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Abstract
This study aimed to evaluate whether the image quality of 1.5 T magnetic resonance imaging (MRI) of the prostate is equal 
to or higher than that of 3 T MRI by applying deep learning reconstruction (DLR). To objectively analyze the images from 
the 13 healthy volunteers, we measured the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the images 
obtained by the 1.5 T scanner with and without DLR, as well as for images obtained by the 3 T scanner. In the subjective, 
T2W images of the prostate were visually evaluated by two board-certified radiologists. The SNRs and CNRs in 1.5 T images 
with DLR were higher than that in 3 T images. Subjective image scores were better for 1.5 T images with DLR than 3 T 
images. The use of the DLR technique in 1.5 T MRI substantially improved the SNR and image quality of T2W images of 
the prostate gland, as compared to 3 T MRI.

Keywords  Magnetic resonance imaging · Deep learning reconstruction · Prostate gland · T2-weighted image · Image 
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1  Introduction

Prostate cancer (PCa) is the second most commonly diag-
nosed cancer and the fifth leading cause of cancer death 
among men worldwide, with an estimated 1,400,000 new 
PCa cases and 375,000 deaths in 2020 [1]. Additionally, 
the incidence of PCa is increasing in most Asian coun-
tries [2]. PCa is expected to become more prevalent in an 
aging population [3]. Magnetic resonance imaging (MRI) 
is widely used as a non-invasive tool for the assessment of 
PCa, because its high resolution provides images with excel-
lent anatomical features and soft tissue high contrast. Cur-
rently, the magnetic field strengths of MRI scanners used 
in medicine are mainly the 3 T and 1.5 T MRI. Previous 
studies have reported that 3 T MRI scanners are clinically 
useful for imaging the prostate gland [4, 5]. Another study 

reported that the 3 T MRI scanner has made detailed assess-
ment of the prostate gland anatomy possible, thus improving 
the precision of diagnosis [6]. Since high-resolution images 
are required for detailed evaluation of the prostate gland 
anatomy, the Prostate Imaging Reporting and Data System 
(PI-RADS) version 2.1 guidelines recommend the use of 
3 T-MRI scanners [7].

The signal-to-noise ratio (SNR) of the 3 T MRI scan-
ner is channeled into increasing the quality, resolution, or 
various combinations of these effects of MRI images [8]. 
The 1.5 T MRI scanner has a lower magnetic field strength 
than the 3 T MRI scanner; therefore, its spatial resolution is 
lower with a larger image noise [9]. However, the 1.5 T MRI 
scanner has advantages over the 3 T MRI scanner, in terms 
of the effects of magnetic susceptibility artifacts on prostate 
diffusion-weighted magnetic resonance imaging (DW-MRI) 
[10] and B1 inhomogeneities, as well as inspection costs 
and safety [11, 12]. Additionally, MRI using lower static 
magnetic fields is safer for patients with metal implants. As 
a result, 1.5 T MRI scanners are widely used. Previous stud-
ies comparing the T2W images of the prostate produced by 
the 3 T and 1.5 T MRI scanners have indicated that T2WI 
images of the prostate gland are capable of providing equiva-
lent diagnoses, regardless of the magnetic field strengths 
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[13]. However, regarding the T2WI imaging parameters in 
the previous study, the T2W images of the prostate produced 
by the 1.5 T-MRI scanner had a larger image pixel size than 
those by the 3 T-MRI scanner. Additionally, the SNR was 
ensured by increasing the number of excitations. As the spa-
tial resolution of images is increased, the available signal 
per voxel decreases, leading to a reduced SNR. Therefore, 
to obtain an SNR with a 1.5 T-MRI scanner equivalent to 
that with a 3 T-MRI scanner, adjustments, such as reduc-
tion in in-plane resolution and extension of scan time, may 
be needed due to an increase in the number of excitations.

In recent years, due to the advanced application of arti-
ficial intelligence (AI) to medicine, the emergence of the 
deep learning reconstruction (DLR) technology has attracted 
much attention as a new SNR improvement technology for 
MRI images. DLR has been introduced by few MR ven-
dors to improve the quality of MRI images, and it has been 
widely reported for its clinical usefulness [14–20]. In this 
same period, the Canon Medical Systems Corporation devel-
oped a deep learning-based denoising technique, which is 
currently commercially available as Advanced intelligent 
Clear IQ Engine (AiCE), in MRI scanners [21].

The denoising approach with DLR, developed using soft 
shrink convolutional neural networks (SCNN), is a tech-
nique that can reduce image noise and reconstruct high SNR 
images from low SNR images [21].

Some clinical studies reported the clinical usefulness of 
DLR in imaging not only the central nervous system but also 
other body systems [21–29]. Those studies have shown that 
using a similar protocol, the 1.5 T scanner with DLR images 
can achieve lesser noise and higher overall image quality 
than the 3 T scanner [27–29].

We hypothesized that using a 1.5 T MRI scanner with 
DLR could provide a similar image quality of the prostate 
as that obtained with a 3 T MRI without DLR. Therefore, 
this study sought to compare image quality of T2-weighted 
MRI images of the prostate gland between the 1.5 T scanner 
with DLR and 3 T scanner without DLR.

2 � Materials and methods

2.1 � Image acquisition

The images used in this study were T2W images obtained 
by 1.5 T and 3 T MRI scanners (Vantage Orian and Van-
tage Galan 3 T, Canon Medical Systems, Tochigi, Japan) 
with Atlas SPEEDER Body coil and Atlas SPEEDER Spine 
coil. The scan parameters were fast spin echo sequence, 
TR:4000 ms, TE:120 ms, number of acquisitions: 2, echo 
train length:19, pixel bandwidth: 279 Hz, FOV:18 × 18 cm, 
256 × 256 pixels (0.7 mm/pixel), slice thickness: 2 mm, slice 
gap: 0.2 mm, NAQ:2, SPEEDER:2, Scan time: 3:30 s. The 

study included 13 healthy volunteers (23–57 years old [mean 
age of 38.6 ± 11.6 years]), and all images were produced 
with the same T2W scan parameters. The T2W prostate 
image scan parameters were based on the PI-RADS™ v2.1 
settings, incorporating high-resolution scan parameters. 
Thereafter, we assessed for differences in image quality of 
T2W images of the prostate between the 1.5 T scanner with 
DLR and the 3.0 T scanner and verified the possibility of 
producing images with similar image qualities by both scan-
ners. In this study, the sequence of two scans on 1.5 T and 
3 T scanners was randomized and we attempted to minimize 
the interval between the two scans.

2.2 � Image analysis

To objectively analyze the images from the healthy vol-
unteers, we measured the SNR and contrast-to-noise ratio 
(CNR) of the images obtained by the 1.5 T scanner with 
and without DLR, as well as for images obtained by the 3 T 
scanner.

The identical region of interest (ROI) method was used 
to measure the SNR. To quantitatively evaluate images, a 
board-certified radiological technologist with MRI exper-
tise performed ROI measurements. ROIs were placed over 
the prostate peripheral zone (PZ), transition zone (TZ), and 
obturator muscle of each volunteer (Fig. 1). The approxi-
mate area of the ROI in the PZ, TZ, and obturator muscle 
was 20 mm2. The ROI in the PZ was positioned as centrally 
as possible within the right side. The ROI in the TZ was 
placed within the low signal area of the left TZ as much as 
possible. The ROI in the obturator muscle was positioned 

Fig. 1   Regions of interest at the prostate peripheral zone, transition 
zone, and obturator muscle levels in the axial sectional image
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as centrally as possible within the right obturator muscle 
near the prostate. The ROIs were placed manually, which 
might have caused measurement errors; however, each ROI 
was positioned in exactly the same way for the three differ-
ent types of images, to reduce the possibility of significant 
measurement error. For quantitative image indexes, SNR and 
CNR were calculated using the following:

where SI tissue (a), (b) is the average signal intensity of 
tissue in the ROI, and SD tissue (a) is the average standard 
deviation of tissue in the ROI.

In the subjective analysis of healthy volunteers, T2W 
images of the prostate were visually evaluated by two 
board-certified radiologists. The evaluators were blinded 
to the field strength and identity of the volunteers and 
asked to rate the images by consensus on a five-point 
scale. All images obtained with the acquisition protocols 
for 1.5 T and 3.0 T MRI were scored for visualization 
of the anatomic structures (prostate capsule, boundary 
between the transition and the peripheral zones, seminal 
vesicle, and obturator muscle), noise, artifact, and overall 
image quality. The scoring criteria are shown in Table 1. 
Subjective image scores were ranked as described previ-
ously [27]. The visibility of the anatomic structures was 
ranked as follows: 1—not visible, 2—mostly not visible or 
blurred, 3—mostly visible but partially blurred, 4—sub-
tle blurring, and 5—homogeneous internal intensity with 
sharp edge. The indicator of image noise was ranked as 

SNR =
SItissue(a)

SDtissue(a)

,

CNR =
SItissue(a) − SItissue(b)

SDtissue(a)

,

follows: 1—unacceptable noise, 2—strong noise but still 
diagnostic, 3—acceptable noise, 4—minimal noise, and 
5—no noise. The indicator of image artifact was ranked 
as follows: 1—unacceptable artifact, 2—strong artifact but 
still diagnostic, 3—acceptable artifact, 4—minimal arti-
fact, and 5—no artifact. The indicator of overall image 
quality was ranked as follows: 1—unacceptable, 2—aver-
age, 3—fair, 4—very good, and 5—excellent.

2.3 � Statistical analysis

To compare objective image quality indexes, SNR and 
CNR for 1.5 T without DLR, 1.5 T with DLR, and 3 T 
without DLR were reported as means ± standard deviation 
and compared using the Tukey HSD test. Subjective image 
analysis indexes were reported as medians and interquar-
tile ranges (IQR) and compared using the Friedman test 
with Bonferroni correction. We used nonparametric tests, 
because ordinal data from subjective evaluations are non-
normally distributed. And we used the Friedman test to 
compare the image quality yielded by 1.5 T, 1.5 T with 
DLR, and 3 T MRI in the same volunteers in this study. 
We conducted our study in accordance with the cited lit-
erature, wherein Akai et al. used the Friedman test in the 
same way to compare the 1.5 T, 1.5 T with DLR, and 3 T 
MRI. A p-value < 0.05 was considered to indicate statis-
tical significance. Inter-observer variability between the 
readers was measured using Cohen’s weighted kappa coef-
ficient. The kappa values were considered as follows: poor, 
0.00–0.20; fair, 0.21–0.40; moderate, 0.41–0.60; good, 
0.61–0.80; and excellent, 0.81–1.00 [30]. All statistical 
analyses were performed using a free statistical software, 
EZR version 1.55 (Saitama Medical Center, Jichi Medical 
University, Saitama, Japan) [31].

Table 1   Scoring of criteria used for visual evaluation of prostate images

Score Visibility of pros-
tate capsule

Visibility of the 
boundary between 
the transition and 
the peripheral 
zones

Visibility of semi-
nal vesicle

Visibility of obtu-
rator muscle

Image noise Image artifact Overall image 
quality

1 Not visible Not visible Not visible Not visible Unacceptable 
noise

Unacceptable 
artifact

Unacceptable

2 Mostly not visible 
or blurred

Mostly not visible 
or blurred

Mostly not visible 
or blurred

Mostly not visible 
or blurred

Strong noise but 
still diagnostic

Strong artifact but 
still diagnostic

Average

3 Mostly visible but 
partially blurred

Mostly visible but 
partially blurred

Mostly visible but 
partially blurred

Mostly visible but 
partially blurred

Acceptable noise Acceptable 
artifact

Fair

4 Subtle blurring Subtle blurring Subtle blurring Subtle blurring Minimal noise Minimal artifact Very good
5 Homogeneous 

internal intensity 
with sharp edge

Homogeneous 
internal intensity 
with sharp edge

Homogeneous 
internal inten-
sity with sharp 
edge

Homogeneous 
internal inten-
sity with sharp 
edge

No noise No artifact Excellent
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2.4 � Denoising approach with deep learning‑based 
reconstruction: DLR

In this study, we used a deep learning-based denoising 
technique, which is currently commercially available as 
Advanced intelligent Clear IQ Engine (AiCE) [21]. AiCE 
is a DLR that uses deep convolutional neural networks 
(CNNs), and more information on CNNs can be found in 
previous literature [21]. DLR can reduce image noise by 
learning various noise characteristics using different noise 
level images and ground-truth images [21]. Figure 2 illus-
trates the architecture of the CNN. The CNN of the DLR 
consists of three layers: the feature extraction, feature con-
version, and image generation layer. The feature extraction 
layer is convolved with 7 × 7 discrete-cosine-transform 
(DCT) convolution to divide into a zero-frequency compo-
nent path and high frequency component path.

High frequency components derived by DCT convolu-
tion components undergo repeated 3 × 3 convolution and 
soft shrinkage in the feature conversion layers. Finally, in 
the image generation layer, the denoised output image is 
generated by deconvolution with a 7 × 7 inverse DCT kernel 
followed by addition of the segmented zero-frequency. The 
zero-frequency component path adapts the image genera-
tion layer without adapting the next feature transformation 
layer. Therefore, image contrast can be maintained. Because 
low SNRs in medical images can interfere with diagnostic 
imaging and image analysis, medical image denoising proce-
dures with high contrast are of clinical importance. Medical 
images should be free of noise for correct diagnosis. T2WI is 
essential to evaluate anatomical details in the prostate gland, 
and the prostate images with improved SNR and CNR using 
DLR may be useful in clinical practice.

3 � Results

Representative volunteer images are shown in Fig. 3.

3.1 � Objective analysis

Figure 4 shows the results for SNR and CNR measurements 
of the three methods.

In the PZ of the prostate, the SNR of the 1.5 T images 
with DLR (9.02 ± 1.74) was higher than that of the 
1.5 T images without DLR (4.47 ± 1.20) and 3 T images 
(6.25 ± 1.23) (P < 0.05).

In the TZ, the SNR of the 1.5  T images with DLR 
(4.73 ± 0.94) was higher than that of the 1.5  T images 
without DLR (2.31 ± 0.47) and 3 T images (3.44 ± 0.84) 
(P < 0.05). In the obturator muscle, the SNR of the 1.5 T 
images with DLR (2.67 ± 0.41) was significantly higher than 
that of the 1.5 T images without DLR (1.60 ± 0.16) and 3 T 
images (1.65 ± 0.17) (P < 0.05). However, no difference in 
SNR was observed between the 1.5 T images without DLR 
and 3 T images (P = 0.87).

The CNR of the TZ and PZ of the prostate was 4.85 ± 1.83 
on 1.5 T images with DLR, which was higher than that on 
1.5 T images without DLR (2.35 ± 1.27) and 3 T images 
(3.02 ± 1.53) (P < 0.05). However, no difference in CNR 
was observed between 1.5 T images without DLR and 3 T 
images (P = 0.55). The CNR of the PZ and obturator mus-
cle was 7.57 ± 1.71 on 1.5 T images with DLR, which was 
higher than that on 1.5 T images without DLR (3.49 ± 1.19) 
and 3 T images (5.32 ± 1.23) (P < 0.05). The CNR of the TZ 
and obturator muscle was 3.03 ± 0.97 on 1.5 T images with 
DLR, was higher than that on 1.5 T (1.22 ± 0.44) and 3 T 
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Fig. 2   The schematic of architecture of the denoising procedure with deep learning-based reconstruction (DLR) algorithm
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(2.44 ± 0.73) images without DLR. However, no difference 
in CNR was observed between 1.5 T images with DLR and 
3 T images (P = 0.14).

3.2 � Subjective analysis

The results of all subjective analyses are shown in Table 2. 
All scores for visibility of the anatomic structures on 1.5 T 
images with DLR were significantly higher than those on 
1.5 T images without DLR and 3 T images for both read-
ers. The scores of artifacts on 1.5 T images with DLR were 
comparable to those of the 1.5 T images without DLR and 
3 T images for the two readers, without any significant dif-
ference. Scores of image noise and overall image quality 
of 1.5 T images with DLR were significantly higher than 
those of 1.5 T images without DLR and 3 T images for both 
readers.

The inter-reader agreement between both readers, as 
measured by Cohen’s kappa, was excellent for visibility 
of anatomic structures (prostate capsule: 0.755, bound-
ary between TZ and PZ: 0.784, obturator muscle: 0.794, 
and seminal vesicle: 0.829). Additionally, the agreement 
for artifacts was moderate (0.595), whereas that for noise 
(0.936) and overall image quality (0.894) were excellent. We 
provided clear detailed explanations to the observers about 
the definitions of the evaluation criteria and classification 
methods for the images to minimize the variability between 
the two observers.

4 � Discussion

PI-RADS version 2.1 recommends the use of 3 T-MRI 
scanners, because diagnosis of lesions of small anatomi-
cal structures, such as the prostate, high spatial resolution 

Fig. 3   Representative prostate images from a healthy volunteer: a 3 T without DLR, b 1.5 T without DLR, C 1.5 T without DLR

*Note. Muscle = obturator muscle, PZ = peripheral zone, TZ = transitional zone

*

***

N.S

*** ***

*** ***

*** ***
N.S

*** *

***
*** ***

***
*** N.S

Fig. 4   Results of comparison of each quantitative image quality index among the three methods
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images with high SNR are required. Generally, 3 T MRI 
scanners can produce higher SNR than 1.5 T scanners. 
However, 3 T MRI scanners with high static magnetic 
fields are not widely used in clinical practice as 1.5 T 
MRI scanners. In addition, in regard to metallic implants, 
Jennifer Jerrolds and Shane Keene [11] stated that one of 
the most important safety concerns in the MRI environ-
ment is the effect of the magnetic field on medical devices 
and implants. He also stated that just as some supporting 
equipment is not transferrable from 1.5 to 3 T, some medi-
cal devices that are safe in 1.5 T scanners are not safe to 
use in 3 T scanners. Therefore, High static magnetic fields, 
as 3 T scanners, may increase risk in patients with metal 
implants.

Our results showed that T2W images of the prostate pro-
duced by 1.5 T scanners with DLR had better image noise 
than those by 3 T scanners. Image quality of the 1.5 T scan-
ner with DLR was significantly higher than that of the 3 T 
scanner. First, prostate 1.5 T images with DLR were quan-
titatively evaluated in comparison to 1.5 T images without 
DLR and 3 T images. The SNRs of the PZ, TZ, and obtura-
tor muscle of each volunteer in 1.5 T images with DLR were 
significantly higher than those in 3 T images.

The CNR of 1.5 T images with DLR was higher than 
that of 3 T images. However, the standard deviation of all 
measured CNRs was large, and the CNR of the TZ and obtu-
rator muscle was not statistically significant. One possible 
reason is the inter-individual differences. In our study, data 
were obtained from 13 healthy volunteers (ages: 23–57 years 
[mean age of 38.6 ± 11.6 years]). Regarding age-related 
changes of the normal prostate, Zhang [32] stated that the 
internal structures of the prostate constantly change due to 
aging and alterations in sex hormone. Additionally, previous 
studies have demonstrated a significant relationship between 
age and T2W image intensity of the TZ [33]. From these 
studies, we confirmed the variation in measurement among 
volunteers.

Thereafter, 1.5 T images with DLR, 1.5 T without images, 
and 3 T images were assessed subjectively by two board-
certified radiologists for visibility of the anatomic structures, 
image noise, artifacts, and overall image quality. Our find-
ings indicated that, for the scoring of the visual evaluation 
of visibility of anatomic structures, image noise, and overall 
image quality, the 3 T images were significantly superior 
to the 1.5 T images without DLR. These results show that 
3 T scanners produce images with a higher SNR than 1.5 T 

Table 2   Results of subjective image analyses

※ Statistically significant difference (P < 0.05)

Reader Results of qualitative analysis

Measured value p-value k-value

1.5 T with DLR 1.5 T without DLR 3 T 1.5 T with 
DLR vs 3 T

1.5 T with DLR vs 
1.5 T without DLR

1.5 T without 
DLR vs 3 T

Prostate capsule
Reader1 5 (5–5) 2 (2–3) 3 (3–3) 0.002 0.004 0.372 0.755
Reader2 5 (4–5) 2 (2–2) 3 (3–3) 0.021 0.006 0.006
The boundary between the transition and the peripheral zones
Reader1 5 (3–5) 1 (1–1) 2 (2–3) 0.016 0.016 0.021 0.784
Reader2 3 (3–5) 2 (1–2) 3 (2–3) 0.022 0.004 0.006
Seminal vesicle
Reader1 5 (5–5) 2 (2–2) 4 (2–4) 0.007 0.003 0.04 0.829
Reader2 5 (4–5) 2 (2–3) 3 (2–4) 0.014 0.004 0.11
Obturator muscle
Reader1 5 (5–5) 3 (3–3) 4 (3–4) 0.003 0.003 0.018 0.794
Reader2 5 (5–5) 3 (3–4) 4 (4–4) 0.003 0.004 0.035
Noise
Reader1 5 (5–5) 1 (1–1) 2 (2–3) 0.004 0.001 0.004 0.936
Reader2 5 (5–5) 1 (1–1) 3 (3–3) 0.003 0.004 0.004
Artifact
Reader1 5 (5–5) 5 (5–5) 5 (2–5) 0.27 1 0.27 0.595
Reader2 5 (5–5) 4 (4–5) 4 (3–5) 0.085 0.079 0.39
Overall image quality
Reader1 5 (5–5) 1 (1–1) 3 (3–3) 0.003 0.003 0.006 0.894
Reader2 5 (4–5) 1 (1–1) 3 (3–3) 0.003 0.003 0.002
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scanners, which is consistent with reports recommending 
3 T scanners, such as the PI-RADS.

The anatomical visibility, image noise, and overall image 
quality scores for 1.5 T images with DLR were significantly 
higher than those for 1.5 T images without DLR and 3 T 
images. No significant difference in artifact scores were 
observed. Therefore, 1.5 T scanners with DLR improves the 
image quality of original images and generates images that 
are almost equivalent or even superior to 3 T MRI images. In 
this study, images processed with DLR were compared with 
those processed without the use of DLR. However, if images 
processed with DLR were compared with histopathology 
images or high-quality images obtained with longer scan 
times, more accurate results could be obtained.

To the best of our knowledge, our study is the first to 
compare 1.5 T with DLR images and 1.5 T and 3 T images 
without DLR from the same volunteers using same scan 
parameters by MRI units. Additionally, our study used a 
slice thickness of 2 mm, which exceeds PI-RADS’s rec-
ommended thin slice thickness for high-resolution images. 
With a 2-mm slice thickness, imaging of the prostate struc-
ture is likely to improve due to reduction in partial-volume 
averaging.

According to PI-RADS, T2W images can be used to iden-
tify the anatomy of prostatic zones and evaluate abnormali-
ties within the prostate gland. Therefore, T2W images are 
considered crucial for diagnosis of prostate lesions. From 
our results, the use of 1.5 T scanners with DLR can improve 
image quality and potentially produce images comparable to 
3 T images, which is considered highly beneficial in clinical 
practice. If, for some reason, a patient cannot undergo MRI 
examination in a 3 T scanner, it is clinically very useful to 
be able to safely perform the examination in a 1.5 T scan-
ner with DLR to obtain images that meet the recommended 
criteria of PIRADS.

This study had several limitations. First, all study par-
ticipants were healthy volunteers, and no participants had 
prostate lesions. Therefore, evaluation of prostate lesions 
by the 1.5 T MRI with DLR technique remains unknown. 
Further studies in a larger group of patients with various 
prostate lesions would be needed to fully validate the DLR 
technology. Second, we assessed the utility of DLR for only 
T2W imaging but not the DWI or DCE imaging, because 
T2W imaging is key for diagnosing prostate lesions. Fur-
ther studies are needed to investigate the effects on other 
sequences. Third, the imaging locations were not identical 
between the 1.5 T and 3 T MRI images, which may have 
affected the visualization of anatomic structures. However, 
we attempted to minimize the interval between the two 
scans. Fourth, we tested the utility of 1.5 T with DLR for 
only TZ of the prostate, PZ of the prostate, and obturator 
muscle, and not for other organs in this study. Although 
deep learning reconstruction primarily removes Gaussian 

noise, the 1.5 T with DLR images sometimes gave differ-
ent impressions of internal structures from the 3 T images, 
especially the linear sub-structures within the adipose tissue. 
In general, higher DLR settings tend to make images exces-
sively smooth, and the optimal DLR setting may depend on 
the parameters employed on the 1.5 T system. Therefore, 
without appropriate DLR settings, the visibility of small 
structures may be reduced in images obtained using DLR. 
The extent of such denoising was not quantified in our study 
and requires further investigation. Fifth, to avoid selection 
bias, we recruited volunteers consecutively in this study, 
which may have resulted in a wide age range of volunteers, 
which, in turn, could have resulted in relatively wide varia-
tions in the prostate anatomy and signal properties, affecting 
the SNR and CNR measurements. In future studies, sub-
jects should be stratified into equal-sized groups by age, to 
determine if findings similar to those in this study could 
be obtained in any age group. Sixth, we did not conduct a 
comparative study of the image quality obtained with 3 T 
with DLR and 1.5 T with DLR MRI of the prostate in this 
study. Since DLR has already been applied successfully to 
3 T MRI of other areas such as brain, heart, and female pel-
vis [21, 23], it is likely to provide equally good images of 
the prostate. In this study, however, we did not evaluate the 
image quality obtained with addition of DLR to 3 T MRI, 
because this study was primarily aimed at determining if the 
addition of DLR to 1.5 T MRI might provide image qual-
ity equal to or better than that obtained with the 3 T MRI 
as recommended in the PI-RADS version 2.1 guidelines. 
Future comparisons of 1.5 T with DLR and 3 T with DLR 
MRI will provide a clearer perspective of the impact of DLR 
applied to MRI at different field strengths. Considering these 
issues, further investigations on the application of the DLR 
technique in routine clinical examination are warranted. We 
consider that the six items mentioned in the limitation sec-
tion are issues that need validation in future studies. Future 
investigations addressing these issues would be expected to 
provide a clearer perspective of the usefulness of application 
of DLR to 1.5 T MRI.

5 � Conclusion

The use of the DLR technique in 1.5 T MRI substantially 
improved the SNR and image quality of T2W images of the 
prostate gland, as compared to 3 T MRI. The clinical benefit 
of using DLR with 1.5 T MR images of the prostate should 
be investigated in future studies of real patients; however, the 
results of the present preliminary study conducted in healthy 
volunteers are valuable. Our study results have significant 
clinical implications for institutions and patients who do not 
have access to 3 T MRI facilities.
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