movements. When the two cells collide, they stop for
some time and start moving again.10 For directed
movement of cell, Deisboeck and coworkers36,54 chose
the best location for migration among the neighboring
sites based on the amount of nutrients, levels of tox-
icity, and mechanical confinement in their tumor
model . In their simulation of cell movement in the
prostate epithelium, Lao and Kamei34 tested different
movement behaviors of transit amplifying/intermedi-
ate cells and luminal cells in the prostate duct, and
compared with experimental data.

In their model of avascular tumor growth, Ferreira
et al.16 used a probability of migration which increases
with the number of tumor cells in the element. This
probability also increases with the level of nutrient. In
a similar model by Mallet and De Pillis35 for tumor-
immune system interactions, immune cells move ran-
domly until they encounter a tumor cell. In the case
study of their hybrid agent-based model for microbi-
ological systems, Guo et al.30 modeled the chemotactic
displacement of cells such that it is proportional to the
difference in newly bounded receptors at the front and
rear of the cell. Robertson et al.45 modeled the cell
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migration based on the relative concentrations of
fibronectin, integrin, and cadherin in their simulation
of Xenopus laevis morphogenesis.

In case of lattice-free models, the movements of the
cells are usually computed from the equations of
motion which incorporate the forces acting on the
cells.18,46

Apoptosis and Necrosis

When apoptosis occurs, cells are usually removed
from the lattice, and the site can remain vacant until it
is filled with other cells.20 In their simulation of tissue
differentiation, Checa and Prendergast9 implemented
apoptosis to the cells differentiated by a type of stim-
ulus when the stimulus changed to other type. In the
model of chronic chagasic cardiomyopathy after stem
cell transplantation by Galvão et al.,20 the apoptosis of
inflammatory cell occurs if there is at least one bone
marrow stem cell in the neighborhood of the inflam-
matory cell. In their simulation of the growth of epi-
thelial cell populations in vitro, Galle et al.18,19 made
the cell undergo anoikis when the contact area to the
substrate is smaller than a threshold value.

One of the common ways to model necrosis is to
make it occur when local nutrient concentration is
below a threshold value.32,43 In case of tumor growth
simulations, the necrotic cells usually do not vanish
from the lattice but are added to the necrotic material
inside the tumor.12,32

Differentiation

When a cell differentiates into other cell, the type of
the cell in the lattice site can simply be changed. Checa
and Prendergast9 made a portion of the mesenchymal
stem cells differentiate into fibroblasts, chondrocytes,
or osteoblasts depending on the level of mechanical
stimulus and local vascularity when the cells have
reached the maturation age. Grant et al.28 determined
whether a cell would make a transition to a more dif-
ferentiated form based on the arrangement of cell,
matrix, and free space around the cell in the hexagonal
grid system in their simulation of in vitro epithelial cell
morphogenesis. They also included the de-differentiation
of the cell in their simulation.

ENVIRONMENT

Cell behaviors are influenced by their interaction
with the environment. Gerlee and Anderson23 linked
the environmental factors to the cell behaviors using a
response network in their model of tumor growth.
They consider the environmental factors such as

neighbors, oxygen concentration, glucose concentra-
tion, and hydrogen ion concentration, and the cell
behaviors such as proliferation, quiescence, apoptosis,
metabolism, and movement. The cellular responses to
those environmental factors are determined through
the response network that each cell is equipped with.23

In this section, modeling of extracellular matrix
(ECM), chemicals, microvasculature, and forces are
reviewed. Chemical concentrations and forces are
usually computed in a different spatial scale from that
of the cell, and this information from different spatial
scale is projected to the cellular level for the cells to
react to those factors.

Extracellular Matrix

Extracellular matrix (ECM) can be placed in the
lattice sites which are available for cells as well.9,28

Checa and Prendergast9 let their lattice sites available
for either cell or ECM in their simulation of tissue
differentiation. They made the cells synthesize ECM
after cell division so that the number of cells and
matrix production can be in a proportional relation.
Grant et al.28 made the cells produce matrix depending
on the arrangement of the surrounding elements in
their simulation of in vitro epithelial cell morphogen-
esis. When matrix is generated by a cell, the cell moves
to a neighboring site, and the resulting vacant site is
filled with the produced matrix. Robertson et al.45

enabled each pixel to have different amount of fibro-
nectin, and affect the cell behavior.

Chemicals

One of the popular ways to determine the concen-
trations of the chemicals such as nutrients is solving
the reaction-diffusion partial differential equations.16,32

Finite difference method can be used for the compu-
tation of the equations,23,30 and the grid system which
cells occupy can be used for the numerical computa-
tion of the reaction-diffusion equations as well.23,35

Mallet and De Pillis35 gained sufficient accuracy in
nutrient concentrations when they used the same grid
system for cells and for the reaction-diffusion equa-
tions for nutrients in their simulation of tumor-
immune system interactions. Their equations are based
on the ones used by Ferreira et al.,16 and for the
boundary conditions, they assumed that the nutrients
are constantly supplied from the blood vessels located
at the top and bottom sides of the computational
domain. Palsson41 used a regular 3-D grid for the
calculation of cAMP concentrations while letting the
cells unrestricted to the grid points in his 3-D model
of multicellular systems. As a result, the cAMP
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concentrations are interpolated between the cells and
the grid system where the cAMP concentrations are
calculated.

Microvasculature

Incorporating microvasculature in the model pro-
vides the source for nutrients. In their modeling of the
effects of vasculature evolution on early brain tumor
growth, Gevertz and Torquato25 modeled the micro-
vasculature evolution on a triangular lattice overlaid
on top of the lattice for cells (Fig. 5). The interaction
between the microvasculature and the cells were sim-
ulated such that the interaction is mediated by the key
proteins involved in the vessel growth and regression.
The concentrations of the proteins were obtained from
the numerical solution of the reaction-diffusion
equations. Checa and Prendergast9 modeled each
capillary as a sequence of endothelial cells in their
model for tissue differentiation. The growth of the
vascular network on a regular lattice was simulated
following their random walk model. High oxygen
concentration was assumed within a distance from any
blood vessel.

Peirce and coworkers3,4 modeled the microvascula-
ture consisting of endothelial cells and smooth muscle
cells based on the confocal microscopy image of mouse
muscle, and simulated circulating inflammatory cell
trafficking4 and adipose-derived stromal cell traffick-
ing during ischemia.3 Qutub and Popel44 simulated
capillary sprouting by applying local rules to the
individual endothelial cells.

Forces

In their model for tissue differentiation, Checa and
Prendergast9 incorporated the interaction between
mechanical stimuli and the cell behavior in the tissue.
The mechanical stimuli affect the differentiation of
precursor cells and angiogenesis, and in turn, the
mechanical properties of the tissue change due to the
resulting change of the tissue composition. They
determined the level of mechanical stimuli using the
following equation: S = c/a + t/b where S is a me-
chanoregulatory stimulus, c is shear strain, t is fluid/
solid velocity, and a and b are constants. The mesen-
chymal stem cells were made to differentiate toward
fibroblasts, chondrocytes, or osteoblasts according to
different levels of the mechanical stimuli. The shear
strain and fluid/solid velocity were obtained from finite
element analysis. They also included the effect of
oxygen such that, at low oxygen concentration, carti-
lage instead of bone forms. Ausk et al.2 simulated the
real-time signaling induced by mechanical stimuli in
osteocytic networks. Bailey et al.3,4 used the pressure

differential calculated from network flow model to
drive leukocyte movement in their microvasculature
model. In lattice-free models, the forces that the cell
experiences usually determine the direction and mag-
nitude of the cell displacement.18,46

SUMMARY AND CONCLUSION

Rule-based modeling approach is suited for MCBS
simulation in that it models the behavior of each indi-
vidual cell and the interaction among the cells and with
the environment. Emergent system behaviors can be
observed by applying local rules to individual cells. The
rules are situation-dependent, that is, different rules
have to be implemented depending on the type of
MCBS. Although many cell behaviors and environ-
mental factors have been discussed in the previous
sections, not all of the factors have equal effects on the
system behavior in an application. The factors that
have greater effects have to be selected depending on
the specific application. The rules including the
parameters used in the simulation can be determined
based on the knowledge obtained from wet lab exper-
iment or from the literature. When the information is
not available, appropriate level of simplification and
assumption can be made, and the simulation results
have to be interpreted accordingly. Parameter sensi-
tivity analysis is one way of testing the influence of the
variability of the parameter on the system behavior.49

These models can be used to test scientific hypoth-
esis, plan experiments, and elucidate the connection
between emerging properties of complex system and
micro-scale simplistic rules. Different rules can be tes-
ted by examining the resulting system behavior. The
effect of each component in the system can be inves-
tigated by changing the rules for the components. This
enables the identification of the more dominant factors
contributing to the global behavior.

As mentioned in the previous sections, continuum
models can be combined into the cell-based models,
and some components such as chemical distribution in
MCBS are modeled more conveniently with the con-
tinuum models. Appropriate mixture of both
approaches would predict more accurate system
behavior of MCBS.

Most of CA and ABM in biology are so called
ad hoc models. Their main purpose is to understand
and extract key mechanisms behind apparent emergent
complexity. Although their outcomes are usually
qualitative and may explain the underlying biological
mechanism, it is not impossible that, in the future,
some of these models could be predictive and possibly
patient specific with the increasing amount of biologic
knowledge and computing power.

HWANG et al.292



ACKNOWLEDGMENT

This work was supported by NIH (R01-HL095508-
01).

REFERENCES

1Alber, M. S., M. A. Kiskowski, J. A. Glazier, and Y. Jiang.
On cellular automaton approaches to modeling biological
cells. In: Mathematical Systems Theory in Biology, Com-
munications, Computation, and Finance, edited by
J. Rosenthal, and D. S. Gilliam. New York: Springer-
Verlag, 2003, pp. 1–40.
2Ausk, B. J., T. S. Gross, and S. Srinivasan. An agent based
model for real-time signaling induced in osteocytic net-
works by mechanical stimuli. J. Theor. Biol. 39:2638–2646,
2006.
3Bailey, A. M., M. B. Lawrence, H. Shang, A. J. Katz, and
S. M. Peirce. Agent-based model of therapeutic adi-
pose-derived stromal cell trafficking during ischemia pre-
dicts ability to roll on P-selectin. PLoS Comput. Biol.
5:e1000294, 2009.
4Bailey, A. M., B. C. Thorne, and S. M. Peirce. Multi-cell
agent-based simulation of the microvasculature to study
the dynamics of circulating inflammatory cell trafficking.
Ann. Biomed. Eng. 35:916–936, 2007.
5Bartha, K., and H. Rieger. Vascular network remodeling
via vessel cooption, regression and growth in tumors.
J. Theor. Biol. 241:903–918, 2006.
6Bonabeau, E. Agent-based modeling: methods and tech-
niques for simulating human systems. Proc. Natl Acad. Sci.
USA 99:7280–7287, 2002.
7Byrne, H., and D. Drasdo. Individual-based and contin-
uum models of growing cell populations: a comparison.
J. Math. Biol. 58:657–687, 2009.
8Chavali, A. K., E. P. Gianchandani, K. S. Tung, M. B.
Lawrence, S. M. Peirce, and J. A. Papin. Characterizing
emergent properties of immunological systems with multi-
cellular rule-based computational modeling. Trends
Immunol. 29:589–599, 2008.
9Checa, S., and P. J. Prendergast. A mechanobiological
model for tissue differentiation that includes angiogenesis:
A lattice-based modeling approach. Ann. Biomed. Eng.
37:129–145, 2009.

10Cheng, G., B. B. Youssef, P. Markenscoff, and
K. Zygourakis. Cell population dynamicsmodulate the rates
of tissue growth processes. Biophys. J. 90:713–724, 2006.

11Deutsch, A., and S. Dormann. Cellular Automaton Mod-
eling of Biological Pattern Formation. Boston: Birkhäuser,
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