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Abstract
Computed tomography (CT) scanning protocols should be optimized to minimize the radiation dose necessary for imaging. 
The addition of computationally generated noise to the CT images facilitates dose reduction. The objective of this study 
was to develop a noise addition method that reproduces the complexity of the noise texture present in clinical images with 
directionality that varies over images according to the underlying anatomy, requiring only Digital Imaging and Commu-
nications in Medicine (DICOM) images as input data and commonly available phantoms for calibration. The developed 
method is based on the estimation of projection data by forward projection from images, the addition of Poisson noise, and 
the reconstruction of new images. The method was validated by applying it to images acquired from cylindrical and thoracic 
phantoms using source images with exposures up to 49 mAs and target images between 39 and 5 mAs. 2D noise spectra 
were derived for regions of interest in the generated low-dose images and compared with those from the scanner-acquired 
low-dose images. The root mean square difference between the standard deviations of noise was 4%, except for very low 
exposures in peripheral regions of the cylindrical phantom. The noise spectra from the corresponding regions of interest 
exhibited remarkable agreement, indicating that the complex nature of the noise was reproduced. A practical method for 
adding noise to CT images was presented, and the magnitudes of noise and spectral content were validated. This method 
may be used to optimize CT imaging.

Keywords X-ray computed tomography · Radiation dose reduction · Low-dose simulation · Noise modelling · Two-
dimensional noise spectra

1 Introduction

Computed tomography (CT) has been widely used in medi-
cine over the past four decades because of its high diagnostic 
value for a broad range of pathologies. However, CT imag-
ing is associated with a relatively high ionizing radiation 
dose to patients and, consequently, with the risk of late sto-
chastic effects, such as carcinogenesis, over which there is 
an established concern [1]. Several efforts have been made 
in the field of CT imaging to optimize the scanning protocols 
and to identify the lowest dose adequate for scanning the 

patients as per the ALARP (as low as reasonably practica-
ble) principle [2–4]. Some studies have utilized repeated 
scanning of patients or volunteers at different dose settings 
[5–7]; however, because of the additional doses incurred by 
the patient/volunteer, this is ethically undesirable. Therefore, 
there has been great interest in the development of tools 
based on computational methods to add realistic noise to 
CT images to simulate lower-exposure images and reduce 
the radiation dose. This aids in optimizing the imaging tech-
nique without requiring repeated patient scanning.

Computed tomography (CT) image noise is complex. 
Owing to the progress made in scanner design, noise char-
acteristics have been studied in detail, including noise power 
spectra (NPS) for a simple parallel-beam geometry [8, 9], the 
effect of interpolation on the filtered back-projection process 
[10], the effect of helical scanning [11], fan-beam geometry 
[12, 13], and multidetector CT [14]. Quantum (as opposed 
to electronic) noise is structured directionally and oriented 
in the direction of highest attenuation in the field of view 
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[15]. This is illustrated in the attenuating cylinder shown 
in Fig. 1. The noise in radiographic images of the shoulder 
and hip regions is often the most pronounced because of 
the more highly attenuated X-ray paths encountered in the 
lateral direction compared with the a.p. direction [15, 16]. 
Owing to the high level of nonuniformity in the incident flux 
across the detector data, the noise characteristics vary with 
the position in the field of view and the imaging subject. 
This structured, directionally oriented noise can affect lesion 
detectability [9, 12]. For example, nonuniform noise is often 
observed through the femoral heads, which hinders the visu-
alization of important structures such as pelvic lymph nodes. 
Any noise addition tool used to study this phenomenon must 
fully reproduce this characteristic.

Several methods have been deployed to add noise to 
CT images computationally. Britten [17] used a method 
based on generating Gaussian noise and coloring it by 
convolving it with an autocorrelation function derived 
from a water phantom image, which was assessed using 
brain CT images. However, this method cannot repro-
duce a characteristic with either directionality or varia-
tion between different regions of the field of view. Frush 
[14], Massoumzadeh [18], Joemai [19], Yu [20], Kalendar 
[15], Zabic [21], and Zeng [22], used methods based on 
extracting detector profile data from scanners and adding 

noise to the profile data before reconstructing the images. 
These methods successfully reproduce complex directional 
characteristics; however, a major drawback is their require-
ment to access the detector data from the scanner. These 
data are generally not readily available and proprietary 
in format, requiring specialist bespoke software from the 
scanner manufacturer, which is not openly available and 
requires assistance from the manufacturer for implementa-
tion [17, 22, 23]. Furthermore, some methods send noisy 
profile data back to a scanner for image reconstruction. 
This recourse to scanner manufacturers has hindered the 
research community [18].

This issue was addressed by Kim [3], Takenaga [23], 
and Naziroglu [24], who used image data as the data source 
and constructed projection data estimates to generate addi-
tive noise. Kim [3] and Naziroglu [24] presented compre-
hensive and complex methods and describe the challenges 
faced during implementation. For example, Kim [3] used 
a tapered multi-diameter circular phantom to derive the 
required parameters. Tekenaga [23] considered a simpler 
approach, but only considered tube currents in the range of 
300–100 mA (corresponding to 300–100 mAs) and did not 
account for electronic system noise, which becomes more 
significant at lower exposures.

The methods employed by the authors to validate the 
added noise generally focused only on the accuracy of the 
noise levels (variances), but not on the full noise charac-
teristics, and did not assess how the textural nature varied 
over the entire field of view. Jomai [19], Yu [20], Kim [3], 
Takenaga [23], and Naziroglu [24] assessed noise character-
istics by deriving the NPS, which is only central to the field 
of view and rotationally averaged. By reducing the NPS to 
one-dimensional (1D) spectra, it is not possible to assess the 
directionality of the frequency components and how they 
vary over the field of view, which is vital for evaluating noise 
characteristics. Naziroglu [24] and Elhamiasl [2] presented 
the two-dimensional (2D) spectra from noise-added images 
and compared them with those from scanner-acquired 
images.

In this study, we present a method for adding noise to CT 
images, which has the advantages of detector noise addition 
algorithms requiring only Digital Imaging and Communi-
cation in Medicine (DICOM) images as the data source, 
that is, without requiring proprietary detector profile data. 
DICOM images are generally provided as a standard item 
by contemporary CT scanning systems and, therefore, are 
readily available. The objectives of this study were to repro-
duce the complete, nonuniform, directional, and imaging 
subject-dependent noise characteristics using a simple com-
putational implementation and requiring only widely avail-
able phantoms for calibration. This method was validated 
by assessing the standard deviations of noise over a range of 
regions and dose levels. The 2D noise spectra were derived 
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Fig. 1  Illustration of directional noise in an image of an attenuating 
cylinder. Projections are shown for the reconstruction of the region 
of interest ROI; the X-projection has passed through more attenuation 
and, therefore, has a higher level of quantum noise than the Y-projec-
tion, which is more peripheral. Hence, noise from the X-projection is 
more dominant in the ROI, generating an overall noise oriented in the 
X-direction, that is, along the direction from the center of the cylinder 
to the ROI, which is the direction of the highest attenuation. As the 
region moves around the periphery of the cylinder, the orientation of 
noise remains towards the center of the cylinder. At the very center of 
the cylinder, attenuation is equal in all directions; therefore, the noise 
is non-directional
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and assessed, and the mechanism by which the features in 
the spectra were generated was explained.

2  Methods

The remainder of this section is organized as follows. In 
the first subsection, we describe the equipment used and 
the image acquisition process. In the second subsection, we 
describe the method for adding noise to images. Finally, in 
the third subsection, we describe the experiment conducted 
to validate the noise addition process.

2.1  Equipment and image acquisition

An anthropomorphic thoracic phantom (QRM Gmbh tho-
racic phantom, QRM, Mohrendorf, Germany) and a cylin-
drical acrylic phantom with a diameter of 320 mm were used 
in this study. Both phantoms were imaged using a 16-slice 
CT scanner (GE Lightspeed16, GE Healthcare, Waukesha, 
WIS, USA) following the protocol used in standard local 
clinical practice (120 kVp and 49 mAs) and at various 
reduced exposures (39, 34, 24, 17, and 5 mAs). The length 
of the thoracic phantom was 200 mm, which allowed the 
acquisition of 17 slices at 5-mm intervals over the central 
80 mm to avoid any effects from being too close to the edge 
of the phantom. Although the acrylic phantom was longer, 
only 17 central slices were acquired at 5-mm intervals for 
consistency. A constant tube current was used with respect 
to both the gantry position (z-axis) and tube rotation dur-
ing acquisition; that is, no automatic exposure control was 
used. The phantoms were positioned as close as possible to 
the isocenter and aligned axially to the scanner. All images 
(for both phantoms) were reconstructed using a soft-tissue 
setting appropriate for the chest phantom.

2.2  Method to add noise to images

Pixel data from a source image were forward projected to 
estimate radiation intensity projections. Poisson noise was 
added to the projection data to simulate the effect of lower-
ing exposure, and the images were reconstructed by revers-
ing the process using filtered back-projection. Processing 
and programming were performed in MATLAB (Math-
Works Inc., Natick, MA, USA).

2.2.1  Extraction of attenuation data

For each source image, pixel data in Hounsfield units (HU) 
were obtained from the DICOM file and converted to linear 
attenuation coefficients μ(x,y) [25]. A value of 0.22  cm−1 
was used for the linear attenuation of water, as this reflected 
the beam energy profile at 120 kVp. The attenuation 

coefficients, representing the attenuation per unit length at 
each pixel position, were then converted to linear attenuation 
values across each pixel area by multiplying them by the 
pixel spacing obtained from the DICOM data. The values 
in the attenuation data matrix outside the (circular) field of 
view were set to zero.

2.2.2  Calculation of projection data

A Radon transform [26, 27] was applied to the attenua-
tion data, which were summed along the rays to estimate 
the total attenuation along each projection path. For this 
purpose, a parallel-beam geometry was assumed and the 
projection angles were spaced at 0.5° intervals. These data 
were then converted into transmittance data P(z,θ) using the 
Beer–Lambert relationship [25].

2.2.3  Application of bowtie filter

A bowtie filter was incorporated into the imaging system. 
The exact parameters of the bowtie filter in the imaging 
system were unknown; therefore, a window function was 
chosen to approximate the typical bowtie filter used for 
imaging the abdomen and thorax, which was applied to all 
projections. The central 20 values (of the same sample spac-
ing as the pixel spacing) of the window function used was 
considered as unity (100% transmittance). Outside this, the 
function decreased to a minimum value of 0.05 (5% trans-
mittance) as a half sinusoid extended towards both edges 
of the field of view (at positions of 180 mm per 256-pixel 
spacing from the center), as shown in Fig. 2. The validation 
of this window function is presented in the Experimental 
Validation section. Notably, these bowtie filter parameters 
are only applicable to the field-of-view size under study and 
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Fig. 2  Bowtie filter transmittance profile
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would likely require modification if a different field-of-view 
size is chosen.

2.2.4  Addition of poisson noise to the projection data

The resulting estimate of the projection data is proportional 
to the X-ray energy incident on the detectors. Therefore, 
it is proportional to the number of quanta incident on the 
detectors (for a given beam energy profile). P(z,θ) was multi-
plied by the constant s determined by the calibration process 
described below, to estimate of the number of quanta Q inci-
dent on the detectors Q(z,θ) = sP(z,θ). Stochastic noise was 
then added to the projection data by adding Poisson noise to 
Q(z,θ). As the variance of the Poisson noise is equal to its 
mean, parameter s governs the level of noise added across 
the image. Furthermore, the larger the value of Q(z,θ) at 
particular data points, the larger the variance of the noise 
added at those points, resulting in a variation in the noise 
magnitude required over the projections.

2.2.5  Reconstruction of images

Noise-added images were reconstructed by applying a rever-
sal of the abovementioned process to the noisy projection 
data. The data were divided by parameters s, and each pro-
jection was windowed with the reciprocal of the bowtie filter 
function. The logarithm of these data was used to apply the 
Beer–Lambert relationship, and an inverse Radon transform 
was applied with a reconstruction filter to derive the attenua-
tion map, which was then converted back to HU. The inverse 
Radon Transform was implemented using the MATLAB 
(ray-driven) ‘iradon’ function.

A block diagram of this process is shown in Fig. 3.

2.3  Calibration of the noise addition method

The process required calibrating the parameters of the 
reconstruction filter applied in the last step of the process to 
back-project the data and parameter s, which governed the 
amount of noise added to affect the required target exposure 
and dose.

For the reconstruction filter, a ramp filter (where the filter 
coefficient is proportional to the frequency) was used, which 
was modified by weighting with an apodisation function to 
roll off at higher frequencies [24]. An apodisation function 
is generally chosen by the user to suit a particular scanning 
application such as bone or soft tissue. The apodisation 
function used in this study was selected based on an itera-
tive experiment. A 32 × 32-pixel region at the center of the 
cylindrical phantom was used for this part of the calibration 
process. An initial filter was chosen; coefficients 0–6 were 
unity, and those above this range had a half-cosine function 
that rolled off to zero at coefficient number 16. An initial 

value for parameter s was determined by iteration, applying 
the noise addition process to a 49-mAs source image to pro-
duce the same noise standard deviation (averaged over the 17 
available slices) as that in the center of the scanner-acquired 
images for a reduced mid-range exposure (34 mAs). The 
2D fast Fourier transforms (FFTs) were derived for these 
central pixel regions in both the noise-added and scanner-
acquired images. Each of these was rotationally averaged 
about its center (zero-frequency) point to obtain smoother 
1D spectra (akin to the NPS [28]). These were averaged 
over the 17 available slices to obtain smoother spectra 
for both noise-added and scanner-acquired images. These 
1D spectra were compared, and the filter parameters were 
adjusted iteratively until the spectra from the noise-added 
and scanner-acquired images were in the closest possible 
agreement. In addition, parameter s was adjusted to maintain 
the correct standard deviation of the pixel values. Only filter 

a�enua�on coefficient matrix, 
μ(x,y)= μwater (I(x,y) + 1000)/1000

Radon Transform, Beer-Lambert
-> projec�on data, 

P(z,θ)=exp(-R{l.μ(x,y)})

bow-�e filter, rescale to projec�on 
data for reduced exposure, Q(z,θ)

Add Poisson noise, Q’(z,θ)

Rescale to projec�on data, 
reciprocate bow �e filter, P’(z,θ)

Beer-Lambert,
Inverse Radon Transform, 

reconstruc�on filter, μ’(x,y)

Modified pixel matrix (HU), I’(x,y)

Original pixel matrix (HU), I(x,y)

Fig. 3  Block diagram of the noise addition method
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coefficients numbered 7 and above were adjusted because we 
found that not doing so incurred reconstruction artifacts; the 
coefficients below this were maintained at unity. The central 
region of the cylindrical phantom was used. In this region, 
the 2D FFTs were expected to be rotationally symmetrical; 
therefore, rotationally averaging them was a valid approach.

The parameter s was dependent on both the source and 
target image exposures and on the highest exposure used in 
this process to account for electronic system noise. The value 
of this parameter was estimated experimentally to obtain 
the correct noise standard deviation in the target region of 
interest (ROI) of the final noisy image. The selected tar-
get regions were 32 × 32-pixel regions close to the center 
of the mediastinal region of the thoracic phantom and just 
to the side of the central insert of the cylindrical phantom 
(Figs. 4c ROI3 and 4a ROI1). These regions were selected 
because they are the most uniform and near-central regions 
available. Both phantoms were used to encompass as large 
a detector dose range as possible, because the cylindrical 
phantom was significantly more attenuated than the thoracic 
phantom. Target standard deviations were determined by cal-
culating the standard deviations in these regions for each 

target exposure studied from the scanner-acquired images 
and calculating the means of these standard deviations over 
the 17 slices available for each.

The value of parameter s is dependent on several factors, 
and it is nontrivial to derive a theoretical formula; therefore, 
an expression for the best fit s across the range of expo-
sures studied was derived experimentally and is expressed 
in Eq. 1.

where Et represents the target image exposure (tube cur-
rent–time product, mAs), Es represents the source image 
exposure (mAs), and Eh represents the highest exposure 
used (i.e., 49 mAs).

This is essentially a quadratic fit to the target image expo-
sure (left bracket), modified by a factor to compensate for 
the noise initially present in the source image (right bracket).

Parameters a, b, c, and d were estimated as follows. 
The value of s was accurately determined for each pair-
wise combination of available exposures as the source and 
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acquired at 5 mAs and those 
generated at 5 mAs from images 
originally acquired at 49 mAs, 
with regions of interest used 
in the analysis. The thoracic 
phantom images are windowed 
to demonstrate noise in the lung 
fields
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target exposures. This was achieved by iteratively applying 
the proposed method and adjusting the s value to obtain 
the correct standard deviation of the target noise measured 
experimentally in the acquired reduced-exposure images. 
Subsequently, these values of s were plotted against target 
exposure Et (for both phantoms) initially for only the high-
est source image exposure Eh (49 mAs) used in this study. 
A best-fit quadratic was fitted to s using the least squares 
method to yield parameters a, b, and c. To calculate the 
adjustment required for parameter s for other source expo-
sures, a multiplicative factor was included (right bracket of 
Eq. 1). The parameters for this calculation were estimated 
by plotting the multiplicative factor against [Et/Es—Et/Eh]. A 
best-fit straight-line fit was calculated, which passed through 
point (0,1), that is, no adjustment was required for Es = Eh. 
The gradient of this line provided parameter d.

2.4  Experimental validation

To validate noise characteristics, images were generated 
for each combination of source and target exposures. These 
images were compared to those acquired from the scanner 
with the corresponding target exposure. Five regions of 
interest from the cylindrical and thoracic phantoms were 
selected for this comparison. These regions represent the 
range of noise characteristics present in the images, are 
locally stationary or as close to locally stationary as possi-
ble, and pose a challenge to the noise addition process. Fur-
thermore, regions in the lung fields of the thoracic phantoms 
were chosen because of their clinical relevance; for example, 
in the investigation of lung nodules. All the regions were 
squares of 32 × 32 pixels, as shown in Fig. 4.

Seventeen images (axial slices) were available as source 
images for each exposure combination. Noise was added 
independently to each of these images using the proposed 
method for each target exposure and assessed as follows:

First, the noise magnitude in each region was quantified 
by measuring the standard deviation of the pixel values in 
each region. The mean standard deviations from each set of 
17 images were calculated and compared with those from 
the corresponding regions of the images with the same target 
exposure acquired using the scanner.

Second, a more detailed investigation of the noise char-
acteristics was conducted by calculating the 2D FFTs for 
each region of interest. Based on these FFTs, mean spectra 
were computed for each set of 17 images. These spectra were 
visually compared with those of the corresponding regions 
of the target exposure images acquired using the scanner. 
Full analysis or quantification of the characteristics was not 
performed on these spectra because this would have required 
more than 17 images to obtain sufficiently consistent spectra 
and yield meaningful results.

3  Results

We found that the apodisation function that provided the 
best match to the noise from the acquired images was a 
half-cosine function that reached zero at the (would be) 
19th filter coefficient (Fig. 5). To demonstrate the validity 
of this result, the 1D noise spectra for the central region 
of the cylindrical phantom from images acquired at 34 
mAs and those from images generated by the noise addi-
tion process, including the reconstruction filter for 34-mAs 
target images from 49-mAs source images, were compared 
(Fig. 6).

The parameters a, b, c, and d required for the calcula-
tion of s were determined; these parameters are presented 
in Table 1.

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16

co
effi

ci
en

t v
al

ue

coefficient number, N

apodiza�on

ramp

filter

Fig. 5  Reconstruction filter coefficients

0

100

200

300

400

500

600

700

0.0 0.2 0.4 0.6 0.8

N
PS

 (H
U

2 m
m

2 )

frequency (mm-1)

acquired

generated

Fig. 6  One-dimensional noise spectra from the images of the center 
of the cylindrical phantom acquired at 34 mAs and from images gen-
erated at a target exposure of 34 mAs from those acquired at 49 mAs



118 N. M. Gibson et al.

1 3

An example of a noise-added image from both phantoms 
generated from a 49-mAs source image for a target exposure 
of 5 mAs, alongside the images acquired from the scanner at 
the same target exposure, is shown in Fig. 4. We found that 
the mean pixel values in the ROIs of the generated images 
and the corresponding ROIs of the phantom acquired images 
at any exposure were in very good agreement (see Online 
Resource 1).

The differences between the standard deviations of 
the generated noise and those of the noise in the scanner-
acquired images for the corresponding exposures, expressed 
as percentages of the standard deviations of the target noise 
for each target exposure, are summarized in Table 2. These 
are the root mean square (RMS) values for the images gener-
ated from all source images used for each target exposure. N 
is the number of exposure combinations used for the target 
exposure, that is, the number of source exposures available 
for that target exposure. As 17 individual images were avail-
able for each combination of source-target exposures, the 
number of individual images used for each target exposure 
was 17 × N. A representative selection of these results is 
shown in Fig. 7. This selection was derived from 49-mAs 
source images, and includes ROI3 and ROI1 of the thoracic 
phantom that were the central region and one of the lung 
regions, respectively, and ROI1 and ROI4 of the cylindrical 
phantom that were the central region and one of the periph-
eral regions, respectively.

The standard deviations of the noise in the generated 
and acquired images were within one standard deviation for 
all source and target exposure combinations and for both 
phantoms, with only a small number of exceptions. These 
exceptions were for the lowest target exposure (5 mAs) 
across ROI2 to ROI5 of the cylindrical phantom and for 
the 17-mAs target exposure for ROI4. This is illustrated in 
Fig. 7, which shows that for ROI4 in the cylindrical phan-
tom, the 5-mAs noise standard deviation was clearly not in 
agreement, but the 17-mAs target exposure was not quite in 
agreement. This was typical for all the source exposures at 
these target exposures, as indicated by the RMS differences 
presented in Table 2.

The RMS difference over all exposures and regions of 
interest in the thoracic phantom was 3.9% of the standard 
deviation of target noise (from 75 images), whereas that for 
the cylindrical phantom was 15%. In the cylindrical phan-
tom, the RMS differences were noticeably greater for ROIs 

Table 1  Parameters used in the 
calculation of parameter s 

Parameter Value

a 1.912 ×  103

b 5.665 ×  104

c 9.840 ×  104

d 0.5845
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2–5 at the two lowest target exposures than for the remaining 
target exposures and for ROI1 at all target exposures. For the 
17-mAs target exposure images and ROIs 3–5, the overall 
RMS difference was 11.9% (from 12 images), whereas for 
the 5-mAs target exposure images and ROIs 2–5, the over-
all RMS difference was 26%. The RMS difference of the 
remaining target exposures and ROIs was 4.1% (from 43 
images), close to those of all target exposures and ROIs in 
the thoracic phantom (3.9%).

The 2D FFTs of each ROI in each phantom for the images 
acquired at the lowest exposure (5 mA) and those gener-
ated at 5 mAs from the source images at 49 mAs are shown 
in Fig. 8. These spectra represent the mean spectra of the 
17 available image slices. The lowest-exposure images are 
shown, as they provide the best visualization of the fre-
quency components, as they have the largest magnitude. The 

spectra of the images at other exposures exhibited similar 
characteristics for each corresponding ROI with lower-mag-
nitude frequency components.

4  Discussion

The comparison of the 1D noise spectra derived from the 
central region of the images of the cylindrical phantom 
acquired at 34 mAs, with those generated from the 49-mAs 
images to a target of 34 mAs (Fig. 6), showed good agree-
ment. This indicates that the noise characteristics are accu-
rately reproduced by the proposed method in the central 
region and validates the choice of the reconstruction filter. 
For further comparison, 1-D noise spectra are shown for this 
region for a range of exposures in Online Resource 1, which 

a) thoracic phantom ROI3          b)    thoracic phantom ROI1 

c) cylindrical phantom ROI1          d)    cylindrical phantom ROI4 
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exposures from images originally acquired at 49 mAs (Χ) for selected 
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ations) of the 17 images available for each exposure
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generally show agreement between the acquired and gener-
ated data. Other areas of the cylindrical and chest phan-
tom images would not be expected to produce rotationally 
symmetrical 2D FFTs; thus, rotationally averaging these 2D 
spectra to derive the 1D spectra would not be valid. This 
would require a 2D frequency-domain analysis approach, 
which was not possible in this study with only 17 slices 
available for averaging for each exposure, as the 2D spectra 
were too noisy. (Some examples of 1-D spectra sampled 
from the x- and y-frequency axes of the 2-D spectra are 

shown in Online Resource 1 and demonstrate broad agree-
ment between the acquired and generated data.)

For the images acquired from the thoracic phantom, 
noise amplitudes (standard deviations) showed good agree-
ment between the acquired and generated images, with an 
RMS difference of 3.9% across all target and source image 
exposure combinations (Table 2). This difference was small 
when compared to the quantization noise generated from the 
expression of pixel values as integer HU values. The stand-
ard deviation of the quantization noise is 1/√12 of a HU 

Thoracic phantom: Cylindrical phantom:

Example 
generated low 
exposure image 
regions:

Acquired low 
exposure image 
Fourier 
Transform:

Generated low 
exposure image 
Fourier 
Transform:

Example 
generated low 
exposure image 
regions:

Acquired low 
exposure image 
Fourier 
Transform:

Generated low 
exposure 
images Fourier 
Transform:

ROI 1: ROI 1:

ROI 2: ROI 2:

ROI 3: ROI 3:

ROI 4: ROI 4:

ROI 5: ROI 5:

Fig. 8  Example image regions from images generated at a 5-mAs target exposure from 49-mAs source images with corresponding 2D Fourier 
transforms (mean of 17 available slices) and the corresponding Fourier transforms of images acquired at 5 mAs
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[29], that is, 0.29 HU, compared with 3.9% of a mid-range 
noise’s standard deviation of 4 HU, which is 0.16 HU. The 
agreement varies between regions of interest and exposures. 
Agreement for the cylindrical phantom was also comparably 
good, with an RMS difference of 4.1% over all regions and 
exposures except for the peripheral regions (ROIs3-5) at the 
lowest two exposures studied.

Agreement was particularly good for the central regions 
of interest for both phantoms over all exposures (RMS differ-
ence of 1% for the thoracic phantom ROI3 and 1.9% for the 
cylindrical ROI1). This was expected, because this region 
was used to calibrate the proposed method. Agreement was 
also good in the lung field regions of the thoracic phantom 
(ROI1 3.2% and ROI2 2.8%), which were the regions of 
most clinical relevance used in the study.

The peripheral regions in both phantoms showed less 
good agreement; in the case of the thoracic phantom, only 
slightly so (5.5% and 5.0% for ROI4 and ROI5, respectively), 
these regions are unlikely to be clinically relevant because 
they are outside the phantom and outside the habitus of a 
typical patient. Differences were more significant in periph-
eral regions of the cylindrical phantom (between 16.3% and 
18.3% for ROIs3–5). In these regions, in both phantoms and 
close to the edges of the field of view, the modelling of 
the system may be less accurate than in the central regions 
because of the use of a parallel-beam model in the proposed 
method, which does not reflect the true CT system geometry. 
In the cylindrical phantom, these differences may have been 
exacerbated by beam hardening in the acrylic from which it 
was composed, which is considerably more attenuating than 
in the thoracic phantom, resulting in a higher effective keV 
of X-rays. Consequently, a lower linear attenuation of the 
water coefficient is required in Eq. (1) to model the cylindri-
cal phantom more accurately. Although the accuracy of the 
method was low at very low target exposures in the periph-
ery of the cylindrical phantom, lower exposures of down to 
5 mAs were used in this study compared with those used in 
studies by other authors.

All 2D frequency spectra plots showed remarkable agree-
ment between the acquired low-exposure images and the 
generated images for the corresponding regions of interest 
in both phantoms (Fig. 8). The peaks present in the spectra 
from the scanner-acquired images correspondvery closely to 
the peaks in the corresponding noise-added images.

In the cylindrical phantom, the spectra of the central 
region (ROI1) were in the form of a broad disk (torus) cen-
tered on the origin with no sharp peaks. This is because 
the attenuation around this region is equally distributed 
at all angles, giving rise to noise with no particular direc-
tional component and noise spectra with infinite rotational 
symmetry.

The spectra from all other regions also showed the same 
torus in the background with various superposed peaks. 

These peak components in the frequency space were always 
normal to the spatial directionality of the noise in the cor-
responding image and were always in pairs opposite each 
other with respect to the origin (as per the Fourier Transform 
theory [29]). The noise is always oriented along the direc-
tion of the attenuation peak from the image region, as per 
Kalender [15].

For example, in the cylindrical phantom, the area of 
greatest attenuation from ROI3 was towards the phantom 
center, that is, to its left-hand side, producing noise in the 
image oriented in the x-axis direction and a pair of fre-
quency components positioned along the y-frequency axis 
in its 2D FFT. In ROI4 to ROI5, the directionality of the 
noise and frequency components moved approximately from 
45° to 90°, respectively, as the position of the center of the 
phantom moved similarly with respect to these regions. The 
peaks in ROI2 were in the same position as those in ROI3, 
but were less prominent as ROI2 was closer to the center of 
the phantom; therefore, the differences in attenuation around 
ROI2 were smaller.

In the thoracic phantom, spectral components were 
observed at various positions corresponding to several areas 
of local attenuation maxima. ROI1 showed components gen-
erated from the mediastinum and ROI3 showed components 
obtained from the vertebra. ROI2 showed peaks generated 
from both anatomical regions at different positions to those 
for ROI1 and ROI3 because these locally higher attenuating 
areas were positioned at different angles relative to ROI2. 
Similarly, ROI4 and ROI5 showed components generated 
from both the mediastinum and vertebra, as well as from the 
ribs/chest wall at various angles. This finding is additional 
to that of Kalender [15], who noted that noise patterns in 
computed tomography are oriented in the direction of the 
highest attenuation. We observed that multiple local peaks in 
attenuation around an ROI gave rise to multiple peaks in the 
spectra and multiple corresponding noise directionalities.

ROI4 in the thoracic phantom was the only region in 
which a significant difference between the acquired and gen-
erated low-dose spectra was observed. There was a sharp 
frequency component pair 45° above the x-frequency axis 
and at a high frequency (i.e., towards the periphery of the 
2D FFT) in the acquired image, which was not observed in 
the generated image. This was attributed to the presence of 
artifacts that appeared as patches around this region on some 
slices of the acquired images, consisting of a regular series 
of lines running 45° below the x-axis. This may be because 
of undersampling in the image acquisition process [30] and 
not because of the noise addition process.

Although we demonstrated that the generated noise was 
similar to real noise, there were some sources of error in 
the process. These included errors in the measurement of 
the noise amplitude from the scanner-acquired images from 
which the amplitudes of the source and target noises were 
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obtained, and consequently, errors in the parameters calibrat-
ing the process. Only 17 slices were available from both the 
phantoms for each exposure. This error can be reduced by 
repeated scanning to obtain more images, from which the 
average noise standard deviations can be obtained, result-
ing in more accurate calibration parameters and smoother 
spatial-frequency plots. The findings of this study demon-
strate the potential of the proposed method.

The model uses a parallel beam projection as an approxi-
mation of the diverging beam in a practical scanner geome-
try. This is likely to have accounted for the minor differences 
in the prominence of some peaks in the frequency plots, 
although the observed positions of these peaks were accu-
rate. Similarly, the image construction process was modeled 
only on a slice-by-slice basis, and a multiple-row detector 
with a helical scanning process was not considered. Incor-
porating this into the model may be possible; however, it is 
a complex process that may improve generalizability. The 
model proposed in this study was adequate for the phan-
toms used to calibrate and evaluate the noise addition pro-
cess given that their geometry did not vary in the gantry 
axis direction.

This method is based on an estimate of the detector data 
and inevitably includes errors generated from the forward-
projected image noise in the initial step. Because the image 
noise is small (with a standard deviation of up to 12 HU in 
the thoracic phantom) compared to the signal (within a range 
of a few thousand HU), this should not be significant.

This method uses the assumed characteristic of the bowtie 
filter. The method may be improved by either obtaining the 
actual specifications of the filter, which was not possible, or 
by experimentally using an in-air scan, as suggested by Mas-
soumzadeh (2009) and Yu (2012), which would be relatively 
straightforward. Although these authors used detector data 
as the data source in their method, the detector data could be 
adequately estimated from the image using the initial steps 
of the method described above.

Automatic exposure controls were not used in this study. 
These controls can be incorporated into the proposed method 
by estimating the exposure modulation from the estimated 
profile data, as implemented by Yu (2012); however, Yu 
used detector data directly. The incorporation of automatic 
exposure control into the proposed method is relatively 
straightforward.

Calibration was applied to this setup, as previously 
described. The calibration process should be repeated if 
the field-of-view size, bowtie filter or reconstruction filter, 
kVp, or beam filtering are changed or if exposure outside the 
range of 5–49 mAs is required. Without further validation, 
this method should not be applied when automatic exposure 
control is used.

One limitation of the proposed method is that it is appli-
cable only to linear reconstructions. Nonlinear and iterative 

reconstruction methods were outside the scope of this study 
because such iterative algorithms were not available to the 
experimenters. In principle, the proposed method, that is, the 
addition of stochastic noise to profile data estimated from 
DICOM image data, may also be applied to images both 
derived and reconstructed using other reconstruction meth-
ods; however, this requires further investigation.

In contemporary CT literature, there is focus on using 
machine learning, particularly deep learning and neural 
networks, to reduce image noise for image enhancement 
[31–33]. This may also be a suitable approach for adding 
noise to CT images. However, one drawback of this approach 
is that an extremely large number of images are required.

This method used a simple cylindrical acrylic phantom 
and a readily available thoracic phantom for calibration. 
Because only uniform and central regions of the phantoms 
were required for this calibration, a simple cylindrical water 
phantom would be sufficient if a thoracic phantom was not 
available.

In summary, a practical method for adding noise to CT 
images that requires only easily accessible DICOM images 
as source data and simple, readily available phantoms for 
calibration is presented. Therefore, it is suitable for use in 
future observational and dose-reduction studies. Cylindri-
cal acrylic and thoracic phantoms are used to validate the 
generated noise characteristics. The standard deviations of 
the generated noise and the 2D local spatial frequency char-
acteristics were found to be a good match to the correspond-
ing scanner-acquired lower-exposure images over a range of 
exposures from 39 mAs to below 20 mAs.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12194- 023- 00755-w.
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